
Generic Function Schema for Operations on Multiple Network QoS Parameters

Mark Yampolskiy1,2,3, Wolfgang Hommel2,3, David Schmitz1,2,3, Matthias K. Hamm3

1German Research Network (DFN), 2Leibniz Supercomputing Centre (LRZ), 3Munich Network Management (MNM) Team
myy@dfn.de, hommel@lrz.de, schmitz@lrz.de, hamm@mnm-team.org

Abstract—Graphs are often used to model interconnected
topological objects with different connection properties. Path
finding in a weighted graph belongs to the classical problems
of graph theory. Whereas the addition of the edges’ weights
as an aggregation and the interpretation of a smaller resulting
sum as the preferable path works very well in applications
like path computations, e.g., for road maps, it is not always
applicable to those connections in computer networks that need
to fulfill multiple independent Quality of Service (QoS) criteria
in parallel. Until now, usually a special – and often manual –
solution has been implemented for each new service with dif-
ferent QoS parameters. As the development of novel customer-
faced network services often relies on different connection
properties and their combinations, a generic treatment of QoS
parameters becomes a critical factor for rapid development
and network service rollout. In this paper, we present our
proposal for treating multiple independent QoS parameters in
a similarly fashioned way. Our work is aimed to foster routing
algorithms that are considering multiple connection properties
and corresponding constraints at the same time.

Keywords-graph theory, multi-weighted graphs, QoS, QoS
aggregation, QoS comparison.

I. INTRODUCTION

Obviously, network connections are meanwhile broadly
used as a basis or an integral part of the services realized
upon them. Examples can be found in areas like internet-
telephony, video-conferencing and video-on-demand, con-
nectivity for GRID cooperation, etc. Common to all these
examples is that the overall service quality directly de-
pends on the combination of multiple Quality of Service
(QoS) parameters of the underlying network connections.
For example, regarding telephony those QoS parameters are
bandwidth, low delay, and low jitter; video on demand –
depending on the actual service model – might be more
jitter-tolerant but instead requires much higher bandwidth.
Network connections dedicated to the distribution of experi-
mental data in the Large Hadron Collider (LHC) project [1]
should provide dedicated bandwidth, high availability, and
low maintenance time. In order to cope with a larger variety
of customer and service requirements, miscellaneous QoS
parameters as well as their combination should be considered
during path computation (routing) for the connection setup.

Graphs are often used to model interconnected topological
objects with different connection properties. Path finding
in a weighted graph belongs to the classical problems of
graph theory. Whereas the addition of edge-weights as an
aggregation functions and the treatment of smaller resulting

sum as the best path works very well in applications like
path computations, e.g., for road maps, it is not applicable to
connections in computer networks with multiple independent
QoS parameters in general. Already the two QoS parameters
considered most often, i.e., bandwidth and delay, show sig-
nificant differences. Whereas the usual parameter treatment
is applicable to delay, for bandwidth different functions are
needed: the aggregation function is minimum and larger
values are preferred to smaller results. The adequate QoS
aggregation functions are significantly more complex than
sum-of or minimum-of if other QoS parameters, e.g., re-
liability and availability, or aspects, which are relevant for
service instance management, like maintenance windows for
multi-domain connections, have to be considered.

Until now, in practice usually a special solution has been
implemented for a service that required new or different QoS
parameters. Nowadays the time for the development of a new
service with customer-specific QoS parameters is becoming
a crucial success factor. Therefore, a general treatment of
QoS parameters is absolutely critical in order to ensure
sufficiently fast adaptability and extensibility of already
existing and new services. In the first place, an efficient
way to distinguish between different QoS parameters is
needed. Furthermore, a standardized general treatment for
the aggregation of and the comparison between values of
a particular QoS parameter is indispensible. As different
customer-faced services might depend on different subsets
of those QoS parameters, the efficient support of customer-
relevant combinations of arbitrary QoS parameters is needed.

The remainder of this paper is structured as follows:
In Section II the related work, which has influenced our
solution is presented. The proposal for a generic treatment
of different QoS parameters is described in Section III. It
includes the distinction between the various QoS parameters
and the definition of functions necessary during the routing
process. Furthermore, we generalize the way to handle
multiple QoS parameters simultaneously. In Section IV we
extend our proposal in order to support value ranges as edge
weights. In Section V we present how our proposal can be
applied to the definition of optimized routing algorithms. A
short outlook to our future work concludes this paper.

