
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Evaluating Sector Caches in
High-Performance Computing

Sergej-Alexander Breiter





INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Evaluating Sector Caches in
High-Performance Computing

Sergej-Alexander Breiter

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller
Betreuer: Dr. Karl Fürlinger

Dr. Josef Weidendorfer
Abgabetermin: 31. Januar 2022





Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 31. Januar 2022

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift des Kandidaten)





Abstract

The sector cache is a hardware cache partitioning mechanism of the A64FX processor. The
A64FX is used in the Fugaku system – currently the fastest supercomputer on the TOP500
list (as of November 2021). It allows application software to dynamically partition a cache
and can reduce the occurrence of cache misses by protecting data with high temporal locality
from eviction. Many cache partitioning techniques focus on optimizing the cache behavior of
shared caches when multiple co-scheduled processes run on the same processor by assigning
them to partitions. In contrast, the sector cache aims to improve the cache behavior of a
single application by assigning its data to partitions. However, even the hardware man-
ufacturer of the A64FX states that it is difficult to use the sector cache in a meaningful
way. Therefore, a profiling tool based on the reuse distance metric is being developed using
Intel’s PIN binary instrumentation framework. The profiling tool tries to provide program-
mers with opportunities where the sector cache can be usefully applied without requiring
the programmer to have detailed knowledge of a program’s data locality. Using the parallel
NAS benchmarks as an example, it is shown that the tool can indeed help programmers
to find code regions where the sector cache can improve cache behaviour. In addition, it is
shown that sector cache can significantly improve performance in certain typical situations
and these as well as the sector cache behavior of the A64FX are explored and analyzed.
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1 Introduction
Computing is getting increasingly important in many fields of science such as machine learn-
ing, climate modeling, weather forecasting or astrophysics [YTY21]. Today, also other fields
like biology profit from high-performance computing capabilities. A recent example is the
fight against COVID-19 [LDDB+21, HP20], where compute resources of supercomputers are
dedicated to simulations that help understanding the structures and mechanisms of the virus
in order to develop vaccines and therapeutic treatments. In the times of big data, ever faster
and bigger machines have to be constructed to handle the vast amounts of data and huge
computational tasks of scientific workloads in acceptable time [OFK12]. Supercomputing is
on the verge of achieving exascale floating point performance with the Fugaku [SIT+20] sys-
tem being currently the leader of the fastest supercomputers on the TOP500 list [DMS+97]
as of November 2021.

Huge amounts of data in real-world applications often result in memory-intensive appli-
cations that put high demands on the memory system, and the memory transfer rate can
become the application performance bottleneck. This can be tackled either by increasing
the memory system performance or by reducing the data volume transferred. Caches – fast
memory with low capacity – are placed between the main memory and the Arithmetic Log-
ical Units (ALUs) of the Central Processing Unit (CPU) to hold data and make it accessible
to the CPU orders of magnitude faster compared to the access time of the main memory.
But because of the smaller size, typically not all of the data required by an application can
be stored in the cache at the same time. Loading data from memory is expensive, thus data
that is frequently reused should be kept in cache and not replaced with data that is only
used once. Optimizing the use of the cache system is at the center of many performance
optimization techniques. The goal of these techniques is either to reduce the memory ac-
cess penalty or the transferred data volume and can be achieved, for example, by exploiting
localities of the data access pattern in applications.

The CPU used in the Fugaku system, the A64FX CPU, comes with a hardware feature
called sector cache. It enables an adaptive partitioning of the cache area to make better
use of temporal localities within an application. Reusable data can be placed in a cache
partition separate from other data and thus be protected from being driven out of the cache
in order to avoid reloading reusable data from memory. However, it is not always clear when
the sector cache can reduce the amount of data traffic and how much performance can be
gained. In fact, even the manufacturer of the A64FX CPU states that it is hard to make
good use of the sector cache and that it can significantly degrade performance if not used
with caution [Fuj21b].

