
A formal analysis of IKEv2’s post-quantum
extension

Stefan-Lukas Gazdag
genua GmbH

Kirchheim near Munich, Germany
stefan-lukas_gazdag@genua.de

Sophia Grundner-Culemann
MNM-Team, Ludwig-Maximilians-

Universität München
Munich, Germany

grundner-culemann@nm.ifi.lmu.de

Tobias Guggemos
German Aerospace Centre (DLR)
Oberpfaffenhofen, Germany
tobias.guggemos@dlr.de

MNM-Team, Ludwig-Maximilians-
Universität München
Munich, Germany

guggemos@nm.ifi.lmu.de

Tobias Heider
genua GmbH

Kirchheim near Munich, Germany
tobias_heider@genua.de

Daniel Loebenberger
Fraunhofer AISEC

Weiden i. d. Opf., Germany
daniel.loebenberger@aisec.fraunhofer.de

ABSTRACT
Many security protocols used for daily Internet traffic have been
used for decades and standardization bodies like the IETF often
provide extensions for legacy protocols to deal with new require-
ments. Even though the security aspects for extensions are carefully
discussed, automated reasoning has proven to be a valuable tool to
uncover security holes that would otherwise have gone unnoticed.
Therefore, Automated Theorem Proving (ATP) is already a customary
procedure for the development of some new protocols, e.g., TLS 1.3
and MLS.

IKEv2, the key exchange for the IPsec protocol suite, is expected
to undergo significant changes to facilitate the integration of Post-
Quantum Cryptography. We present the first formal security model
for the IKEv2-handshake in a quantum setting together with an au-
tomated proof using the Tamarin Prover. Our model focuses on the
core state machine, is therefore easily extendable, and aims to pro-
mote the use of ATP in IPsec-standardization. The security model
captures gaps in the protocol, but treats the specific implementation
(like fragmentation mechanisms, for example) as a black box. With
IKE_INTERMEDIATE we showcase this approach on a recently
proposed extension that significantly changes the protocol’s state
machine.

CCS CONCEPTS
• Networks → Network protocol design; • Security and pri-
vacy → Security protocols; Public key (asymmetric) techniques.

KEYWORDS
Formal verification, IPsec, IKEv2, ATP, quantum-resistant key ex-
change

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485885

ACM Reference Format:
Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, To-
bias Heider, and Daniel Loebenberger. 2021. A formal analysis of IKEv2’s
post-quantum extension. In Annual Computer Security Applications Confer-
ence (ACSAC ’21), December 6–10, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3485832.3485885

ACKNOWLEDGMENTS
We thank Felix Schärtl for pointing out the incompleteness of our
original model, and we thank the reviewers for valuable comments
and discussion, both of the paper and the artifact. Also, we grate-
fully acknowledge the Leibniz Super-Computing Centre (LRZ)1 for
funding this project by providing computing time.

1 INTRODUCTION
IPsec is the most popular technology for providing Virtual Private
Networks (VPNs) and plays a central role for securing IP-based
communication. If an IPsec connection is established correctly, the
communication is then a) encrypted and thus unreadable for an
attacker listening on the wire (confidential), b) transmitted such
that modifications by an attacker are detected (integrity-protected),
and c) guaranteed to originate from the expected communication
partner (authentic). Often, further security properties apply. They
are usually accomplished by the use of cryptographic schemes.
Although IPsec itself uses symmetric cryptography to secure the
data transfer, unacquainted parties need a key exchange protocol
using asymmetric cryptography to agree on a shared secret, which is
then used as the key in the symmetric scheme. Although several key
agreement protocols exist, nowadays only Internet Key Exchange
version 2 (IKEv2) is of practical relevance for IPsec. In this work
we therefore focus on IKEv2 only.

The requirements for the whole protocol suite will change over
time due to new developments in the field of networking and other
new challenges. One of the motivations for future adaptions and
extensions is new progress in the field of cryptography. Due to
the increasing power of supercomputers, parameter sets for the
cryptographic primitives employed might exceed the limits of the
protocol within the coming years. Moreover, quantum computers
1https://www.lrz.de/

91

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://www.lrz.de/


ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

are on the rise and may pose a threat to conventional cryptography.
If they reach a certain size, they will be able to break the (Elliptic
Curve) Diffie-Hellman key exchange, which is essential to IKEv2.
Therefore, alternative or additional quantum-safe key exchanges
might be necessary. Furthermore, future governmental requisites
for the use of cryptographic schemes might lead to the necessity of
using multiple schemes in parallel.

In short, changes to the protocols are unavoidable to securely face
future threats and demands; at the same time they are sometimes
difficult to apply. The overall security level of the protocol (suite)
must not decrease by introducingmodifications; a proper discussion
about this should be accompanied with (automated) proofs.

Contribution
We model the security of a minimal subset of IKEv2 in a quantum
setting (which is when an active attacker has access to a quantum
computer) and prove that in such a setting, IKEv2 is no longer secure.
We also analyze a proposed extension of the protocol which allows
the classic Diffie-Hellman (DH) key exchange to be supplemented
by multiple (quantum-resistant) key exchanges [33, 35]. We are
able to show that IKEv2 regains all desired security properties with
this extension.

Our analysis allows the comparison of IKEv2 with TLS 1.3 [32]
and Noise key agreement [36], which were also analyzed with
Tamarin [9, 17]. It also shows that IKEv2 - at least in its minimal
form - is designed so well that the extension for making it quantum-
safe is both straightforward and secure.

As a by-product, we provide a Tamarin-based IKEv2-verification
in the classical setting, whichwe use to ensure that ourmodel agrees
with the proofs in the literature regarding security in the classical
case. The code is provided in Appendix A; it is open source2 andmay
be used to further verify current and future protocol extensions.

A challenging aspect of the analysis is the resource-intensity:
Even the correct model takes up to a half hour to compute in our
environment; spotting errors is therefore laborious, and it may be
difficult to spot that a model check does not terminate at all. We
therefore point out that part of the contribution lies in executing
the analysis.

2 BACKGROUND AND RELATEDWORK
2.1 IPsec and IKEv2
IPsec is a protocol suite which describes how different security
services can be used together to secure traffic in an IP-based com-
munication system. Its architecture is standardized by the Internet
Engineering Task Force (IETF) in RFC 4301 [24], which distinguishes
between three concepts:
Security Protocol: These are the protocols used to secure the ac-

tual Internet Protocol traffic. Currently,
Authentication Header (AH) (RFC 4302 [22]) and
Encapsulated Security Payload (ESP) (RFC 4303 [23]) are de-
fined, of which ESP is more commonly used. ESP achieves
confidentiality, integrity and authenticity of the communi-
cation.

2An extended version of this paper can be found here [19], all code is available here:
https://github.com/mnm-team/tamarin-ikev2

Security Association (SA): Security Associations (SAs) are fun-
damental to IPsec. Each SA defines the provided security
service for a certain simplex connection between two com-
munication peers. Importantly, it describes how the desired
security goals are achieved. This includes specifying the
cryptographic algorithms and keys, various session informa-
tion, and the policies indicating which Security Protocol is
used to secure which kind of traffic.

Key Management: The Security Protocols rely on cryptographic
keys. These can be exchanged manually, but there are also
protocols to establish all parameters for an SA between un-
acquainted communication peers, which allows for more
flexibility. As stated in the introduction, we focus on Inter-
net Key Exchange version 2 (IKEv2) as defined in RFC 7296
[20] and refer to IKEv1 only when necessary.

The IKEv2 protocol implements an authenticated DH key exchange
with a minimum of two round-trips. In the first, the peers exchange
public DH-values to establish a confidential channel between them-
selves. The second round-trip authenticates the first exchange with
digital signatures or pre-shared keys. The two security protocols
(ESP and AH) are designed minimalistically; the key exchange
mechanism solves the most complex part of the IPsec suite. Thus,
most of the currently discussed extensions of IPsec concern IKEv2.

The standardization body responsible for IPsec has never re-
quired a formal security analysis for any modifications the protocol
underwent; most changes might have been regarded as too minor
to prompt such effort.

However, the recently proposed drafts for integrating post-quan-
tum key exchange to IKEv2 [33, 35] would structurally change the
protocol: First, it introduces several additional round-trips in the
protocol, which changes the state machine. Second, the derivation
function for the session key (called KEYMAT, see [20, Section 2.17])
is changed to include additional key material. Structural changes
like these bear a higher risk for security and should more urgently
be accompanied by formal verification.

2.2 Previous analyses of IKE(v2)
IKEv1 and IKEv2 were not formally analyzed until after their re-
spective standardization in RFC 2409 [18] and RFC 4306 [21]. The
specifications explain why the protocols are believed to fulfill cer-
tain security goals, but do neither define these goals formally nor
prove that they are fulfilled. A first formal analysis of IKE(v1) (using
the automatic NRL Protocol Analyzer) found some security flaws
in its design [29].