II. STATE OF THE ART AND ROAD MAP

Typically, graphs are considered that have single fixed
values associated with their edges as weights. This repre-



sentation is usually used for finding a path or a shortest
path between two endpoints in a graph. However, such
graphs only conditionally reflect all specifics of computer
networks (see Figure 1). For instance, due to the support of
different quality classes of the used network infrastructure,
the property value supported by a single connection can vary
in a broad range. In order to process value ranges, which are
supported, e.g., by the information model described in [2],
a transformation to so called multigraphs is possible. In the
case of multigraphs, nodes may be directly connected by one
or more edges. Even in a simple case with weights for a sin-
gle property, such transformations can significantly increase
the graph complexity. If multiple connection properties with
value ranges have to be considered at the same time, the
complexity increases start to be even more drastically.

Weight Count

Edge CountWeight

Value

Range

Single

Multiple

Multiple

Single

Multigraph

Multi-Weighted
Graph

Figure 1. Graph properties, classification

Graphs that support multiple properties at the same time
are known as multi-weighted graphs. Such graphs are hardly
investigated yet. In [7], a very good overview about the state
of the art is given, and various problems and solution ways
are investigated. In summary, path finding in multi-weighted
graphs is in general a NP −complete problem. As for path
finding in multi-weighted graphs the Bellman’s optimality
principle [8] is not fulfilled, broadly used routing algorithms
that require this principle, e.g., Dijkstra’s algorithm, cannot
be used. Among other aspects, also the handling of multiple
properties at the same time has to be solved. Currently, the
common understanding is to describe multiple properties
as value vectors. This allows the use of vector-addition as
property aggregation operation. For a comparison of weight
vectors, the concept of non-dominance has been established,
as it is described and used in [4]. A vector A is non-dominant
to vector B only if all of its weight elements, i.e., property
values, are smaller or equal to the corresponding elements
of vector B.

Considering operations for both single- and multi-
weighted graphs, addition is used as an aggregation function
and the smaller value is treated as the better one. Even if
limitations of these operations w. r. t. the application to

computer networks are long known to the research commu-
nity, until now only workarounds have been proposed. For
instance, in [9] an addition of log(weight) is proposed, if
the true aggregation function for weights is multiplicative.

As a summary of the above discussed missing aspects, in
order to enable operations on graphs describing computer
networks with arbitrary supported properties, the following
extensions have to be implemented:

• Support for arbitrary functions for aggregation and
comparison of weights of a single connection property.

• Operations on bundles of properties, which could be
used in multi-weighted graphs.

• Improved handling of value ranges.
Solutions for the first two aspects will be described in

Section III. A proposal for handling of value ranges during
path finding will be presented in Section IV-A.

Besides these purely technical aspects, also organizational
specifics have to be considered. The so called policy-based
routing, which is used for inter-domain routing, in the first
place takes into account not only technical aspects, but
rather provider-specific interests. Along with very restrictive
information and management policies, which are out of
the scope of this paper, SPs are generally interested in
the reduction of resources used for a service delivery. A
corresponding proposal will be given in Section IV-B.

III. OPERATIONS ON CONNECTION PROPERTIES AND
THEIR GENERALIZATION

In this section we present our solutions for function
generalization regarding both single properties and property
bundles. The important extension for the treatment of value
ranges is described in Section IV.

A. Functions for operations on a single property

During the path finding, the properties of the edges have
to be aggregated. Typically, simple arithmetical addition is
used as an aggregation function. As discussed in Section
I, this is not necessarily the case for any QoS parameter.
Furthermore, as discussed in [2], in the case of the inter-
domain connections each Service Provider (SP) might have
access only to its own infrastructure, which might not be
sufficient to determine all the relevant connection properties.
In this case also the aggregation of the partial views of
involved SPs at the same inter-domain connection is needed.
The calculation of QoS properties of the inter-domain link
from two partial views is not necessarily identical to the
aggregation of two physical connections of the same type
and length. For instance, when describing a connection
with the property ”delay”, not only the delay caused by
the network cable should be considered, but also the delay
caused by the active and passive network components used
by each single SP; obviously, it typically varies between SPs.