A central question of this thesis is how application designers can spot opportunities for the
use of the sector cache feature in their software. The developed approach is based on a binary
instrumentation tool that analyzes the data access pattern of an application to detect parts
within that application where the sector cache can improve data locality. Another question
is how much performance potentially can be gained by the use of the sector cache on the
A64FX CPU under idealized conditions.
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1 Introduction

The next chapter of this thesis provides the background knowledge on the topic. The
general approach is explained in the third chapter. The implementation is described in the
fourth chapter and the fifth chapter contains the evaluation of the sector cache performance
gains and the chosen approach on the A64FX CPU. Finally, in the last chapter, the results
of the thesis are summarized and possibilities for future work are pointed out.
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2 Background

The background chapter provides the necessary background knowledge on caches and cache
performance. Cache optimizations related to the sector cache are discussed before the em-
ployed hardware of the A64FX CPU is commented. The sector cache is explained next. Reuse
distance analysis, which is the theoretical basis of the developed tool, is discussed before the
related work is presented at the end of this chapter.

2.1 Caches

Computer programs consist of two parts: instructions and data. Ideally, hardware would
provide unlimited amounts of fast memory to feed the instructions and data to the ALUs of
a CPU in order to keep the CPU busy all the time. But fast memory is expensive and the
increase in CPU speeds as well as the addition of multiple cores in modern CPUs leads to
higher average memory request rates that can not be matched by the technical progress in
the increase of memory speeds (Dynamic Random-Access Memory (DRAM) gap). Thus, the
memory subsystem becomes the performance bottleneck.

2.1.1 Memory Hierarchy

A well-known solution to this dilemma is to organize the memory in multiple hierarchical
levels – each level smaller and faster than the next lower level. Figure 2.1 shows an example
of the memory hierarchy of a multicore CPU. On top of the hierarchy are the CPU registers
– the fastest memory – on the bottom is the main memory and in between lie the caches.
The main memory is typically DRAM and located outside of the CPU (off-chip). A cache is a
high-speed memory with low capacity, usually Static Random-Access Memory (SRAM), and
usually integrated on the CPU (on-chip). There are multiple levels of caches: the first level
is the L1 cache and it is private to each core of a CPU. The L1 cache is further divided into
two parts: the L1I cache which stores the instructions and the L1D cache which stores the
data. The next lower level(s) are often shared between multiple cores. The lowest cache
level in the memory subsystem is called Last Level Cache (LLC). The LLC is connected to
the main memory via a memory controller that manages the accesses of the processor to
main memory. The memory becomes slower and larger as we move farther away from the
processor and also the energy cost per access increases [JWN10, HW10].

Data in one cache level is also included in all the lower levels of the memory hierarchy
in an inclusive cache system (inclusion property). On multicore systems, cache coherence
must be maintained. Multiple cores may hold a copy of data referring to the same location
in memory. The write to a memory location from one core must be propagated to the local
caches of other cores before the data update becomes visible. Cache coherency is managed
by hardware using a cache coherency protocol.
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2 Background

Last Level Cache (LLC)

Registers

ALUs

L1D Cache L1I Cache

...

Main Memory

Core 1 Core N
on-chip

Figure 2.1 – Typical memory hierarchy on a multicore system. The L1 cache is divided into
the L1D (data) and L1I (instruction) caches. L1 caches are local to the cores and
the LLC is shared by many cores. Multiple cache levels may be between the L1
cache and the LLC. The LLC is connected to the off-chip main memory. Latency
to the ALUs increases with the distance.

Based on [HW10, Fig 1.3.].

2.1.2 Data Transfer

When data is demanded by the CPU, it must be fetched from a lower level in the hierarchy.
If the requested data is found in a cache level it is a cache hit, otherwise a cache miss. The
time penalty for a cache miss depends on the latency, the bandwidth and on the level in
the memory hierarchy in which the cache miss occurs. Earlier cache hits have lower latency
and reduce the bandwidth requirements to the next lower level because less data must be
transferred. The reduction in bandwidth requirements becomes even more important if the
data path is shared by multiple cores.

For efficiency reasons, data is stored and transferred in cache lines (blocks) of fixed size
containing multiple neighbouring words. All words in a cache line have the same block
address, determined by the high bits of the word’s address. The low bits of the address are
called block offset and determine the location of the word in the cache line (see Figure 2.2).
Where cache lines can be stored and thus must be searched for, depends on the mapping of
block addresses to cache locations [HP17].

Tag Index
Block
offset

Block address

Figure 2.2 – The two parts of a word’s address: block address and block offset. The block
address can be further divided into the tag and index.