Additionally, IKE(v1) was subject to non-automatic formal secu-
rity analysis [4]. It supplements an earlier formalization of impor-
tant notions, such as protocols in general and key-exchange protocols
in particular, attackers against such protocols as well as for sessions
and session-key security [3] with a concrete example. Using this
understanding, IPsec SAs can be interpreted as sessions for the com-
munication partners. These definitions have since played a central
role in automated verification of protocols.

IKEv2 – which obsoletes IKE(v1) – was formally modeled and
verified with the Scyther tool for automatic proofs by Cremers [8].
The analysis revealed some weaknesses of IKEv2’s authentication
mechanism. We compare our results to his to verify the correctness

92

https://github.com/mnm-team/tamarin-ikev2


A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

of our model and proofs. Apart from those attempts at formal
verification of IKE and IKEv2, there exists significant work on
attacker models, key exchange models, and the security properties
of IKE(v2) and similar protocols. Chapter 3 refers to them in greater
detail.

2.3 Formal analysis of other protocols
Formal verification has been used for other popular key exchange
protocols recently. Tamarin [30, 34] was used to analyze the Noise
key exchange protocol framework, which later provided the basis
for a formal analysis of the Wireguard key exchange [12, 13]. It
was also used frequently during the development of the TLS 1.3
standard [32]: For every revision of the proposal, the security model
was adjusted and verified again [9]. Other protocols that recently
received attention by formal analysis are the PKCS#11 standard [10]
and the Signal protocol for private messaging with smartphones [6].
The latter motivates recent standard activities to establish a protocol
for Message Layer Security (MLS), which aims to secure group
communication for different smartphone messaging services [2]. A
first version of the protocol is formally analyzed in [7], a procedure
the IETF aims to continue during the standardization process of
the new protocol.

3 PROTOCOL MODEL
IKEv2 is not only the key exchange protocol for IPsec, but also
manages the IPsec SAs; this results in a multitude of extensions.
Modeling all possible states, messages and error codes of the proto-
col would exceed the capabilities of an automatic prover, which is
why we focus on a minimal subset. RFC 7815 [25] provides this in
the form of Minimal-IKEv2, specifying that the agreement of keys
between the peers is the minimal subset of a standard-conform
implementation. Particularly, it leaves out advanced authentication
modes like EAP or certificate validation. We use this subset for our
model. More complex scenarios as well as adaptions and extensions
of the protocol may be modeled on the basis of this later on.

Figure 1 shows the Minimal-IKEv2 state machine. start indi-
cates that in this session, Initiator and Responder have not com-
municated at all yet. Every other state is reached at the end of the
corresponding key agreement step:
IKE_SA_INIT Initiator The Initiator chooses a private ephemeral

key eI for the DH-exchange, calculates the public ephemeral
key epI and sends it to the Responder togetherwith a Nonce_i
in an IKE_SA_INIT message. The message also contains a
list of proposed key exchange methods.

IKE_SA_INIT Responder The Responder also chooses a private
ephemeral key eR and uses it to calculate the shared DH-
key. Together with Nonce_r and Nonce_i, this shared key
is used to derive the session key (called keymat), typically
by hashing. The public ephemeral key, Nonce_r, and a selec-
tion of key exchange methods from the Initiator’s proposal
comprise the Responder’s IKE_SA_INIT message, which he
sends to the Initiator .

IKE_AUTH Initiator Upon receiving the IKE_SA_INIT response,
the Initiator also calculates the shared DH key and derives
the session key keymat. For authentication, the Initiator signs
his own IKE_SA_INIT message with his private static key,

thereby also proving that the IKE_SA_INIT message was
sent by him. The IKE_AUTH message itself is also signed and
sent to the Responder .

IKE_AUTH Responder The Responder verifies the signature with
the Initiator’s public static key, and proves his own iden-
tity by signing the IKE_AUTH response as well as his own
IKE_SA_INIT message with his own private static key and
sending them to the Initiator .

IKE_AUTH Done As a last step, the Initiator verifies the signature of
the Responder ; this completes the exchange. Both peers now
share a common SA, which can be used for communication
with IKEv2 or deriving new so-called Child-SAs for other
IPsec protocols.

We assume an IKEv2 session to only be valid if the final state
IKE_AUTH Done is reached. We therefore prove that the states in
question can be reached:
Correctness There exist sessions for both roles (Initiator and Re-

sponder) where the communication agents have established
key material and those sessions can exist at the same time.3

Next, we define an attacker model before presenting the security
properties which are to be met if such an attacker exists.

3.1 The Dolev-Yao attacker model
The Dolev-Yao attacker model [11] is very commonly used for
formal analyses [13]. It allows the attacker to act with the powers
of a message carrier, i.e., to eavesdrop, to hold back, resend, or
modify a message, and to send fresh messages. An attacker is called
“passive” if they only eavesdrop on the network. Interaction makes
an attacker “active”. Oracles can be introduced in the model, too, to
identify weaknesses from leakage of sensitive information.

3.2 Security properties
The most important security goals of IKEv2 are informally stated to
be “identity protection” and “key secrecy” [20]. The security prop-
erties of authenticated key exchange protocols have been defined
and refined in several related works, among them [4], [26], [8], and
[13].

We use their respective definitions of the following seven prop-
erties; changes to the cited definitions are marked by “[ ]”. The
properties are defined assuming that two communication partners
A and B intend to establish a connection using IKEv2 with each
other.

The first three properties, namely Aliveness, Weak Agreement,
and Agreement, were first discussed by Lowe in [27] as different
levels of authentication:
Aliveness We say that a protocol guarantees to an initiatorA alive-

ness of another agent B if, whenever A (acting as initiator)
completes a run of the protocol, apparently with responder B,
then B has previously been running the protocol.[27, Chap-
ter 2.1] As Lowe states: “Many protocols fail to achieve even
this weak form of authentication.”[ibid.]

Weak Agreement We say that a protocol guarantees to an initiator
A weak agreement with another agent B if, whenever A

3Proving this statement also aids the automatic prover in proving the properties
defined in Section 3.

93



ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

IKE_SA_INIT
Initiatior

start
IKE_SA_INIT

Responder
IKE_AUTH

Initiatior
IKE_AUTH
Responder

IKE_AUTH
Done

Figure 1: Minimal-IKEv2 State Machine

(acting as initiator) completes a run of the protocol, apparently
with responder B, then B has previously been running the
protocol, apparently with A.[27, Chapter 2.2]

Agreement (on a list of data items S) We say that a protocol guar-
antees to an initiatorA agreement with a responder B on a set
of data items S if, whenever A (acting as initiator) completes
a run of the protocol, apparently with responder B, then B

has previously been running the protocol, apparently with A,
and was acting as responder in his run, and the two agents
agreed on the data values corresponding to all the variables in
S [..][27, Chapter 2.4]

Those definitions only cover the initiator’s perspective, however,
and leave out the possibility that Aliveness, for example, might
be guaranteed to a responder as well. We therefore deviate from
Lowe’s approach and add the following three variants to our model
(which mirror the properties for the responder):
Aliveness_R We say that a protocol guarantees to a responder B

aliveness of another agentA if, whenever B (acting as respon-
der) completes a run of the protocol, apparently with initiator
A, then A has previously been running the protocol.

Weak Agreement_R We say that a protocol guarantees to a re-
sponder B weak agreement with another agentA if, whenever
B (acting as responder) completes a run of the protocol, appar-
ently with initiator A, then A has previously been running
the protocol, apparently with B.

Agreement_R (on a list of data items S) We say that a protocol
guarantees to a responder B agreement with a initiator A on
a set of data items S if, whenever B (acting as responder) com-
pletes a run of the protocol, apparently with initiator A, then
A has previously been running the protocol, apparently with
B, and was acting as initiator in his run, and the two agents
agreed on the data values corresponding to all the variables in
S.

In the remainder of the paper, we refer to the previously de-
fined Aliveness, Agreement, and Weak Agreement as “Aliveness_I”,
“Agreement_I”, and “Weak Agreement_I” when the properties are
analyzed from the initiator’s perspective, and only use the non-
indexed terms like “Aliveness” when the perspective does not mat-
ter.

Lowe names “full agreement” (which means “agreement on all
the atomic data items used in the protocol run” [27]) as “the most
useful definition of authentication”[ibid.]. In our model, we consider
the session key and a session identifier to be the only items on the
list S; we thus define authentication as Agreement on the session
key and session identifier.