If customer-specific end-to-end quality-of-service con-
straints shall be met, the value of the already found (partial)



route has to be compared to these constraints during the path
finding process. For path optimization it is also necessary to
compare the values of two alternatives in order to choose
the better one. In opposite to the case classically treated in
graph theory, the meaning of what is ”better” might vary
between different QoS parameters. Regarding the examples
mentioned above, for bandwidth a bigger value can be
considered as a better one, however for delay a smaller value
is the more preferred one.

Consequently, with each supported connection property
operations for value aggregation and comparison have to be
associated.

B. Associating operations with properties

In IT industry, new technologies and services are evolving
very fast. Therefore prior the association of operations with
properties, a distinction between existing and upcoming
properties is needed. We propose to assign a globally unique
ID to each supported property. In order to ensure the global
uniqueness of IDs, we propose to use a registration tree.
Additionally to the distinction between properties, using a
registration tree has another very important advantage. As
multiple functions have to be associated with each supported
property, it can be realized by the definition of the functions
together with the registration of their property-ID (see Figure
2). Additionally this will ensure the identity of functions
used among multiple SPs.

Associated Functions
_Compare 

_Aggregate

Figure 2. Registration tree example

C. Comparison and aggregation of multiple properties

Based on the previous definition, we introduce an ap-
proach for the handling of m different properties with the
global unique IDs ID1, . . . , IDm. In graph theory, it is a
common practice to use vectors in order to describe multiple
weights associated with a single edge or a path in general.
For any path in a graph with m properties, the weight can
be specified as

−→
U ::= (u1, . . . , um) ∈ Rm. In this definition,

uj is the weight of the jth property with IDj . The order of
properties in the weight vector can be arbitrary, as long as
the placement of the properties is identical among all weight
vectors. Further, for the edges of a path being enumerated
from 1 to n, the weight of an edge with index i will be
referred to as follows

−→
W i ::= (wi

1, . . . , w
i
m) ∈ Rm.

In order to calculate the weight vector
−→
P of the path

consisting of n edges with weights
−→
W 1, . . . ,

−→
Wn, we first

introduce an aggregation function for two weight vectors as
follows:
−−→
Aggr

(−→
U ,
−→
V
)

::= (Aggr1(u1, v1), . . . , Aggrm(um, vm))

This definition is based on m aggregation func-
tions for each property. The aggregation functions Aggri
(i = 1, . . . ,m) are functions associated with the property
ID in the registration tree. We assume that all properties
are independent of each other, i.e., they can vary without
influencing the values of other properties. Furthermore, we
assume that the binary operations defined by aggregation
functions fulfill associative and commutative laws. Then we
inductively define the computation of the whole path weight
from weights of involved segments as follows:
−−→
Aggr

(−→
W 1, ...,

−→
Wn

)
::=
−−→
Aggr

(−−→
Aggr

(−→
W 1,
−→
W 2
)
, ...,
−→
Wn

)
Similar to the aggregation, we define the comparison of

property vectors based on the comparison between identical
properties. Corresponding to the non-dominance concept as
it is described in [4], we define that vector

−→
U is better than−→

V if and only if all properties in the first vector are better
than the corresponding properties of the second vector. In
order to depict that property ui of vector

−→
U is better than the

corresponding property vi of vector
−→
V , we use the symbol

”≺”. In contrast to the comparison of single values, it is
possible that some properties of the first vector are better
and some others are worse than of the second vector. This
situation should be treated as indefinite. We depict this with
symbol ” 6=”. The comparison of two property sets can thus
be defined as follows:

−−−−−−→
Compare(

−→
U ,
−→
V ) ::=



=, if ∀1 ≤ i ≤ m : ui = vi

≺, if ∀1 ≤ i ≤ m : (ui ≺ vi

∨ ui = vi) ∧
∃1 ≤ j ≤ m : uj ≺ vj

�, if ∀1 ≤ i ≤ m : (ui � vi

∨ ui = vi) ∧
∃1 ≤ j ≤ m : uj � vj

6=, if ∃1 ≤ i ≤ m : ui ≺ vi ∧
∃1 ≤ j ≤ m : uj � vj

IV. TREATMENT OF VALUE RANGES

Some important aspects that are typical for computer net-
works are not directly addressed by classical graph theory. In
this section we propose the treatment of value ranges, which
can be associated with connection segments (graph edges)
instead of multigraphs with multiple alternative connection
segments with different fixed values.