Based on [HP17, Fig B.3.]
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2.1 Caches

2.1.3 Cache Mapping
The cache mapping, or cache placement policy, determines where a cache line can be placed
and found in the cache. There are three major design choices of cache mappings – each having
its downsides – of which the set-associative mapping is the most popular and discussed in
more detail below [HP17].

• Fully associative caches can map every cache line to every location in the cache.
They are expensive and can not be large.

• In direct-mapped caches, every cache line is mapped to one specific cache location.
The location is fully determined, usually by the index (low bits) of the block address.
They are cheap, but cache thrashing occurs due to conflict misses (explained in sub-
section 2.1.5).

• Set-associative caches map cache lines direct to a set and fully associative within the
set. They form a trade-off between fully associative and direct mapped caches.

Set-associative Cache

Set-associative caches can be thought of as being composed of a number of m equally sized
fully associative caches (sets). If there is space for n blocks in each set, the associativity is n
and the cache placement is said to be n-way set-associative. Cache locations within the sets
are called ways. Figure 2.3 shows an example of the placement of a data word in a 16-way
set-associative cache.

Line 0

Line 2

Line 15

Tag

Index Offset

Memory Address

Tag
04831

Line 1

016

Set

Figure 2.3 – Cache placement of a data word in a set of a 16-way set-associative cache. The
set is selected by the index, the position in the cache line is determined by the
offset. The tag is stored together with the cache line data to indicate the cache
line content

Based on [PLM09, Fig 1.]

In set-associative caches, the block address is divided into two parts: the tag (high bits)
and the index (low bits). The tag is required to indicate the corresponding location within
main memory and is stored together with the data in the tag array. The index determines
the set of a block usually by bit selection:

set# = (block address) MOD m
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2 Background

However, there are also other ways to calculate the block’s set from its address. Finding the
location of a block in a set-associative cache consists of two steps: first the block address is
mapped to one of the sets in the cache, and then all tags stored in the set are compared,
typically in parallel. If no matching tag is found, a cache miss occurs.

Storing a block in an n-way set-associative cache is similar: first the block’s set is de-
termined, and then one of the blocks within the set is selected for removal (evicted). The
evicted block is decided by the replacement policy (explained in subsection 2.1.4) and re-
placed with the incoming block [HP17, HW10]. The relationship between cache size, block
size, associativity and number of sets is:

cache size = (block size) · n ·m

Address Translation

Today, applications execute within an Operating System (OS)-managed virtual address space.
Virtual addresses simplify programs and help increase security. The address specified within
the program is the virtual address. The address sent to the memory system is the physical
address. Addresses are mapped at the granularity of pages from virtual pages to page frames
in main memory. The Memory Management Unit (MMU) is the translation unit of the
CPU that performs the mapping from virtual to physical addresses. Recently used address
mappings are stored in the Translation Lookaside Buffer (TLB), a cache that allows to speed
up the translation process.

The tag and index parts of the block address can either be taken from the physical address,
the virtual address, or both. For example, a cache using the virtual index and the physical
tag is called VIPT cache. The advantage of using the virtual address parts is the lower
latency, because address translation must finish before the physical index or tag may be
used. But multiple virtual addresses may translate to the same physical address (aliasing)
and the implementation becomes more difficult because of cache coherence [JWN10].

2.1.4 Replacement Policies

The replacement strategy, or replacement policy, decides which block is evicted in case of a
cache miss. In a direct-mapped cache there is only one possible location for each block and
thus there is only one choice for the replaced block. With fully associative mapping, every
block can be chosen on a miss. In n-way set-associative caches, any of the n blocks within
the indexed set can be chosen. The best choice would be to replace the block that will not
be used for the longest period of time [Bel66]. However, with hardware it is not possible to
know in advance what data will be needed again soon and therefore the replacement strategy
is based on heuristics. Replacement strategies are one of the most heavily researched areas
in cache design [JWN10].

LRU Replacement Policy

The Least Recently Used (LRU) policy is based on the heuristic that data that has not been
required for a long time will most likely not be needed in the near future. To decrease the
chance of throwing out data that will be required soon, LRU replaces the block that was
unused for the longest time (LRU-block). LRU requires keeping track of the access order
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2.1 Caches

and is often approximated, because there is a significant overhead in timing and energy cost
involved by maintaining the required information to determine the LRU-block [Han98].