To achieve full agreement in a given session, the set of values S
that A and B agree on must define a unique run of the protocol
between the two parties, as it states in Lowe’s definition of Agree-
ment: "[..] and each such run of A corresponds to a unique run of
B" [27]. This avoids an attack where one of the agents is tricked

into believing that they have two (identical) sessions with their
peer while in reality their peer is only running one corresponding
instance. To comply with this understanding of authentication our
model includes the property session uniqueness:
Session Uniqueness Different sessions [with the same communica-

tion partners] will always have different, unique session keys
[..].[13, Section 3.3]

An idea closely related to Session Uniqueness is Consistency:
Consistency If two honest parties establish a common session key

then both need to have a consistent view of who the peers to the
session are. Namely,if a party A establishes a key K and be-
lieves the peer to the exchange to be B, then if B establishes the
session key K , it needs to believe that the peer to the exchange
is A; and vice-versa.[26, Section 2.1]

The most obvious goal of IKEv2 is keeping the session key (with
which the peers’ future communication shall be protected) safe
from an attacker. To formalize this we follow [8] and define Secrecy
in general:
Secrecy (of a term t) The term t, e.g., a computed session key, will

not become known to the adversary.[8, Chapter 3]
Key secrecy is therefore achieved if, and only if, Secrecy of the session
key is guaranteed. The last property, Identity Protection, differs from
the other requirements as it is only an additional security guarantee.
As noted in [26], the security of the IKEv2 protocol does not directly
depend on identity hiding. The protocol was designed to provide
Identity Protection for the responder against an active attacker by
only including the identity value in a reply to an authenticated
initiator.
Identity Protection [The goal is to] protect both identities from

passive attacks and [..] protect the identity of one of the peers
from disclosure against an active attacker.[26, Section 2.2]
This coincides with the definition of “identity concealment”
in [4]. Both sources note that it is impossible to provide
identity protection against an active attacker for the first-
authenticating agent (i.e., the initiator in IKEv2): Disclosure
of one’s identity is inevitable for authentication and an active
attacker in the role of the responder can legitimately request
the initiator’s identity without authenticating themself. For
the responder, “Identity Protection” amounts to “secrecy of
its identity”.

4 AUTOMATED PROOF OF IKEV2
The authenticated key exchange as the core feature of IKEv2 is
a clearly defined state machine (see Fig. 1). It therefore naturally
allows automated proofs in a multiset rewriting system, which is
often used in security protocol analyses (e.g., see [5, 16]). Thereby,
the protocol’s state is a multiset of facts and the protocol itself is
modeled as a set of rewriting rules. Tamarin is a formal verification
tool which supports automated proving of protocols by using its

94



A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

ownmodeling language. The language is based on (labeled) multiset
rewriting rules [34] and therefore naively allows to express IKEv2’s
state transitions as such rules. By default, the adversary is modeled
as a Dolev-Yao attacker, against which we defined IKEv2’s security
model.

4.1 The Tamarin Prover
Tamarin’s rule set and built-in cryptographic functions allow straight-
forward modeling of security protocols. The tool contains pre-
defined components which model the Diffie-Hellman key exchange,
hash functions, symmetric and asymmetric encryption, and public
key signatures. The automatic solver uses constraints solving and
multiset rewriting techniques to perform a comprehensive symbolic
search for execution paths that satisfy the provided constraints and
rules. Found traces and proofs can be visualized in auto-generated
graphs via Tamarin’s web interface.

4.1.1 Protocol Modeling. A protocol is modeled in the form of an
equational theory, the corresponding multiset rewriting system,
and guarded formulas which can be checked for validity or sat-
isfiability for the traces in the system. For a meaningful analysis,
it is important that the model be as close to the actual protocol
definition as possible and models all security-relevant information
and events correctly. However, the resource requirements of the
Tamarin verification increase with the complexity of the model,
thus a trade-off has to be found between the preciseness of the
model and abstraction for the sake of successful analysis.

For this reason we keep the complexity at a minimum by settling
on a basic subset of the IKEv2 protocol as presented in Section 3.

4.1.2 State Machine. Tamarin rules define allowed state transitions
in the protocols, as depicted in Fig. 1. The state at any point in time
is defined as the combination of internal state of initiator I and
responder R, the last message sent over the public channel, and
any persistent public knowledge such as public keys. Which state
transitions are allowed in the model is defined by so-called “rules”.

The following paragraph illustrates Tamarin’s description lan-
guage based on a simple example:

1 rule Example:

2 [Fr(~sk), !Message(m)] // Premise

3 -->

4 [Out(senc(m, ~sk))] // Conclusion

The rule “Example” models the encryption of a messagem with
the symmetric secret key sk . Each rule consists of a premise and
conclusion, marked with [ .. ], that are separated by an arrow
-->. The global state – a multiset – is modeled with so-called facts;
in the example these are Fr(~sk) and !Message(m). The example
shows two special facts, Fr() denotes a fresh fact, that is created
for the rule and can be consumed only within the rule as sk (~sk
denotes a new name for the fact). Persistent facts (denoted with !)
can be consumed arbitrarily often.

Transmitted is the result of senc(m, ~sk), where senc(·,·) is
the built-in symmetric encryption functions; hence senc(m, ~sk)
models the result of symmetrically encrypting the variable m with
the newly generated secret key ~sk. (The corresponding decryption
function is sdec(·,·).)

Transmission of the resulting ciphertext is modeled by the built-
in fact Out(), denoting that the message is observable by the Dolev-
Yao attacker and the recipient.

4.1.3 Attacker Model. The Tamarin prover by design supports the
Dolev-Yao attacker model [34]. The attacker is allowed to receive
any messages denoted by the built-in fact Out used in the rules
to model the communication. For proving the security properties
under certain assumptions, the knowledge gained by the attacker is
presented as the built-in fact K(m). We use the latter to model Iden-
tity Protection and Key secrecy. In that regard, our implementation
follows previous usages of Tamarin for other protocols, described
in [13] and [9].

4.1.4 Lemmata. Statements about the protocol that shall be proven,
like the security properties of IKEv2, are defined with the keyword
lemma in the form of trace properties. They can be automatically
proven or disproven by Tamarin’s automatic solver. For this pur-
pose, the properties have to be defined as action facts in the corre-
sponding rules.

An example of such lemma could be:
1 lemma plain_secrecy:

2 not (

3 Ex plain #i #j .

4 Received(plain) @ #i

5 & K(plain) @ #j

6 )

The special fact K(plain) denotes plain is known to the attacker,
# marks temporal names. The lemma reads as:

There does not exist a value plain, and points in time
#i and #j with plain being received by the peer in #i
and the adversary knowing the plain text in #j.

4.2 Execution Environment
We implement IKEv2’s state machine as Tamarin rules and the
security properties described in Section 3 as Tamarin lemmata.

The analysis of the IKEv2 model was enabled by the use of
the high performance compute cloud hosted at the Leibniz Super-
Computing Centre (LRZ) in Garching near Munich, Germany. The
analysis ran on a virtual Ubuntu Linux machine leveraging 40 CPU
cores and 180 GB of RAM. Even though automated analysis has
become more efficient in recent years, this set-up proved to be
invaluable for some of the computationally harder lemmata. In
the following we describe our findings and results of the formal
verification in the classical setting using the Tamarin prover.

4.3 Verifying the Correctness of our Model
To show the correctness of the IKEv2 model, two lemmata are
defined which prove that it is possible to successfully complete
IKEv2 handshakes between two peers. This property is necessary
for the analysis because if it was not fulfilled, all further proofs
would falsely succeed simply because their conditions could never
be reached by the automated solver.
exists_session This lemma verifies that the two peers can complete

a session that results in an identical shared session key for both
peers.

95



ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

Table 1: Implications of key compromise: Each entry indi-
cates whether the security property of the corresponding
row is achieved (") or not (%) if the key of the correspond-
ing column is compromised.

none I eph. R eph. I static R static

Aliveness_I " " " " %

Aliveness_R " " " " %
Weak
Agreement_I " % % " %

Weak
Agreement_R % % % % %

Agreement_I " % % " %

Agreement_R % % % % %

Consistency " " " " %

Key secrecy " % % " %
Identity
Protection " % % % "

exists_two_sessions This lemma shows that two peers can perform
at least two successive handshakes with each other. This prop-
erty is crucial as some vulnerabilities might require to leak
information in one session and reuse it in a second.

The IKEv2 model succeeds at fulfilling both lemmata.

4.4 Verifying IKEv2’s Security Properties
We verify the security properties established in Section 3 in consecu-
tive steps. First, we showwhich ones IKEv2 achieves in the standard
model of the Delov-Yao attacker. Next, we allow the different cryp-
tographic keys established between Initiator I and responder R
during the key exchange to be leaked. This allows a fine-grained
analysis of the security properties achieved by IKEv2. Additionally,
we can validate our findings – and thereby our Tamarin model – by
comparing it to the work of Cremers [8], which uses the same ap-
proach but another automatic prover, and to [37], which compares
the results from several automated provers (including Tamarin).