A. Path finding with value ranges

Physical network connections usually cannot be realized
with a single property set, because properties like bandwidth
might vary in a wide range. In the case that an abstracted
network description is considered, further connection prop-
erties can vary in a wide range. A good example is the
variation of achievable delays for a single logical connection,
as it can be realized by different physical connections.
Consequently, also the property of the whole End-to-End
(E2E) path between two endpoints might vary in a wide
range. We will refer to the value range of a particular path
path as



W path =

(−→
W path

min ,
−→
W path

max

)
∈ Rm × Rm,

i.e., the supported value range for the given path can vary
from

−→
W path

min to
−→
W path

max .
It is obvious that the path found between two endpoints

can only be feasible if the best possible value fulfills the E2E
constraints specified by customer (see Figure 3). Therefore
we propose to operate with the best values of the available
connection segments during the path finding process.

ConstraintDelay

Availability

Figure 3. Fulfillment of end-to-end constraints

We assume that all simultaneously considered path prop-
erties can vary independent of each other. Under this as-
sumption, we define the selection function Best for the best
possible value of a path as follows:

−−→
Best(



W path) =

−−→
Best(

−→
W path

min ,
−→
W path

max)

−−→
Best(

−→
U ,
−→
V ) ::= (Best1(u1, v1), . . . , Bestm(um, vm))

Besti(ui, vi) ::=
{

ui, if ui ≺ vi

vi, otherwise
for 1 ≤ i ≤ m

Please note that this definition is applicable not only to a
path as a whole, but also to any path segments.

B. Considering service provider interests: Optimization of
resource usage

In contrast to customers, the service providers are usually
interested in a reduction of resources used for service
realization. This means that the requested service quality
should not be the best possible one, but rather the one
closest to the customer constraints. For paths complying

with the E2E constraints, i.e.,
−−→
Best(



W path) ≺

−→
C E2E ,

we distinguish between three cases as depicted in Figure
4, given the weights of alternative paths A, B and C:

• All worst possible properties of the considered path are
worse than the constraints (see ”Path A”)

• All worst possible properties of the path are better than
the constraints (see ”Path B”)

• The worst possible properties of the path are for some
properties worse and for other properties better than
constraints (see ”Path C”)

Path A

Delay

Availability

Path B

Path C

Constraint

Figure 4. Pathweights of paths complying to constraints

In order to distinguish between these alternatives, the
function Worst for the selection of the worst possible value
of the found path can be defined as an opposite to Best.

In the case equivalent to ”Path B”, the worst possible value
can be requested during the link ordering process. In the two
remaining cases, an approximation to the constraint value
should be performed. As the properties are independent of
each other, such an approximation can be done separately
(or even in parallel) for each affected property.

The whole E2E path weight is the sum of the weights of
the involved parts. A possible gradation between the max-
imum and minimum values of connection parts is depicted
in Figure 5. The E2E approximation of the path weight for
a single property can be done in different ways. It can be
seen as a knapsack-like problem with an intention to find a
fit most close to the E2E constraint. We argue against this
approach, as it may prevent the on-demand adaptation of
requested service parts parameters. Instead we favor a ”fair
split” among all connection parts. For each property i, we
propose to use a divide-and-conquer strategy as follows:



1) For each connection part j with a value range between
wj

i,min and wj
i,max we compute values wj

i,best=Besti
(wj

i,min, wj
i,max) and wj

i,worst=Worsti(w
j
i,min,

wj
i,max).

2) For each connection part j we compute the realizable

value
⌊

wj
i,best

+wj
i,worst

2

⌋
.

3) If the computed path value
∑k

j=1

⌊
wj

i,best
+wj

i,worst

2

⌋
is equivalent to the E2E constraint for the selected
property, the selected values can be used as a result
of this optimization.

