
Debugging	Synchronization	Errors	in	MPI-3	One-
Sided	Applications

Authors:	Roger	Kowalewski and	Karl	Fürlinger

LMU	Munich,	MNM-Team

E-Mail:	kowalewski@mnm-team.org

http://mnm-team.org/~kowalewski/

TU	Wien,	Oct-18	|	2R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

What	is	covered	in	this	talk?

n Brief	overview	about	MPI-3	one-sided	communication

n Understanding	the	major	challenges	(Synchronization)
– Semantic	Perspective	(MPI	standard)
– Technical	Perspective	(Behavior	in	the	real	world)

n A	novel	concept	to	debug	synchronization	bugs	in	MPI-3	one-sided	

communication

TU	Wien,	Oct-18	|	3R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

MPI	RMA:	Conceptual	Overview

n Remote	Memory	Access	Model
– Origin	specifies	all	required	communication	parameters
– Target	(receiver)	does	not	need	to	actively	participate

n Decoupling	of	communication	and	synchronization
– Fundamental	contrast	to	traditional	Message	Passing

n Very	good	match	for	PGAS	(Partitioned	Global	Address	Space)
– Examples:	DASH,	UPC,	GA,	CAF	

MPI	Proc	0 MPI	Proc	1 Private	Memory

Public	Memory

RDMA	NIC

TU	Wien,	Oct-18	|	4R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

MPI	RMA	Major	Challenges

n Communication	primitives
– Efficient	Data	movement:	MPI_Put (Write),	MPI_Get (Read)	
– Atomic	operations	(e.g.	accumulate,	compare	and	swap)	à slow

n All	communication	primitives	are	in	fact	non-blocking
– No	implicit	atomicity or	ordering guarantees
– Exception:	RMA	atomics

à Explicit	synchronization	required

Ø Synchronization	model	is	further	split	into	
– Process	synchronization
– Memory	consistency	à focus	of	this	talk

TU	Wien,	Oct-18	|	5R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Example:	Read-Modify-Write

1 // Window creation

2 MPI_Win win;

3 //1. start access epoch (non -blocking)

4 Win_lock(remote_proc , win);

5 int out;

6 //2. RMA Read (non -blocking)

7 Get(&out , remote_proc , remote_disp);

8 //load / store access

9 if (out % 2 == 0)

10 out ++;

11 //3. end access epoch (blocking)

12 Win_unlock(remote_proc , win);

Synchronization	Bug!
Blocks	until	the	
MPI_Get is	completed

n Application	may	or	may	not	execute	with	the	expected	outcome
– MPI	implementation
– Hardware	Platform,	Network	Interconnect
– Scheduling	algorithms,	etc.

n MPI-3	Standard:	Undefined	behavior

TU	Wien,	Oct-18	|	6R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

MPI-RMA:	Well-Defined	Executions

Definition:	A	program	forms	a	well-defined	execution if	all	memory	
accesses	are	data-race	free.	For	an	execution	to	be	free	of	data-races	
all	memory	accesses	must	be	synchronized	by:	1

a) Happens-before	order,	i.e.
– Program	order	(single	MPI	process)
– Synchronization	order	among	a	group	of	MPI	processes

b) Consistency	order,	i.e.
– Remote	completion

• Win_unlock (end	of	access	epoch)
• Win_flush (during	access	epoch)

– Local	completion
• Win_flush_local (during	access	epoch)

Ø Abbreviation	in	further	slides:

a b
hb

a b
co

1 Hoefler et al. Remote Memory Access Programming in MPI-3. ACM Trans. (Jun 2015)

a b
cohb

TU	Wien,	Oct-18	|	7R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Example:	Ordering	guarantees

1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 //wait for guard

6 }

7 //read data

8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

Origin Target
1 Win_lock(B, win);

2 //1. write data

3 int data = 42;

4 Put(&data , B, disp_data);

5
6 //2. set guard

7 int guard = 1;

8 Put(&guard , B, disp_guard);

9
10 Win_unlock(B, win);

§ Originmodifies	a	remote	memory	location	at	target	to	a	
particular	value	(data	=	42)

§ Target	verifies	this	value,	i.e.,	assert(data	==	42)