Table 1 summarizes our findings which correspond with the ones
in [8]. The first column shows that if no keys are compromised,
IKEv2 fulfills all presented security properties for the initiator, but
cannot guarantee Weak Agreement or Agreement to the responder.
Next, we let the attacker compromise the initiator’s ephemeral key,
i.e., her private share for the DH-exchange. We model this as a
Tamarin rule reveal_dh leading to the fact RevDH, which is then
used in the corresponding lemmata of the security properties:

1 rule reveal_dh:

2 [ !DHtoReveal($I,k) ]

3 --[RevDH($I)]->

4 [ Out(k) ]

In that case, the proof shows violation of the property Weak
Agreement for the initiator, too. This implies that Agreement is also
not achievable. Additionally, the knowledge of the Initiator’s pri-
vate ephemeral key allows the attacker to obtain the shared secret
and, hence, violates Key secrecy. This allows the attacker to silently

impersonate [1] the initiator; the responder’s identity becomes
unprotected and Identity Protection is violated. The same argumen-
tation and violations apply when the responder’s ephemeral keys
are leaked.

In a third and last step, we let the attacker compromise the
peer’s static keys – which are the keys used for authentication. We
modeled this with another Tamarin rule reveal_static, leading
to the fact RevSk, and use it in the corresponding lemmata:

1 rule reveal_static:

2 [ !PrivKey($I,sk) ]

3 --[RevSk($I)]->

4 [ Out(sk) ]

In the case of the Initiator’s static keys being leaked, all previously
achieved security properties except Identity Protection stay intact.
Identity Protection is not achieved because this leakage allows an
attacker to perform an impersonation attack [1].

Leakage of the responder’s static key shows the opposite find-
ings, as none of the security properties except Identity Protection
are achievable in that case. As in the previous case, such leakage
allows an impersonation attack, but this time it is reversed. The
attacker can take over the role of the Responder, undetectable by
the Initiator. Hence, Aliveness is not achievable, which implies that
Weak Agreement and Agreement are violated as well. The imper-
sonation allows the attacker to act as a man-in-the-middle. Thus,
the peers will use different session keys, which violates Consistency
and Key secrecy.

Notably, IKEv2’s Aliveness and Consistency are violated if, and
only if, the responder’s static key is leaked. Even with the combined
leakage of both ephemeral and the initiator’s static key, these two
properties are achieved.

4.5 Results
Our analysis confirms the results of former formal verification and
aided analysis of IKEv2, such as [8], [37], and [31]. For each of the
security properties, the Tamarin verification comes to the same
results as previous publications. Hence, we show that the IKEv2
protocol satisfies all desired security properties unless one or more
of the secret keys have been compromised. These identical results
at the same time confirm the validity of the presented IKEv2 model.
The properties of Aliveness and Consistency are only violated in a
single attacker setting and, thus, are especially robust.

4.6 Ambiguity in Authentication properties
In A.8, we provide a variation of the model which takes into account
that “running the protocol” may be understood as “completing it”
(i.e., sending the last own message of the protocol) rather than
only “executing any steps of the protocol”. In that case, Aliveness
can only be achieved for the initiator (Aliveness_I) but not the
responder (Aliveness_R). By this interpretation, the authentication
of the initiator is therefore quite weak.

5 AUTOMATED PROOFS IN A QUANTUM
SETTING

With the basic model of IKEv2 for the Tamarin Prover established
for the classical case in the previous section, we can now extend

96



A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

the proof to model deviations from the core protocol and move to
a quantum-setting.

Fig. 2 shows the state machine presented before (see Fig. 1) in
vertical form and with some possible extensions to the core proto-
col: On the right, COOKIE [20] (marked orange), used in the first
phase of the key exchange to re-use parameters from previously es-
tablished SAs, and EAP [14] (marked red), a special authentication
protocol which changes the order in which the peers authenticate
themselves.

On the left (marked blue), the IKE_INTERMEDIATE extension [33]
is illustrated. It is one of the most recently proposed extensions and
was drafted with the need for hybrid (quantum-safe) key exchanges
in mind [ibid.]. Among other uses, it allows the IPsec-key exchange
to support multiple key exchanges (as specified in draft [35]) and
thus enables the use of strong post-quantum cryptography (such
as the McEliece-cryptosystem [28]) in the context of IKEv2.

While we assume that formally proving the security for any
extension would be valuable feedback to the community, most of
them have been established for years without any noteworthy secu-
rity breaches. We therefore focus on the two extensions mentioned
above, which are still in draft status and do not enjoy quite the
same level of confidence yet.

5.1 Extending the Tamarin Model
The IKE_INTERMEDIATE exchange takes place after
IKE_SA_INIT but before IKE_AUTH and consists of one or more
round-trips; for simplicity we model an exchange with one round-
trip only. Extending the model established in Section 4 accordingly
requires two new Tamarin rules that implement the respective new
states for the Initiator and Responder. The rules IKE_AUTH_I and
IKE_AUTH_R also change, as their input condition is now the suc-
cessful completion of the new exchange; a session in this model is
therefore only complete when IKE_INTERMEDIATE is used.

The attacker in our basic model is able to reveal classic DH-keys;
it is with respect to her that the security properties in Section 3 were
proven to hold. To account for quantum-resistant key exchanges,
too, we extend the attacker model by the following rule, which
allows the revelation of quantum-resistant DH-keys:

1 rule reveal_dhq:

2 [ !DHQtoReveal($I, k) ]

3 --[RevDHQ($I)]->

4 [ Out(k) ]

The new fact !DHQtoReveal(X, k) is used in the
IKE_INTERMEDIATE_X-rules to indicate that peer X has created
a quantum-safe DH-key.

5.2 Verifying PQ-IKEv2’s Security Properties
The additional key exchange should protect the peers’ shared key
against even a quantum-computer-based attacker [35], i.e., the en-
hanced IKEv2-version should provide Key secrecy against this at-
tacker. Ideally, it should feature all the security properties that the
original IKEv2 provides against a classical attacker.

To prove this, we use the same methodology as presented in Sec-
tion 4.4. The Tamarin lemmata are adjusted to account for the new
attacker model; this affects all properties which are only achieved

if the DH-values are not revealed, namely: a) Weak Agreement,
b) Agreement, c) Key secrecy and d) Identity Protection. In all of
the corresponding lemmata, it is necessary to assume that the DH-
keys are not revealed to prove that the property holds. A quantum-
computer-based attacker can reveal the classical DH-keys by defini-
tion. For all properties in question, it is instead necessary to assume
that the quantum-resistant DH-keys are not revealed to prove that
they still hold.
In the lemma forWeak Agreement_I, for example, the fact RevDH(X)
needs to be replaced by RevDHQ(X) as follows (see Lines 5 and 6):

1 lemma weak_agreement_i[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , I, 'initiator ', R, keymat)

@ #i

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDHQ(I) @ k) //<-

Post-Quantum

6 & not (Ex #k . RevDHQ(R) @ k) //<-

Post-Quantum

7 ==> (Ex spi2 role nonce keymat2 #j .

Agreed(spi2 , R, role , I, nonce ,

keymat2) @ #j

8 & #j < #i)"

The lemmata for the other properties must be adjusted in the same
manner. Section A.7 of the appendix offers a complete overview of
the adjusted code segments.

5.3 Results
In the model for IKE_INTERMEDIATE with quantum-safe keys and
a quantum-computer-based attacker, the security properties speci-
fied in Section 3 can be proven to hold under the equivalent con-
ditions; i.e., if, and only if, the leakage of a classical DH-key vi-
olates a security property in the classical model, then the leak-
age of the quantum-safe DH-key violates the same property in
the quantum-safe model. This also shows that a one-round-trip
IKE_INTERMEDIATE-exchange does not allow any additional attacks
with respect to the proposed security model.

6 CONCLUSION AND FUTUREWORK
Using the automated proof system Tamarin, we provide the first
formal security proof of the Minimal-IKEv2 protocol in a Dolev-Yao
style attacker model that includes access to a quantum computer
and the first formal analysis of IKE_INTERMEDIATE used for post-
quantum key exchange in IKEv2.

In our analysis we cover properties such as the secrecy of the
computed session key and identity protection for the communi-
cating parties. The presented results for the classical setting are
consistent with existing work that uses other automated or manual
proof systems, giving our work validity.

Our approach allows modeling extensions of the IKEv2 protocol
in a relatively simple manner. With only few changes, therefore,
we move our attacker model to a quantum setting and show that

97



ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

IKE_SA_INIT
Initiator

IKE_SA_INIT
Responder

IKE_AUTH
Initiator

IKE_AUTH
Responder

IKE_AUTH
Done

IKE_INTERMEDIATE
Initiator

IKE_INTERMEDIATE
Responder

Draft PQKE/INTERMEDIATE

Start

INIT + Cookie
Responder

INIT + Cookie
Initiator

EAP
Initiator

EAP
Responder

RFC 5998 EAP

Figure 2: A comprehensive graph of the IKEv2 handshake’s state machine including optional extensions to the model exem-
plarily [14, 15, 20, 33, 35].

in this case, the IKEv2 protocol extension IKE_INTERMEDIATE pre-
serves the security properties of the original when it is used for an
additional, one-round post-quantum key exchange.