Pseudo-LRU Replacement Policies

LRU is also called true-LRU in order to distinguish from Pseudo-LRU (PLRU) policies that
approximate LRU. These policies are cheaper to implement and today, commercial processors
use only PLRU for caches with high associativity [KMCV10]. There are two major types of
PLRU: tree-PLRU and bit-PLRU [XS20].

• Tree-PLRU is based on a bit-tree indicating the path to the PLRU-block and requires
n-1 additional bits per set in an n-way set-associative cache. The tree-based PLRU is
also simply referred to as PLRU in the literature [Han98].

• Bit-PLRU, also referred to as not recently used (NRU) [KMCV10], requires n addi-
tional bits per set (one per way), indicating the most recently used cache lines (MRU-
bits). Every access to a cache line sets its MRU-bit to 1. When a cache miss occurs,
one of the ways whose MRU-bit is 0 is selected for eviction. As soon as all MRU-bits
are set to 1, they are set to 0, except in the replaced way. The way selected for evic-
tion can e.g. be chosen at random or using the uppermost way whose MRU-bit is 0. It
approximates LRU because the most recently used cache line is never evicted and the
last evicted cache line before the MRU-bits are reset is always the (true-)LRU-block
[HP17].

2.1.5 Cache Performance and Optimization
Cache optimization techniques aim at improving performance by reducing the number of
cache misses or the miss penalty of accesses and many techniques have been developed.
They are either hardware-based, such as increasing the cache size and hardware prefetching,
or software-based such as access pattern and data layout transformation [HP17, KW03].

Cache misses can be the cause of performance-degrading CPU stalls. Stalls refer to the
situation when the CPU cannot make progress because it has to wait until required data is
available. Modern CPUs reduce stalls by resolving or relaxing data dependencies through the
reordering of instructions in the instruction stream (out-of-order execution) and the ability
to have multiple pending memory operations, but this does not fully avoid stalls due to cache
misses [HW10].

Loading data ahead of time before it is demanded by the CPU can hide the access la-
tency and is called prefetching. Prefetching makes use of otherwise unused bandwidth of
the memory system, but may decrease performance when it interferes with the bandwidth
requirement of demand misses. Demand misses are more likely to cause a stall. Determining
what data will be requested next can be done either in hardware by detecting the access
pattern of a program, or in software with prefetch instructions. The miss rate (misses per
memory reference) metric is commonly used to measure the effectiveness of the cache sys-
tem. It can be divided into demand miss rate and prefetch miss rate and depends on the
considered cache level. An access responsible for a miss in one level might be a hit in the
next lower level of the cache-hierarchy [HP17].
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2 Background

The causes of cache misses can be categorized in three categories (3C’s) [HP17]:

• A compulsory miss, or cold miss, occurs when a cache block is referenced for the
first time. Compulsory misses cannot be avoided, but the penalty can be reduced with
prefetching.

• Capacity misses occur when the program’s currently frequently used data (working
set) is larger than the cache capacity and can only be avoided by increasing the cache
size.

• A conflict miss appears in set-associative caches when the requested data was previ-
ously present, but got evicted by other data that was mapped to the same location in
cache. Conflict misses can be reduced by increasing the associativity or cache size.

Cache-behavior of Applications

The memory access pattern of a programs is typically not random. Accesses often repeat
themselves in time and tend to be near each other in the memory address space (locality of
reference). These localities can be exploited to improve the cache utilization and it is often
in the programmers responsibility to increase locality. A program has spacial locality when
it has high probability that a data word next to the previously accessed word is demanded
soon. This reduces cache misses, because the data will likely be located on an already fetched
cache line. A program has temporal locality when the probability is high, that previously
accessed data is demanded in the near future [JZTS10]. Based on their cache behavior,
applications can be classified in multiple categories [Mit17]:

• Insensitive applications do not benefit from cache.

• Friendly applications benefit from cache.

• Streaming applications have a very large working set and inadequate cache reuse.

• A trashing application’s working set is larger than the cache capacity.