§ Guard establishes	a	synchronization	order	between	origin	and	

target

TU	Wien,	Oct-18	|	8R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Example:	Ordering	guarantees

1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 //wait for guard

6 }

7 //read data

8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

Origin Target

§ Originmodifies	a	remote	memory	location	at	target	to	a	
particular	value	(data	=	42)

§ Target	verifies	this	value,	i.e.,	assert(data	==	42)

§ Guard establishes	a	synchronization	order	between	origin	and	

target

cohb

1 Win_lock(B, win);

2 //1. write data

3 int data = 42;

4 Put(&data , B, disp_data);

5 Win_flush(B, win); //Sync

6 //2. set guard

7 int guard = 1;

8 Put(&guard , B, disp_guard);

9
10 Win_unlock(B, win);

TU	Wien,	Oct-18	|	9R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Synchronization	Model:	Example

1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 //wait for guard

6 }

7 //read data

8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

Origin Target
1 Win_lock(B, win);

2 //1. write data

3 int data = 42;

4 Put(&data , B, disp_data);

5
6 //2. set guard

7 int guard = 1;

8 Put(&guard , B, disp_guard);

9
10 Win_unlock(B, win);

§ Small	Experiment	on	2	HPC	systems
- 100x	repeatedly	executed

- origin	and	target	randomly	chosen	(out	of	48	MPI	processes,	2	nodes)

- NERSC	Edison:	Cray	MPT,		Aries	Network	Interconnect

- SuperMUC:	IBM	Platform,	non-blocking	IB

TU	Wien,	Oct-18	|	10R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Synchronization	Model:	Example

1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 //wait for guard

6 }

7 //read data

8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

Origin Target
1 Win_lock(B, win);

2 //1. write data

3 int data = 42;

4 Put(&data , B, disp_data);

5
6 //2. set guard

7 int guard = 1;

8 Put(&guard , B, disp_guard);

9
10 Win_unlock(B, win);

n Test	results
– NERSC	Edison	(Cray):	Passes	100%
– SuperMUC (IBM):	Succeeds	only	if	both	processes	run	on	the	same	node

à Utilizes	shared	memory	semantics

Ø Cray	MPT	uses	DMAPP	for	communication	which	offers	

parametric	in-order	guarantees	(IB	Verbs	do	not)	

TU	Wien,	Oct-18	|	11R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Consequences

n MPI	RMA	has	a	complex	synchronization	model
– Couple	of	semantic	pitfalls

n Manifestation	of	synchronization	bugs	depends	on	various	factors
– May	often	only	happen	in	large-scale	scenarios
– Environment	(MPI	library,	Network	conditions)

Ø Programmers	must	understand	the	synchronization	model	to	

guarantee	well-defined and	portable programs

TU	Wien,	Oct-18	|	12R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Error	Prevention

n Strategies	to	prevent	synchronization	bugs
– Unit	Testing
– Consistency	checks	in	the	source	code	(e.g.,	assertions)
– Verbose	Mode

n Limited	functionality	and	not	appropriate	for	large	code	bases
– Example:	DASH	library

Ø Additional	Tools	are	imperative

TU	Wien,	Oct-18	|	13R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Debugging	Tools	for	MPI	RMA:	Related	Work

n MPI	Spin:	Model	Checking	(Pervez	et	al.,	2006)
– Formal	model	of	application	required
– Model	State	Explosion	Possible
– Covers	only	MPI-2	Standard

n Wait	States	(Herrmanns et	al.,	2013)
– Does	not	focus	on	memory	consistency

n Marmot	/	MUST	(Krammer et	al.,	2006)
– Does	only	focus	on	static	parameter	checking

n MC	Checker	(Chen	et	al.,	2014)
– Closely	related	to	this	paper
– Static	and	dynamic	analysis	techniques
– Covers	only	MPI-2	specification

TU	Wien,	Oct-18	|	14R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Nasty-MPI:	Introduction

n Approach:	Emulate	a	nasty	MPI-3	implementation
– Exploit	full	flexibility	of	RMA	semantics	to	force	pessimistic	executions
– Requires	deterministic	(pre-defined)	outcome	of	target	application

n Can	be	easily	linked	into	any	MPI	application
– Requires	no code	modification	(based	on	PMPI	interface)
– May	complement	with	other	tools