To support the future standardization work around IPsec and
IKEv2, we plan to verify the security properties of other exten-
sions as well. In our model, we explicitly assume that there is
exactly one intermediate key exchange. In future work one might
want to extend this to the general case of (potentially) multiple
IKE_INTERMEDIATE exchanges. Authenticationwith certificates[14]
(which is quite resource-intensive) and other complex authenti-
cation mechanisms may also be analyzed, and in the long run,
quantum-safe authentication should be, too.

REFERENCES
[1] Carlisle Adams. 2005. Impersonation Attack. Springer US, Boston, MA, 286–286.

https://doi.org/10.1007/0-387-23483-7_196
[2] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Katriel Cohn-

Gordon, and Raphael Robert. 2019. The Messaging Layer Security (MLS) Protocol.
Internet-Draft draft-ietf-mls-protocol-08. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-08 Work in Progress.

[3] Ran Canetti and Hugo Krawczyk. 2001. Analysis of key-exchange protocols and
their use for building secure channels. In International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 453–474.

[4] Ran Canetti and Hugo Krawczyk. 2002. Security analysis of IKE’s signature-based
key-exchange protocol. In Annual International Cryptology Conference. Springer,
143–161.

[5] Iliano Cervesato, Nancy Durgin, Patrick Lincoln, J Mitchell, and Andre Scedrov.
2002. A comparison between strand spaces and multiset rewriting for security
protocol analysis. In International Symposium on Software Security. Springer,
356–383.

[6] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. 2017. A formal security analysis of the signal messaging protocol. In
2017 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 451–466.

[7] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Milner.
2017. On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong
Security Guarantees. Cryptology ePrint Archive, Report 2017/666. https://eprint.
iacr.org/2017/666.

[8] Cas Cremers. 2011. Key exchange in IPsec revisited: Formal analysis of IKEv1
and IKEv2. In European Symposium on Research in Computer Security. Springer,
315–334.

[9] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,
1773–1788.

[10] Alexander Dax, Robert Künnemann, Sven Tangermann, and Michael Backes.
2019. How to Wrap it up-A Formally Verified Proposal for the use of Authenti-
cated Wrapping in PKCS# 11. In 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF).

[11] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.
IEEE Transactions on information theory 29, 2 (1983), 198–208.

[12] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel..
In NDSS.

[13] Jason A Donenfeld and Kevin Milner. 2017. Formal verification of the wireguard
protocol. Technical Report. Technical Report.

[14] P. Eronen and J. Korhonen. 2006. Multiple Authentication Exchanges in the
Internet Key Exchange (IKEv2) Protocol. RFC 4739 (Experimental). https:
//doi.org/10.17487/RFC4739

[15] P. Eronen, H. Tschofenig, and Y. Sheffer. 2010. An Extension for EAP-Only
Authentication in IKEv2. RFC 5998 (Proposed Standard). https://doi.org/10.
17487/RFC5998

[16] Santiago Escobar, Catherine Meadows, and José Meseguer. 2009. Maude-NPA:
Cryptographic protocol analysis modulo equational properties. In Foundations of
Security Analysis and Design V. Springer, 1–50.

[17] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers, and
David Basin. 2020. A spectral analysis of noise: a comprehensive, automated, for-
mal analysis of Diffie-Hellman protocols. In 29th {USENIX} Security Symposium
({USENIX} Security 20). 1857–1874.

[18] D. Harkins and D. Carrel. 1998. The Internet Key Exchange (IKE). RFC 2409
(Proposed Standard). https://doi.org/10.17487/RFC2409 Obsoleted by RFC 4306,
updated by RFC 4109.

[19] Tobias Heider. 2019. Towards a Verifiably Secure Quantum Resistant Key Ex-
change in IKEv2. http://mnm-team.org/pub/Diplomarbeiten/heid19

[20] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. 2014. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 7296 (Internet Standard). https:
//doi.org/10.17487/RFC7296 Updated by RFCs 7427, 7670, 8247.

[21] C. Kaufman (Ed.). 2005. Internet Key Exchange (IKEv2) Protocol. RFC 4306
(Proposed Standard). https://doi.org/10.17487/RFC4306 Obsoleted by RFC 5996,
updated by RFC 5282.

[22] S. Kent. 2005. IP Authentication Header. RFC 4302 (Proposed Standard). https:
//doi.org/10.17487/RFC4302

[23] S. Kent. 2005. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed
Standard). https://doi.org/10.17487/RFC4303

[24] S. Kent and K. Seo. 2005. Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard). https://doi.org/10.17487/RFC4301 Updated by RFCs
6040, 7619.

[25] T. Kivinen. 2016. Minimal Internet Key Exchange Version 2 (IKEv2) Initiator
Implementation. RFC 7815 (Informational). https://doi.org/10.17487/RFC7815

98

https://doi.org/10.1007/0-387-23483-7_196
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-08
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-08
https://eprint.iacr.org/2017/666
https://eprint.iacr.org/2017/666
https://doi.org/10.17487/RFC4739
https://doi.org/10.17487/RFC4739
https://doi.org/10.17487/RFC5998
https://doi.org/10.17487/RFC5998
https://doi.org/10.17487/RFC2409
http://mnm-team.org/pub/Diplomarbeiten/heid19
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC4306
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4303
https://doi.org/10.17487/RFC4301
https://doi.org/10.17487/RFC7815


A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

[26] Hugo Krawczyk. 2003. SIGMA: The ’SIGn-and-MAc’approach to authenticated
Diffie-Hellman and its use in the IKE protocols. InAnnual International Cryptology
Conference. Springer, 400–425.

[27] Gavin Lowe. 1997. A hierarchy of authentication specifications. In Proceedings
10th Computer Security Foundations Workshop. IEEE, 31–43.

[28] Robert J. McEliece. 1978. A public-key cryptosystem based on algebraic coding
theory. Deep Space Network Progress Report 44 (1978), 114–116.

[29] Catherine Meadows. 1999. Analysis of the Internet Key Exchange protocol using
the NRL protocol analyzer. In Proceedings of the 1999 IEEE Symposium on Security
and Privacy (Cat. No. 99CB36344). IEEE, 216–231.

[30] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In Computer
Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 696–701.

[31] S Moedersheim, PH Drielsma, et al. 1997. AVISPA Project Deliverable D6. 2:
Specification of the Problems in the High-Level Specification Language (2003).

[32] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446 (Proposed Standard). https://doi.org/10.17487/RFC8446

[33] Valery Smyslov. 2019. Intermediate Exchange in the IKEv2 Protocol. Internet-Draft
draft-ietf-ipsecme-ikev2-intermediate-03. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-intermediate-03 Work
in Progress.

[34] The Tamarin Team. 2016. Tamarin-Prover Manual. https://tamarin-prover.github.
io/manual/tex/tamarin-manual.pdf

[35] C. Tjhai, M. Tomlinson, grbartle@cisco.com, Scott Fluhrer, Daniel Van Geest,
Oscar Garcia-Morchon, and Valery Smyslov. 2020. Multiple Key Exchanges in
IKEv2. Internet-Draft draft-ietf-ipsecme-ikev2-multiple-ke-00. Internet Engineer-
ing Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-
multiple-ke-00 Work in Progress.

[36] Trevor Perrin. 2018. The Noise protocol framework. https://noiseprotocol.org/
noise.html

[37] Tristan Ninet. 26.06.2020. Formal verification of the Internet Key Exchange (IKEv2)
security protocol. Ph.D. Dissertation. Université Rennes 1. https://tel.archives-
ouvertes.fr/tel-02882167/

A TAMARIN-CODE FOR THE VERIFICATION
OF IKEV2-SECURITY

A.1 Tamarin Basics
The following Listing states the name of the theory that shall be
proven (“IKEv2”) and which built-in functions provided by Tamarin
shall be used, and restricts the equation function.

1 theory IKEv2

2 begin

3

4 builtins: asymmetric-encryption ,

diffie-hellman , hashing , signing ,

symmetric-encryption

5 functions: hmac/2

6

7 /* Whenever a Eq action occurs , the two

arguments must be equal */

8 restriction Eq_check_succeed: "All x y #i.

Eq(x,y) @ i ==> x = y"

9

10 // IKEv2 Protocol

11

12 // <INSERT RULES HERE >

13

14 // <INSERT LEMMATA HERE >

15

16 end

A.2 Creating the identity
A static-key-pair for each identity can be created using the following
code;
∼ sk denotes the private share and pk(∼ sk) the public share.