4) If the computed path value is better than the E2E
constraint, the computed values for connection parts
should be used in the next step as wj

i,best, otherwise
as wj

i,worst.
5) We propose to limit the number of optimization

steps. If the number of maximal optimization steps
is reached, the latest wj

i,best for each connection part
should be used as an approximation value. If the
amount of the maximum optimization steps is not
reached yet, this procedure shall be repeated beginning
with step (2).

…

wi,2
1

wi,1
1 wi,1

2

wi,3
n

wi,2
n

wi,1
n

SCPsrc SCPdest

Figure 5. Possible gradation of values for different path segments for
property i

Please note that in order to reflect the ”better/worthier”
comparison instead of ”smaller/bigger” one, we define the
unary operator ”b c” as follows: the result should be the
worst realizable value, which is equal or better than the value
enclosed in the brackets.

V. APPLICATION OF SEARCH PROBLEMS

In Figure 6, we present a path finding algorithm, which
illustrates the usage of our operators. In the pseudo-code,
a deep first search strategy is used for finding a path
complying with multiple QoS constraints

−→
C E2E .

The presented algorithm solves the so-called multi con-
strained path finding (MCP) problem. The function requires
four parameters. The first two parameters (nodeCur and
nodeDest) specify nodes in the graph, between which a
path has to be found. As the MCP function is called recur-
sively, the nodeCur specifies the end of the intermediately
considered path. The weight of the intermediate path is given
in the third parameter

−→
W path2cur. Finally,

−→
C E2E are always

the E2E-constraints between two endpoints.
In the function, at first it is checked whether the

destination node is reached yet. If it is the case, the
BacktracePath function is called in order to memorize

MCP (nodeCur, nodeDest,
−→
W path2cur,

−→
C E2E)

if (nodeCur == nodeDest)
BacktracePath (nodeCur);
return TRUE;

end if

MarkNode (nodeCur);

for each neighbor nodeNbr of nodeCur
if (not Marked (nodeNbr))
−→
W path2nbr =

−−−→
Aggr (

−→
W path2cur,

−−→
Best(



W cur2nbr))

if (
−→
W path2nbr ≺

−→
C E2E)

if (MCP(nodeNbr, nodeDest,
−→
W path2nbr,

−→
C E2E))

BacktracePath (nodeCur);
return TRUE;

end if
end if

end if
end for

UnmarkNode (nodeCur);
return FALSE;

Figure 6. Use of the new operators in a path finding algorithm

the node in the path between two endpoints. Then the value
TRUE is returned, which signals that a path with acceptable
properties has been found.

If the end node is not yet reached, the nodeCur is marked
with the help of function MarkNode. This is a common
practice in DFS-algorithms, which aims to prevent loops. In
the following foreach loop all neighbors of nodeCur are
considered that have not been marked. For each neighbor
nodeNbr a weight

−→
W path2nbr of an path between start

and nodeNbr nodes is computed. Corresponding to Section
IV-A, the best possible value of the considered segment

weight


W cur2nbr is aggregated with the intermediate sum−→

W path2cur. If the computed weight of the new intermediate
path still better than E2E-constraint

−→
C E2E , the MCP

function is called recursively. This time, nodeNbr is used to
mark the end of the intermediate path. If the function returns
TRUE, the node is saved in order to back trace the path;
subsequently TRUE is returned. If the call to the MCP
function was not successful, the next neighbor has to be
considered likewise. If all neighbors have been considered
without any success, the node nodeCur is unmarked and
the value FALSE is returned.

Please note that for the sake of simplicity in this algorithm
at most one connection between two nodes is supported. An



extension for multigraphs would require an additional loop
for all edges between two interconnected nodes. Further-
more, also the back tracking function should be extended in
this case, in order to track not only nodes along the path but
also along used edges.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have defined a novel schema for the
generic treatment of network connection properties. In order
to support operations on arbitrary properties of network
connections, we propose to associate five functions with
the ID of every supported property. These functions are
summarized in Table I. Three of these functions, which are
used for property aggregation and comparison, are manda-
tory. The mandatory function AGGREGATE LINKPART is
dedicated to compute the property of connection based on
only partial views at the same inter-domain connection. For
elaborated discussion about its necessity we refer to [2]. The
remaining selection functions aim to simplify handling with
value ranges. These functions are not mandatory, as they can
be easily derived based on comparison function.

