LUDWIG-

MAXIMILIANS-
MUNCHEN

Automatic Detection of MPI Application
Structure with Event Flow Graphs

Karl Furlinger?

joint work with
Xavier Aguilar? and Erwin Laure?

1 Ludwig-Maximilian-University (LMU)
Munich, Germany

2 KTH Royal Institute of Technology
Stockholm, Sweden

wwe | Tracing and Profilin
LMU e 2 :

B Trace
000000000000 .
— Full temporal order of events is
preserved
— A lot of data to store, process,
analyze o
B Implementation in IPM?
m Profile (summary) — Keep data in a hash table
100x €Y — Keys: event (-signatures)
42x © — Values: statistics (#calls, duration, ...)
33« @ key #calls duration
17x ©
© 42 23.1
— Temporal order is
0 100 12.0

not preserved

1 .
— Far less data Integrated Performance Monitor

http://ipm-hpc.sourceforge.net/

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 2

LU s Something in Between Profiling and Tracing...

B Event Flow Graphs (EFGs)
— Keep a history of the previous event that happened

— Keep track of pairs of events (prev., curr.) instead of single

events
® Similar to a control flow graph, but

3
‘ .Q‘/°<\7‘ — records tansitions that have actually
\42/9——*0 happened in an execution
start end — records how many times these
transitions have happend

B Implementationin IPM:
— Keep an additional hash table

— Keys: pairs of events key #trans. | duration

(prev., curr.) '_’0 - 0.02
— Values: statistics M 7 1.05

(#transitions, duration, ...)

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 3

wome | E le Event Flow Graph (1
LVIU | [caeesrse xample tve ph (1)

int main() {
MPTI Tnit(...);
for (i=1;i<=10;1i++) {
MPI Send(...);
MPI Recv(...);

}

MPI Finalize () ;

}
1 m 1

MPI_Init | —» [MPI.Send |—» [MPI_Recv |—> [MPI_Finalize

10

B [n this case, the EFG is a perfect
representation of the trace.

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

MAXIMILIANS-
UNIVERSITAT
MUONCHEN

int main() {

MPT Tnit (..
for (i=1;1<=10;i++) {

.y

MPI Bcast(...);

1if (1%2)

/* odd =/

MPI Recv(...);
else /+ even x/

MPI Send(...);

}

MPI Finalize () ;

}

MPI_Init | —>»

MPI_Bcast

5

4

LLLLLLL Example Event Flow Graph (2)

MPI_Recv

MPI_Send

A

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

B In this case, the trace
cannot be uniquely

reconstructed from the
EFG.

MPI_Finalize

LMU

B Temporal EFG (t-EFG):
— A modified version of an EFG that guarantees trace recovery

B |deas
— At each node, keep track of which outgoing edge to take next
— Represent this information in a compact way

we s T€@mporal Event Flow Graphs

m t-EFG for the previous example:
— Edge label describes a partition of the iteration space

MPI_Init

1,9,2,1: first, last, stride, blocksize

5

MPI|_Recv

1,9,2,1
MPI_Bcast

2,10,2,1

S

MPI_Send

2

K. Furlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

MPI_Finalize

2,1: notation for
simple case

| 6

MU i Using t-EFGs for Trace Compression

B Runtime data collection is still efficient
— Around 2% overhead in terms of execution time

— See: [EuroPar ’14]: Xavier Aguilar, et al. MPI Trace Compression using Event
Flow Graphs

B Compression results for some benchmarks [EuroPar “14] (sequence
of events only)

Benchmark # Ranks | Comp. Factor
AMG 96 1.76x
GTC 64 46.60x
MILC 96 39.03x
Up to 120x
SNAP 96 119.23x Compression!
MiniDFT 40 4.33x
MiniFE 144 19.93x
MiniGhost 96 4.85x

K. Flirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 7

R ot
LU it FG Graph Statistics

B Compression ratio depends on the structure of the graphs
— Simple graphs with few nodes and edges correspond to high compression

ratios

cenchmar | ME,ST | A | A
AMG 1.76 9,384.94 10,586.47
MiniDFT 4.33 690.30 1,980.38
SNAP 119.23 28 1,120.26
GTC 46.60 114.5 121.20

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

Avg. Node
Cardinality

4.59
27.29
14,149.22

109.10

| 8

wwe | OvVErview (1
LIVIU | | (1)

MUONCHEN

/° Event Flow Graph
snp\e /o
Trace S\nP start end

(Event Stream) possie
0
o EYR
@ o |2
o CANNN
™

o
O EUr

o
: pa" ’14

EU"O
P
ar '14
EuroPar "14:

Xavier Aguilar, Karl Firlinger, and Erwin Laure.

Temporal
MPI Trace Compression using Event Flow Graphs

Event Flow Graph

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 9

wwe | Analyzing Event Flow Graphs
LMU| [ohveeerse yzIng P

B MiniGhost example application

— 3160 events in the trace
— 87 nodes, 90 edges in the EFG

B Compressing sequences (chains)
— 13 nodes, 16 edges
— Nested loops (cycles) visible

60

60 60x Node D

60x Node E

2,356,6,1
1,359,2, /
60

360x Node C 1€ 4358.6,1 60 60x Node F
60 \ /
6,360,6,1 60x Node G
60x Node B
60
/’ Seq3 (length39) | ¢
2,1 1
1x MPLInit LN Seq 1 (length 9) 1 60x Node A « 1,59 B 60x Node H Seq 2 (length 29) 1x MPI_Finalize

K. Flirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 10

LMU

UNIVERSITAT
MUONCHEN

m A

oplication Structure

— Structure:= loops and their nesting

— Folklore: “big outer loop hypothesis”: most scientific
applications are dominated by a big outer time-stepping loop