MPI Application

Nasty-MPI	(PMPI	Interposition	layer)

Native	MPI	Library

MPI_x

PMPI_x

TU	Wien,	Oct-18	|	15R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Given:	Target	application	which	issues	MPI	RMA	calls

1. Intercept	and	Buffer	all	MPI	RMA	communication	calls
– No	call	reaches	the	MPI	library							

2. Dynamically	construct	a	DAG	among	set	of	buffered	RMA	calls
– Based	on	transitive	closure	of											and									

3. Identify	parallel	regions	to	obtain	the	set	of	possible	executions

Nasty-MPI:	Formal	concept

hb co

Lock

Unlock

Put(data)
Parallel	
Region

Execution	1

Execution	2

Put(guard)

TU	Wien,	Oct-18	|	16R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Nasty-MPI Scheduling	Process

Triggered	by	a	blocking	RMA synchronization	action

1. Completion
– Distinguish	local	and	remote	completion
à Only	calls	which	have	to	be	remotely completed	will	reach	the	library

2. Atomicity
– Break	non-atomic	operations	into	a	set	of	smaller	(single-byte)	messages
– Atomicity	guarantees	of	RMA	Accumulates are	considered

3. Reorder	all	RMA	operations
– Ordering	guarantees	of	RMA	Accumulates are	considered

4. Issue	MPI	RMA	calls	to	native	MPI	library

Ø Interventions	always	result	in	identical	memory	semantics

TU	Wien,	Oct-18	|	17R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

External	Configuration	Options

Refinement	of	Nasty-MPI	scheduling	process

n Approach:	Try	different	parameter	settings	on	the	same	target	

application

Category Parameter Option Description

Ordering NASTY_SUBMIT_ORDER

Random	* Random order

reverse_po Reverse	program	order

put_before_get Issue Puts	before	Gets

get_before_put Issue	Gets	before	Puts

Completion

NASTY_COMPLETION 0,1* Enable /	disable	flag

NASTY_LOCAL_COMPLETION 0,1* Nasty	local	compl.

NASTY_FLUSH 0,1* Intervening	flushes

Atomicity NASTY_ATOMICITY 0,1* Enable /	disable	flag

*	Default	value

TU	Wien,	Oct-18	|	18R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Machines

n SuperMUC
– Interconnect:	Non-blocking	Infiniband
– MPI	Libraries

• IBM	MPI	v9.1.4
• Intel	MPI	v5.0
• Open	MPI	v1.8

n NERSC	Edison
– Interconnect:	Cray	Aries
– MPI	Library:	Cray	MPT

n Compiler:	icc 15.04

TU	Wien,	Oct-18	|	19R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Evaluation	Approach

n Small	test	applications
– Based	on	algorithms	and	papers	for	one-sided	communication
– Pre-defined	deterministic	(expected)	outcome
– Injected	latent	synchronization	bugs

n Assumption
– Test	applications	terminate	with	the	expected	outcome

Ø Applying	Nasty-MPI	manifests	the	latent	synchronization	bugs

TU	Wien,	Oct-18	|	20R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Test	Case	1:	Revisiting	the	Example

1 Win_lock(B, win);

2 //1. write data

3 int data = 42;

4 Put(&data , B, disp_data);

5
6 //2. set guard

7 int guard = 1;

8 Put(&guard , B, disp_guard);

9
10 Win_unlock(B, win);

MPI	Proc	0	(Origin)

MPI library Expected Outcome? Comment
Cray MPI ✓

IBM	MPI (✓) Origin	and	Target	reside	on	same	node
Open	MPI (✓) Origin	and	Target	reside	on	same	node
Intel MPI ✘ Proc1 sticks	in	busy	wait

1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 //wait for guard

6 }

7 //read data

8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

MPI	Proc	1

Table:	Test	results	without	linking	Nasty-MPI

1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 MPI_Iprobe (0, MPI_ANY_TAG);

6 }

7 //read data
8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

TU	Wien,	Oct-18	|	21R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Test	Case	1:	Applying	Nasty-MPI