 
 

Function class Purpose 

_COMPARE 

Compare two values a and b. 
Result can be: “a is better”, “a is 
worse”, “a and b are equivalent” 

_SELECT_BEST 
Optional function returning the 
best value of a given value set 

_SELECT_WORST 
Optional function returning the 
worst value of a given value set 

_AGGREGATE_LINKS 
Aggregate property values of two 
links or paths 

_AGGREGATE_LINKPARTS 
Aggregate two partial views at the 
same link to a single link weight 

 
Table I

FUNCTIONS FOR OPERATIONS ON A SINGLE QOS PARAMETER

Together with [2] and [3], which present an information
model and a multi-domain routing procedure, the solution
presented here is an integral part of our ongoing work, which
enables user-tailored connection services with guaranteed
E2E quality. However, the generic operation handling pro-
posed in this paper is not restricted to only our work and can
be used in alternative routing algorithms that are considering
multiple properties, such as [5] and [6].

The presented proposal leaves some aspects unsolved;
they will be addressed in our further research as follows:
In the first place, a meta-language for the description of
property-related functions has to be selected; also, a structure
for the registration tree has to be proposed. In order to
achieve this, a profound evaluation of alternatives is needed.
In the case that a single global registration tree has to
be used by multiple organizations, like it is the case for
the internet registration tree, the description of equivalence
relationships between different entries has to be addressed.

Furthermore, the quality parameters of different network
layers as well as user-faced services depend on the quality
of the underlying layers they are realized upon. Therefore, a
general description of such interdependencies and parameter
transformations is essential in order to offer customer-
demanded quality based on network-specific information.

ACKNOWLEDGMENT

The authors wish to thank the members of the Munich
Network Management Team (MNM Team) [10] for fruitful
discussions and valuable comments on previous versions of
this paper. The MNM Team directed by Prof. Dr. Dieter
Kranzlmüller and Prof. Dr. Heinz-Gerd Hegering is a group
of researchers at Ludwig-Maximilians-Universität München,
Technische Universität München, the University of the Fed-
eral Armed Forces and the Leibniz Supercomputing Centre
of the Bavarian Academy of Science.

REFERENCES

[1] CERN, LHC - The Large Hadron Collider Homepage, [On-
line: http://lhc.web.cern.ch/lhc/], August 2010.

[2] M. Yampolskiy, W. Hommel, P. Marcu, and M. K. Hamm,
An information model for the provisioning of network connec-
tions enabling customer-specific End-to-End QoS guarantees,
Proceedings 7th IFIP/IEEE International Conference on Ser-
vices Computing (SCC 2010), pp. 138–145. Miami, 2010.

[3] M. Yampolskiy, W. Hommel, B. Lichtinger, W. Fritz, and
M. K. Hamm, Multi-Domain End-to-End (E2E) Routing
with multiple QoS Parameters. Considering Real World User
Requirements and Service Provider Constraints, The Second
International Conference on Evolving Internet (INTERNET
2010). Valencia, 2010.

[4] F. A. Kuipers, Quality of service routing in the internet:
Theory, complexity and algorithms, PhD thesis. Delft
University Press, 2004.

[5] T. Korkmaz and M. Krunz, Multi-constrained optimal path
selection, Proceedings of Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies (IN-
FOCOM 2001), pp. 834–843. 2001.

[6] P. Van Mieghem, H. De Neve, and F. A. Kuipers, Hop-by-hop
quality of service routing, Computer Networks, pp. 407–423.
Elsevier, 2001.

[7] M. Ziegelmann, Constrained Shortest Paths and Related
Problems, PhD thesis. VDM, 2007.

[8] R. Bellman, The theory of dynamic programming, Proceed-
ings of the National Academy of Sciences of the United States
of America, pp. 716–719. 1952.

[9] G. Bertrand, S. Lahoud, M. Molnar, and G. Texier, Inter-
Domain Path Computation with Multiple Constraints. 2008.

[10] Munich Network Management Team (MNM Team) Homepage,
[Online: http://www.mnm-team.org], August 2010.