1 /* Static Key generator: Keys are bound to

an ID i, which is not public */

2

3 rule generate_static:

4 [ Fr(~sk) ] // < input: fresh

variable ~sk

5

6 --[GenStatic(pk(~sk))]-> // < action fact:

static key

7 // generated

from ~sk

8

9 [ !PrivKey($I, ~sk) // < $I's priv.

key is ~sk

10 , !PubKey($I, pk(~sk)) // < $I's pub. key

is pk(~sk)

11 , Out(pk(~sk)) ] // < pk(~sk) is

published

A.3 The attacker model in Tamarin
In accordance with the attacker model described in Section 3, the
following Listing defines the two functions “reveal_static” and “re-
veal_dh”.

1 /* key revelations defined in the adversary

model */

2

3 rule reveal_static:

4 [ !PrivKey($I, sk) ] // < If $I's private

key sk

5 // was generated

before

6 --[RevSk($I)]-> // < then upon use

of this rule ,

7 // the action fact "

RevSK($I)" is

registered

8 [ Out(sk) ] // < and sk is

published

9

10 rule reveal_dh:

11 [ !DHtoReveal($I, k) ] // < If $I's

ephemeral key k

12 // was generated

before

13 --[RevDH($I)]-> // < then upon use

of this rule ,

99

https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-intermediate-03
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-intermediate-03
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-00
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-multiple-ke-00
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://tel.archives-ouvertes.fr/tel-02882167/
https://tel.archives-ouvertes.fr/tel-02882167/


ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

14 // the action fact "

RevDH($I)" is

registered

15 [ Out(k) ] // < and k is

published

A.4 The IKEv2 State Machine in Tamarin
In the following, the implementation of the IKEv2 state machine is
presented.

A.4.1 IKE_SA_INIT:. The first exchange phase in IKEv2; modeled
as the states IKE_SA_INIT_I and IKE_SA_INIT_R.

1 rule IKE_SA_INIT_I: // I initiates

communication and sends his DH-share

2 let

3 epI = 'g'^~eI // < Initiator 's DH-share

4 msg1 = <~spiI , 'IKE_SA_INIT ', '1', 'i', epI ,

~nI>

5 // ^ 'IKE_SA_INIT ', '1', 'i' are

message metadata

6 in

7 [ Fr(~nI) // < Initiator Nonce

8 , Fr(~spiI) // < Initiator SPI (session

id)

9 , Fr(~eI) ] // < Initiator ephemeral key

10 -->

11 [ Out(msg1)

12 , StateInitI($I, $R, ~spiI , ~eI, ~nI, msg1)

13 // ^ internal state of Initiator is

registered

14 , !DHtoReveal($I, ~eI) ] // < $I's

ephemeral key is ~eI

1 rule IKE_SA_INIT_R: // R agrees and responds

with his DH-share

2 let

3 epR = 'g'^~eR // < Responder 's

DH-share

4 k = epI^~eR // < DH-key ,

calculated with eR

5 keymat = h(<nI, ~nR>, k) // < shared key

6

7 msg1 = <spiI , 'IKE_SA_INIT ', '1', 'i', epI ,

nI>

8 // ^ initiator 's first message

9 msg2 = <spiI , ~spiR , 'IKE_SA_INIT ', '1', 'r'

, epR , ~nR>

10 // ^ response

11 in

12 [ In(msg1) // < If message 1 was published ,

and

13 // given fresh values:

14 , Fr(~nR) // < Responder Nonce ,

15 , Fr(~spiR) // < Responder SPI , and

16 , Fr(~eR) ] // < Responder DH private share

17

18 --[ Agreed(<spiI , ~spiR >, $R, 'responder ', <

nI, ~nR>, keymat)]->

19 // upon use of this rule , the action fact

above is registered

20 // which states that $R in the role of the

responder has agreed

21 // on the key 'keymat ' in the session <

spiI , spiR > with nonces <nI, nR>

22 [ Out(msg2) // msg2 is published

23 , StateInitR($I, $R, spiI , ~spiR , nI, ~nR,

keymat, msg1 , msg2 , epI , epR)

24 // ^ internal state of Responder is

registered

25 , !DHtoReveal($R, ~eR) ] // < $R's

ephemeral key is ~eR

A.4.2 IKE_AUTH exchange: The second exchange phase in IKEv2;
modeled as the states IKE_SA_AUTH_I and IKE_SA_AUTH_R.
Messages are now encrypted.

1 rule IKE_AUTH_I: // I agrees and

authenticates himself

2 let

3 k = epR^eI // < DH-key ,

calculated with eI

4 keymat = h(<nI, nR>, k) // shared key

5

6 signed_octets = <msg1 , nR, h(~idI , keymat)>

7 auth_pl = sign(signed_octets , skI)

8 // ^ authentication payload

9 encr_pl = senc{<~idI , auth_pl , pkI >} keymat

10 // ^ encrypted payload

11 integ_I = hmac(<spiI , spiR , 'IKE_AUTH ', '2',

'i', encr_pl >, keymat)

12 // ^ hash for integrity protection

13

14 msg2 = <spiI , spiR , 'IKE_SA_INIT ', '1', 'r',

epR , nR>

15 // ^ R's init message

16 msg3 = <spiI , spiR , 'IKE_AUTH ', '2', 'i',

encr_pl , integ_I > // < I's auth message

17

18 in

19 [ In(msg2) // < If msg2 was

published ,

20 , StateInitI($I, $R, spiI , eI, nI, msg1)

21 // ^ and if $I has the this internal state

,

22 , !PrivKey($I, skI) // < $I's priv. key is

skI , and

100



A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

23 , !PubKey($I, pkI) // < $I's pub. key is

pkI , and for

24 , Fr(~idI) ] // < Initiator

identity

25

26 --[ Agreed(<spiI , spiR >, $I, 'initiator ', <

nI, nR>, keymat)]->

27 // upon use of this rule , this action fact

is registered

28 // which states that $I in the role of the

initiator

29 // has agreed on the key 'keymat ' in the

session <spiI , spiR > with nonces <nI,

nR>

30

31 [ StateAuthI($I, $R, ~idI , spiI , spiR , nI,

nR, keymat, msg1 , msg2 , 'g'^eI, epR)

32 // ^ Initiator 's new internal state is

registered

33 , Out(msg3) ] // < and msg3 is published

1 rule IKE_AUTH_R: // R authenticates himself

and thus completes the mandatory part of

the protocol

2 let

3 // Initiator 's authentication message

4 signed_octets_I = <msg1 , nR, h(idI , keymat)>

5 encr_pl_I = senc{<idI , auth_pl_I , pkI >}

keymat

6 integ_I = hmac(<spiI , spiR , 'IKE_AUTH ', '2',

'i', encr_pl_I >, keymat)

7 msg3 = <spiI , spiR , 'IKE_AUTH ', '2', 'i',

encr_pl_I , integ_I >

8

9 // Responder 's authentication message

10 signed_octets_R = <msg2 , nI, h(~idR , keymat)

>

11 auth_pl_R = sign(signed_octets_R , skR)

12 encr_pl_R = senc{<~idR , ~spiC , auth_pl_R ,

pkR >} keymat

13 integ_R = hmac(<spiI , spiR , 'IKE_AUTH ', '2',

'r', encr_pl_R >, keymat)

14 msg4 = <spiI , spiR , 'IKE_AUTH ', '2', 'r',

encr_pl_R , integ_R >

15 in

16 [ In(msg3) // < If msg3 was

published ,

17 , StateInitR($I, $R, spiI , spiR , nI, nR,

keymat, msg1 , msg2 , epI , epR)

18 // ^ and if $R has the this internal state

,

19 , !PrivKey($R, skR) // < $R's priv. key is

skR ,

20 , !PubKey($R, pkR) // < $R's pub. key is

pkR , and

21 , !PubKey($I, pkI) // < $I's pub. key is

pkI , and for

22 , Fr(~idR) // < Responder

identity

23 , Fr(~spiC) ] // < ChildSA session

id

24

25 --[ Eq(verify(auth_pl_I , signed_octets_I ,

pkI), true)

26 , Completed(<spiI , spiR >, $R, 'responder ',

$I, keymat)

27 , IdentityLearnt (~idR) ]->

28 // upon use of this rule , 3 action facts

are registered

29 // which state that I's signature was

verified ,

30 // that R completed a run of the protocol

in the responder role with peer $I

31 // in the session <spiI , spiR > with shared

key 'keymat '

32 // and that a peer learnt R's identity

33

34 [ ChildSAR($I, $R, ~spiC , hmac(keymat, <nI,

nR >))

35 // ^ action fact: Responder derived

ChildSA values

36 , Out(msg4) ] // and msg4 is published

1 rule IKE_AUTH_COMPLETE: // I completes

mandatory part of the protocol & sends a

test-message in the new ChildSA

2 let

3 // Responder 's authentication message

4 signed_octets_R = <msg2 , nI, h(idR , keymat)>

5 encr_pl_I = senc{<idR , spiC , auth_pl_R , pkR

>} keymat

6 integ_I = hmac(<spiI , spiR , 'IKE_AUTH ', '2',

'r', encr_pl_I >, keymat)