1 Win_lock(B, win);

2 int data = 42, guard = 1;

3 //1. set guard

4 Put(&guard , B, disp_guard);

5
6 Win_flush(B, win); //Sync

7
8 //2. write data

9 Put(&data , B, disp_data);

10 Win_unlock(B, win);

Origin	(Nasty-MPI)
1 Win_lock(B, win);

2
3 while (win[disp_guard] == 0)

4 {

5 //wait for guard

6 }

7 //read data

8 assert(win[disp_data] == 42);

9
10 Win_unlock(B, win);

Target

n Environment	Settings
– export NASTY_COMPLETION	=	1 (default)
– export NASTY_FLUSH	=	1;	(default)
– export NASTY_SUBMIT_ORDER	=	reverse_po

MPI library Expected Outcome? Comment
Cray MPI ✘

IBM	MPI ✘ Origin	and	Target	reside	on	same	node
Open	MPI ✘ Origin	and	Target	reside	on	same	node
Intel MPI ✘ Proc1 stuck	in	busy	wait

TU	Wien,	Oct-18	|	22R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Test	Case	2

1 int main (...)

2 {

3 Win_lock(target , win);

4 //call kernel with computation

5 kernel ();

6 Win_unlock(target , win);

7 }

8
9 void kernel (...)

10 {

11 // Complex Computation

12 int val = 1;

13 MPI_Put (&val , target , ...);

14 }

MPI library Expected
Outcome?

Nasty-MPI

Cray MPI ✓ ✘

IBM	MPI ✘ ✘

Open	MPI ✓ ✘

Intel MPI ✓ ✘

Put	Buffer	Out	of	scope Evaluation	Results

n This	kind	of	synchronization	bug	was	originally	found	in	an	

algorithm	in	the	DASH	library	(unit	tests	could	not	flag	this	error!)

n Linking	Nasty-MPI	forced	a	manifestation

TU	Wien,	Oct-18	|	23R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Other	test	cases

Application Bug Cray
MPI

IBM	
MPI

Intel
MPI

Open
MPI

Nasty	
MPI

3 Binary
Broadcast	1

Missing	flush (✓) ✘ (✓) ✘ ✘

4 MCS lock	2 Replaced	Win_flush by	
Win_flush_local

✓ ✓ ✓ ✓ ✘

n Additional	selected	Use	Cases

✓ PASSED	with	expected	outcome				(✓)	Passed	only,	if	origin	and	target	resided	on	same	node
✘ FAILED

Table:	Test	Results	without	Nasty-MPI

1 Luecke, G.R., Spanoyannis, S., Kraeva, M.: The Performance and Scalability of SHMEM and MPI-2 One-
sided Routines on a SGI Origin 2000 and a Cray T3E-600: Performances. Concurr. Comput. (Aug 2004)

2 Mellor-Crummey, J.M., Scott, M.L.: Algorithms for Scalable Synchronization on Shared-memory
Multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (Feb 1991)

TU	Wien,	Oct-18	|	24R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Conclusion	and	Future	Work

n MPI-3	RMA	synchronization	model	is	complex
– Atomicity,	ordering,	completion

n Execution	of	RMA	calls	differs
– Among	MPI	libraries
– Underlying	hardware	platform

n Introduced	a	novel	debugging	approach
– Forces	manifestation	of	latent	synchronization	bugs
– Support	to	write	well-defined	programs
– Complements	with	existing	debugging	tools	(e.g.,	Model	Checking)

n Future	work
– Evaluate	Nasty-MPI	on	real-world	scientific	applications	which	MPI	RMA
– Improve	Nasty-MPI	heuristics	(Uncover	synchronization	bugs	is	difficult)

TU	Wien,	Oct-18	|	25R.	Kowalewski	– Nasty-MPI:	Debugging	Synchronization	Errors	in	MPI-3	One-Sided	Applications

Questions

n Nasty-MPI	Source:	https://github.com/rkowalewski/nasty-MPI

n DASH	Project:	http://www.dash-project.org/

n Contact
– Roger	Kowalewski
– LMU	Munich,	Germany
– E-Mail:	kowalewski@mnm-team.org