B Detecting Structure

— If a loop contains MPI calls, the loop will show up as a cycle in

the Event Flow Graph

v ws| Detecting Application Structure Automatically

or (120) fofr(i(=_0;d..){){ fo;(()i=0;...){ fﬂ(()i.:o;'“){ or (0)1
. or(i=0;... or(j=0; ... ; P or(i=0; ...
o A() for (j=0;.0¢ | PHIT% U Tay
A(); AC); B(); B(); () if (X) then B();
) ’ B(); } C(); } ’ else C();
) ()) N)
} } } ’
® ® O
®) G ®
e | (S][5] (DA
® ‘ o &
C © S

K. Flirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

| 11

wowie: Finding Cvcles in the Graph
LMU| [ohveeerse ELY P

B Detecting cycles in flow graphs is a common requirement
for (de-)compilers

— Many algorithms exist

— We used an efficient DFS-based algorithm by T. Wei et al., “A
New Algorithm for Identifying Loops in Decompilation”, 2007

A(); A

for (j=0;...){ B
B(); l
C(); |

} C)

D(); l

K. Furlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 12

MAXIMILIANS-
UNIVERSITAT
MUONCHEN

LLLLLLL Loop Detection Results

Outermost Loop(s)

Benchmark # Ranks Runt-li-rztzl(sec) Count Tin;ﬁ In d-lc;inTi(:\::\t
MiniGhost 96 282.17 1 98.8% 98.8%
MiniFE 144 133.50 13 78.1% 77.7%
BT 144 370.59 7 99.4% 99.0%
LZ 128 347.53 3 99.2% 98.9%

“Big outer loop hypothesis” largely holds for these (and
other) example benchmarks

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

| 13

wwe | OVErview (2
LMU| i85 2)

Event Flow Graph

0w

Trace

Temporal
Event Flow Graph

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 14

MAXIMILIANS-
IIIIIIIII AT
MUONCHEN

LLLLLLL Online Structure Detection

m So far: post-mortem operation

run

App. :>

B Now: Online operation

run B Steady state?

EFG(s) J

loop
detection

—

— No = do nothing

B At main loop header?
— No = do nothing

— Yes = collect trace for N iterations
(“smart data collection”)

K. Flirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

Structure,
Statistics,

— Yes = perform loop detection

| 15

LMU| ke Detecting and Exploiting Structure Online

B Application structure can be detected online, while the
application runs
— Reduce redundant data, change data granularity, etc

B The event flow graph becomes stable once the
application enters its iterative phase

B Our mechanism checks the number of nodes in the graph
to detect application stability to trigger the loop detection
mechanism

K. Furlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 16

wwe | EF ili
LVIU | [caeesrse G Stability

100

LU —
N1 MiniFE =

MiniGhost
80

70 1

lll

Num. nodes

50 100 150 200 250 300 350
Execution time (seconds)

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 17

VU e Smart Data Collection — Experiments

m Six applications representing typical scientific codes
— MiniGhost
— MiniFE
— MiniMD
— GTC
— LU
— BT

® Cray XE6 with 2 twelve-core AMD MagnyCours at 2.1 GHz
— 32 GB DDR3 memory per node
— Nodes interconnected with Cray Gemini network

K. Furlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 18

LU e Smart Data Collection — Trace Size

NNNNN

Trace size 26 MB 77/ MB 48MB 555MB 717 MB 7.7 GB

10 iterations
trace

% reduced 83% 94.7% 97.3% 99.8% 96% 96.53%

44MB 41MB 1.3MB 788KB 29 MB 267 MB

B Detect the application structure on-line to keep tracing
information of only 10 iterations of the main loop

m If the application is regular, a few iterations will represent
the overall performance behaviour

B Performance results (statistics) still representative

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 20

wwe | OVErview (3
LMU | |sveeer (3)

Event Flow Graph

Trace
o
o
o
© O
L
p:o —sea @O O
‘ LOOP (100x)
550 © ©
LOOP (20x)
Temporal (Ovccg)fllr;g —— seq ©
Event Flow Graph
—sta © O

K. Fiirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 23

LUDWIG-

Example: MiniGhost

MU
+ROOT
+SEQUENCE predicate
- MPI_Init
- Seq 1 (length 9) guards the
+LOOP (60x) activation of
- Node A, Node

+LOOP (6x)
+SEQUENCEQm)
- Node C, Node—G, Node F

+SEQUENCE [1,1,0,1]
- Node C, Node E, Node D
+SEQUENCE [0,2,2,1 | 4,5,0,2]
- Node C
+SEQUENCE
- Seq 3 (length 39)
- Node H
+SEQUENCE
- Seq 2 (length 29)
- MPI_Finalize

1,359,2,

2,356,6,1
60

Compact and clear
representation of what the
application does

Code generation
straightforward

60

60x Node D

60x Node E

360x Node C (€ 735861

60

60x Node B

1x MPLInit > Seq 1 (length 9) 60x Node A

1,59

60 60x Node F

60x Node G

Seq 3 (length 39) 60

2,1 1

60x Node H Seq 2 (length 29) 1x MPI_Finalize

K. Flirlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs

| 24

°°°°°°° Conclusions

MAXIMILIANS-
UNIVERSITAT
MUONCHEN

B Event flow graphs together with graph cycle detection
algorithms are able to detect MPI application structure

B No source instrumentation needed
— Graphs captured through the PMPI interface

B Some use cases:
— Map performance data to program structure
— Reduce amount of data collected while application runs

B Converting t-EFGs to trees onging work
— Exciting possibilities: analysis, modeling, code generation, ...

K. Furlinger — Automatic Detection of MPI Application Structure with Event Flow Graphs | 25