7 msg4 = <spiI , spiR , 'IKE_AUTH ', '2', 'r',

encr_pl_I , integ_I >

8

9 ck = hmac(keymat, <nI, nR >) // <

ChildSA key

10 mTest = <'0', senc('test', ck),

11 hmac(<'0', senc('test',ck)>, ck)> // <

test message , encrypted and integrity

protected with ck

12 in

101



ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

13 [ In(msg4) // If this message was

published ,

14 , StateAuthI($I, $R, idI , spiI , spiR , nI, nR

, keymat, msg1 , msg2 , epI , epR)

15 // ^ if this is I's internal

state , and

16 , !PubKey($R, pkR) // if this is $R's public

static key ]

17 --[ Eq(verify(auth_pl_R , signed_octets_R ,

pkR), true)

18 , Completed(<spiI , spiR >, $I, 'initiator ',

$R, keymat)

19 , IdentityLearnt(idI)

20 , IKeys($I, $R, spiC , ck) ]->

21 // upon use of this rule , 4 action facts

are registered

22 // which state that R's signature was

verified ,

23 // that I completed a run of the protocol

in the initiator role with peer $R

24 // in the session <spiI , spiR > with shared

key 'keymat '

25 // and that a peer learnt R's identity and

I registered ck as ChildSA-key

26 [ Out(mTest) ] // < Test-message is

published

27

28 rule ChildSA_Confirm_R:

29 [ ChildSAR($I, $R, spiC , ck) ] // < If there

is a ChildSA

30 , In(<'0', senc('test', ck),

31 hmac(<'0', senc('test',ck)>, ck)>)

32 // ^ and a valid test message was

published for it

33 --[ RConfirm($I, $R, spiC , ck)]-> // < then

upon use of this rule , the session

registers that R has received a message

valid under the established ChildSA key.

34 [ ]

A.5 IKE_INTERMEDIATE

1 rule IKE_INTERMEDIATE_I: // I's second key

exchange message

2 let

3 msg2 = <spiI , spiR , 'IKE_SA_INIT ', '1', 'r',

epR , nR>

4

5 k = epR^eI

6 keymat = h(<nI, nR>, k)

7

8 // I encrypts and integrity-protects the

message with the previously exchanged

key

9 encr_pl_I = senc{<'g'^~peI , ~nI2 >} keymat

10 integ_I = hmac(<spiI , spiR , '

IKE_INTERMEDIATE ', '2', 'i', encr_pl_I >,

keymat)

11 msgINT = <spiI , spiR , 'IKE_INTERMEDIATE ', '2

', 'i', encr_pl_I , integ_I >

12

13 in

14 [ In(msg2)

15 , Fr(~peI)

16 , Fr(~nI2)

17 , StateInitI($I, spiI , eI, nI, msg1)

18 ]

19 --[ Agreed(<spiI , spiR >, $I, 'initiator ', <

nI, nR>, keymat)

20 , INTERMEDIATE_I($I, $R) ]-> //< action fact

: INTERMEDIATE exchange happened between

$I and $R

21

22 [ Out(msgINT)

23 , StateIntermI($I, $R, spiI , spiR , nI, nR, ~

nI2 , keymat, msg1 , msg2 , msgINT , 'g'^eI,

24 epR , ~peI)

25 , !DHQtoReveal($I, ~peI) ] // < $I's

quantum-safe key is peI

1 rule IKE_INTERMEDIATE_R: // R's second key

exchange message

2 let

3 // I's second key exchange message ,

encrypted and integrity-protected with

the previously exchanged key

4 encr_pl_I = senc{<pepI , nI2 >} keymat_old

5 integ_I = hmac(<spiI , spiR , '

IKE_INTERMEDIATE ', '2', 'i', encr_pl_I >,

keymat_old)

6 msgINT = <spiI , spiR , 'IKE_INTERMEDIATE ', '2

', 'i', encr_pl_I , integ_I >

7

8 pq = pepI^~peR

9 keymat = h(keymat_old , <pq, nI2 , ~nR2 >)

10

11 // R encrypts and integrity-protects the

message with the previously exchanged

key

12 encr_pl_R = senc{<'g'^~peR , ~nR2 >} keymat_old

13 integ_R = hmac(<spiI , spiR , '

IKE_INTERMEDIATE ', '2', 'r', encr_pl_R >,

keymat_old)

102



A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

14 msgINT2 = <spiI , spiR , 'IKE_INTERMEDIATE ', '

2', 'r', encr_pl_R , integ_R >

15 in

16 [ In(msgINT)

17 , Fr(~peR)

18 , Fr(~nR2)

19 , StateInitR($I, $R, spiI , spiR , nI, nR,

keymat_old , msg1 , msg2 , epI , epR)

20 ]

21 --[ Agreed(<spiI , spiR >, $R, 'responder ', <

nI2 , ~nR2 >, keymat)]->

22

23 [ Out(msgINT2)

24 , StateIntermR($I, $R, spiI , spiR , nI, nR,

nI2 , ~nR2 , keymat_old , keymat,

25 msg1 , msg2 , msgINT , msgINT2 , epI , epR , pepI ,

'g'^~peR)

26 , !DHQtoReveal($R, ~peR) ] < $R's␣

quantum-safe␣key␣is␣peR

A.6 Lemmata
In the following, the implementation of proven Lemmata according
to Section 3 is presented.

A.6.1 Correctness. To prove the correctness of the model, there
are two lemmata: the first states that it is possible for an Initiator
and a Responder to successfully establish a shared key with each
other, the second states that it is possible for them to establish two
different shared keys with each other.

1 /* There is a set of parameters such that I

and R complete a run of the protocol

with each other and agree on a shared

key. */

2 lemma exists_session: exists-trace

3 "Ex I R spi #i #j keymat.

4 Completed(spi , I, 'initiator ', R, keymat) @

#j

5 & Completed(spi , R, 'responder ', I, keymat)

@ #i

6 & #i < #j" // no loss of generality*

7

8 /* There are two sets of parameters such

that I and R complete corresponding runs

of the protocol with each other and

agree on two different shared keys. */

9 lemma exists_two_sessions: exists-trace

10 "Ex I R spi spi2 ck ck2 #i #j #i2 #j2 .

11 IKeys(I, R, spi , ck) @ #i

12 & RConfirm(I, R, spi , ck) @ #j

13 & #i < #j // no loss of generality*

14 & IKeys(I, R, spi2 , ck2) @ #i2

15 & RConfirm(I, R, spi2 , ck2) @ #j2

16 & #i2 < #j2 // no loss of generality*

17 & not (ck=ck2)"

* This restriction helps the automatic prover find such a trace.

A.6.2 Authentication. Authentication is split in the Lemmata Alive-
ness, Weak Agreement_I, Weak Agreement_R, Agreement_I and
Agreement_R, as explained in Section 3:

1 lemma aliveness[use_induction]:

2 "All spi A B keymat role #i .

3 Completed(spi , A, role , B, keymat) @ #i

4 & not (Ex #k . RevSk(B) @ k)

5 ==> (Ex spi2 role2 peer nonce keymat2 #j .

Agreed(spi2 , B, role2 , peer , nonce ,

keymat2) @ #j

6 & #j < #i)"

1 lemma weak_agreement_i[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , I, 'initiator ', R, keymat) @

#i

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDH(I) @ k)

6 & not (Ex #k . RevDH(R) @ k)

7 ==> (Ex spi2 role nonce keymat2 #j . Agreed(

spi2 , R, role , I, nonce , keymat2) @ #j

8 & #j < #i)"

1 lemma weak_agreement_r[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & not (Ex #k . RevSk(I) @ k)

5 & not (Ex #k . RevSk(R) @ k)

6 & not (Ex #k . RevDH(I) @ k)

7 & not (Ex #k . RevDH(R) @ k)

8 ==> (Ex spi2 role nonce keymat2 #j . Agreed(

spi2 , I, role , R, nonce , keymat2) @ #j

9 & #j < #i)"

1 lemma agreement_i[use_induction]:

2 "All spi I R keymat #j .

3 Completed(spi , I, 'initiator ', R, keymat) @

#j

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDH(I) @ k)

6 & not (Ex #k . RevDH(R) @ k)

7 ==> (Ex spi2 #k .

8 Completed(spi2 , R, 'responder ', I, keymat) @

#k)"

1 lemma agreement_r[use_induction]:

2 "All spi I R keymat #j .

103



ACSAC ’21, December 6–10, 2021, Virtual Event, USA S. Gazdag et al.

3 Completed(spi , R, 'responder ', I, keymat) @

#j

4 & not (Ex #k . RevSk(I) @ k)

5 & not (Ex #k . RevSk(R) @ k)

6 & not (Ex #k . RevDH(I) @ k)

7 & not (Ex #k . RevDH(R) @ k)

8 ==> (Ex spi2 #k .

9 Completed(spi2 , I, 'responder ', R, keymat) @

#k)"

A.6.3 Session Uniqueness. The following lemma proves Session
uniqueness:

1 lemma session_uniqueness:

2 "All I R spi spi2 keymat role #j #l.

3 Completed(spi , I, role , R, keymat) @ #j

4 & Completed(spi2 , I, role , R, keymat) @ #l

5 ==> (#j = #l)"

A.6.4 Consistency. The following lemma proves Consistency:

1 lemma consistency:

2 "All spi I R keymat keymat2 #i #j .

3 Completed(spi , I, 'initiator ', R, keymat) @

#i

4 & Completed(spi , R, 'responder ', I, keymat2)

@ #j

5 & not (Ex #k . RevSk(R) @ #k)

6 ==> (keymat=keymat2)"

A.6.5 Key Secrecy. The following lemma proves Key secrecy:

1 lemma key_secrecy[reuse]:

2 "All spi I R role keymat #j .

3 Completed(spi , I, role , R, keymat) @ #j

4 & not (Ex #m . RevSk(R) @ #m)

5 & not (Ex #m . RevDH(I) @ #m)

6 & not (Ex #m . RevDH(R) @ #m)

7 ==> not (Ex #m . K(keymat) @ #m)"

A.6.6 Identity Hiding. The following lemma proves Identity Pro-
tection:

1 lemma identity_hiding_R:

2 "All spi I R keymat id #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & IdentityLearnt(id) @ #i

5 & not (Ex #k . RevSk(I) @ #k)

6 & not (Ex #k . RevDH(I) @ #k)

7 & not (Ex #k . RevDH(R) @ #k)

8 ==> not (Ex #j . K(id) @ #j)"

A.7 Additional code for verifying
quantum-safe IKEv2

A.7.1 Revelation of quantum-resistant key. The following lemma
allows the revelation of quantum-resistant DH-keys.

1 rule reveal_dhq:

2 [ !DHQtoReveal($I, k) ]

3 --[RevDHQ($I)]->

4 [ Out(k) ]

A.7.2 Affected lemmata. As stated in Section 5.2, the lemmata for
Weak Agreement, Agreement, Key Secrecy, and Identity Protection
are only achieved if the DH-values remain secret, and therefore
need to be updated for modeling a quantum-based attacker.

1 lemma weak_agreement_i[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , I, 'initiator ', R, keymat) @

#i

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDHQ(I) @ k)

6 & not (Ex #k . RevDHQ(R) @ k)

7 ==> (Ex spi2 role nonce keymat2 #j . Agreed(

spi2 , R, role , I, nonce , keymat2) @ #j

8 & #j < #i)"

1 lemma weak_agreement_r[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & not (Ex #k . RevSk(I) @ k)

5 & not (Ex #k . RevSk(R) @ k)

6 & not (Ex #k . RevDHQ(I) @ k)

7 & not (Ex #k . RevDHQ(R) @ k)

8 ==> (Ex spi2 role nonce keymat2 #j . Agreed(

spi2 , I, role , R, nonce , keymat2) @ #j

9 & #j < #i)"

1 lemma pq_agreement_i[use_induction]:

2 "All spi I R keymat #j .

3 Completed(spi , I, 'initiator ', R, keymat) @

#j

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDHQ(I) @ k)

6 & not (Ex #k . RevDHQ(R) @ k)

7 ==> (Ex spi2 #k .

8 Completed(spi2 , R, 'responder ', I, keymat) @

#k)"

1 lemma pq_agreement_r[use_induction]:

2 "All spi I R keymat #j .

3 Completed(spi , R, 'responder ', I, keymat) @

#j

4 & not (Ex #k . RevSk(I) @ k)

5 & not (Ex #k . RevSk(R) @ k)

104



A formal analysis of IKEv2’s post-quantum extension ACSAC ’21, December 6–10, 2021, Virtual Event, USA

6 & not (Ex #k . RevDHQ(I) @ k)

7 & not (Ex #k . RevDHQ(R) @ k)

8 ==> (Ex spi2 #k .

9 Completed(spi2 , I, 'responder ', R, keymat) @

#k)"

1 lemma session_uniqueness:

2 "All I R spi spi2 keymat role #i #j .

3 Completed(spi , I, role , R, keymat) @ #i

4 & Completed(spi2 , I, role , R, keymat) @ #j

5 ==> (#i = #j)"

1 lemma pq_key_secrecy[reuse]:

2 "All spi I R role keymat #i .

3 Completed(spi , I, role , R, keymat) @ #i

4 & not (Ex #j . RevSk(R) @ #j)

5 & not (Ex #j . RevDHQ(I) @ #j)

6 & not (Ex #j . RevDHQ(R) @ #j)

7 ==> not (Ex #j . K(keymat) @ #j)"

1 lemma pq_identity_hiding_R:

2 "All spi R I keymat id #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & IdentityLearnt(id) @ #i

5 & not (Ex #k . RevSk(I) @ #k)

6 & not (Ex #k . RevDHQ(I) @ #k)

7 & not (Ex #k . RevDHQ(R) @ #k)

8 ==> not (Ex #j . K(id) @ #j)"

A.8 Alternative code for authentication
lemmata where “has been running the
protocol” is interpreted as “has completed
the protocol”

A.8.1 Variants for standard IKEv2.

1 lemma aliveness_i[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , I, 'initiator ', R, keymat) @

#i

4 & not (Ex #k . RevSk(R) @ k)

5 ==> (Ex spi2 peer role keymat2 #j .

Completed(spi2 , R, role , peer , keymat2)

@ #j

6 & #j < #i)"

1 lemma aliveness_r[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & not (Ex #k . RevSk(I) @ k)

5 ==> (Ex spi2 peer role keymat2 #j .

Completed(spi2 , I, role , peer , keymat2)

@ #j

6 & #j < #i)"

1 lemma weak_agreement_i[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , I, 'initiator ', R, keymat) @

#i

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDH(I) @ k)

6 & not (Ex #k . RevDH(R) @ k)

7 ==> (Ex spi2 role keymat2 #j . Completed(

spi2 , R, role , I, keymat2) @ #j

8 & #j < #i)"

1 lemma weak_agreement_r[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & not (Ex #k . RevSk(I) @ k)

5 & not (Ex #k . RevSk(R) @ k)

6 & not (Ex #k . RevDH(I) @ k)

7 & not (Ex #k . RevDH(R) @ k)

8 ==> (Ex spi2 role keymat2 #j . Completed(

spi2 , I, role , R, keymat2) @ #j

9 & #j < #i)"

A.8.2 Variants for quantum-safe IKEv2.

1 lemma pq_weak_agreement_i[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , I, 'initiator ', R, keymat) @

#i

4 & not (Ex #k . RevSk(R) @ k)

5 & not (Ex #k . RevDHQ(I) @ k)

6 & not (Ex #k . RevDHQ(R) @ k)

7 ==> (Ex spi2 role keymat2 #j . Completed(

spi2 , R, role , I, keymat2) @ #j

8 & #j < #i)"

1 lemma pq_weak_agreement_r[use_induction]:

2 "All spi I R keymat #i .

3 Completed(spi , R, 'responder ', I, keymat) @

#i

4 & not (Ex #k . RevSk(I) @ k)

5 & not (Ex #k . RevSk(R) @ k)

6 & not (Ex #k . RevDHQ(I) @ k)

7 & not (Ex #k . RevDHQ(R) @ k)

8 ==> (Ex spi2 role keymat2 #j . Completed(

spi2 , I, role , R, keymat2) @ #j

9 & #j < #i)"

105


	Abstract
	Acknowledgments
	1 Introduction
	2 Background and Related Work
	2.1 IPsec and IKEv2
	2.2 Previous analyses of IKE(v2)
	2.3 Formal analysis of other protocols

	3 Protocol model
	3.1 The Dolev-Yao attacker model
	3.2 Security properties

	4 Automated Proof of IKEv2
	4.1 The Tamarin Prover
	4.2 Execution Environment
	4.3 Verifying the Correctness of our Model
	4.4 Verifying IKEv2's Security Properties
	4.5 Results
	4.6 Ambiguity in Authentication properties

	5 Automated Proofs in a quantum setting
	5.1 Extending the Tamarin Model
	5.2 Verifying PQ-IKEv2's Security Properties
	5.3 Results

	6 Conclusion and future work
	References
	A Tamarin-Code for the verification of IKEv2-security
	A.1 Tamarin Basics
	A.2 Creating the identity
	A.3 The attacker model in Tamarin
	A.4 The IKEv2 State Machine in Tamarin
	A.5 IKE_INTERMEDIATE
	A.6 Lemmata
	A.7 Additional code for verifying quantum-safe IKEv2
	A.8 Alternative code for authentication lemmata where ``has been running the protocol'' is interpreted as ``has completed the protocol''