Cache Content Management Optimizations

While many cache optimization techniques focus on reducing latency or cache misses by
altering the cache design, the sector cache (described in section 2.3) aims at improving
the cache utilization by optimizing the data placement. Scratch-pad memory and cache
bypassing are similar in that sense and are described below. The sector cache is a type of
cache partitioning which is explained in the next section.

Scratch-Pad Memory
Caches are usually transparent using built-in heuristics that determine what data to
retain. Scratch-pad memory is managed explicitly and the application software has
direct control over the cached data. Data allocation relies on manual code annotations
by the programmer or can be automated by the compiler. The code annotations are
usually not portable as they have to be manually adjusted for different memory sizes,
which makes software development more expensive [JWN10]. Scratch-pad memory is
often used as a complement to transparent caches and is part of many modern hardware
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2.1 Caches

accelerators such as Field-programmable Gate Arrays (FPGAs) or Graphics Processing
Units (GPUs) [SXS+15].

Cache Bypassing
Cache bypassing is a technique to reduce the bandwidth utilization or to increase the
effective cache capacity by skipping placement of specific data in the cache. Mittal
et al. describe different methods in [Mit16]. A simple example of cache bypassing is
non-temporal stores (Intel’s “streaming stores”), an instruction allowing to write an
entire cache line to memory without going through the cache system. No prior read
for the write-allocate is required and no cache space is consumed. Its utility is to store
data without temporal locality [HW10].

2.1.6 Cache Partitioning

Cache partitioning is a cache optimization technique that divides the cache into multiple par-
titions, allowing to place data with high temporal locality in a separate partition to protect it
from eviction. Typical goals are performance, fairness and quality-of-service improvements.
The cache placement and replacement policy can be altered by cache partitioning and it
obviously has no use if the application working sets fit in cache [BJM11].

On multicore processors, cache partitioning can resolve contention on shared resources
between the partitioned cache and the next lower level in the memory hierarchy [Mit17].
For example, if a cache-friendly process and a streaming application run simultaneously on
a machine with shared LLC cache, and the bandwidth is the bottleneck, allocating a separate
partition to each process can prevent the streaming application from replacing reusable data
of the cache-friendly process. This may improve the performance of both processes, because
the increase in cache hits of the cache-friendly process reduces its bandwidth requirement
and additional bandwidth is available to the streaming process.

Generally, one can differentiate between software-based and hardware-based cache parti-
tioning. The granularity of cache partitioning techniques can be categorized into way-based,
set-based and block-based [Mit17]. The sector cache of the A64FX is a way-based hard-
ware cache partitioning. Mittal et al. provide a survey of cache partitioning techniques in
[Mit17] and Balasubramonian et al. discuss a variety of cache partitioning research papers
in [BJM11]. Most techniques focus on partitioning schemes in which different co-scheduled
applications or threads are assigned to partitions of a shared cache on a multicore processor.
The sector cache, on the other hand, is intended to assign data within a single application,
or even a single thread, to partitions.

Intel CAT

Intel’s Cache Allocation Technology (CAT) [Int15] is an example for a dynamic way-based
hardware cache partitioning mechanism for shared LLCs. CAT is designed for improving
performance, fairness and quality-of-service in shared computing platforms such as cloud
computing e.g. by prioritizing LLC resource usage of important real-time processes or by en-
forcing fair sharing of cache resources between processes. Besides that, CAT can also increase
security in shared systems by preventing cache side-channel attacks [HVA+16, LGY+16].
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2 Background

Figure 2.4 – Illustration of the page coloring technique for a set-associative cache. Memory
pages mapping to the same cache lines are assigned the same color.

Taken from [ZDS09, Fig 1.]

OS Page Coloring

Page coloring is a software technique that controls the mapping of memory pages to cache
lines. Memory pages mapping to the same sets are assigned the same color, as illustrated
in Figure 2.4. The OS can control the page frames available to an application by restricting
the virtual address space to those addresses matching certain colors and thus effectively
partition the cache [ZDS09]. The OS page coloring partitioning by Lin et al. [LLD+08] has
been integrated in the Linux operating system.

2.2 A64FX CPU

The A64FX CPU is an out-of-order superscalar processor designed for High-Performance
Computing (HPC). The CPU has 52 cores in total and is organized in four Non-Uniform
Memory Access (NUMA) domains called Core Memory Groups (CMGs). Each CMG consists
of 13 cores, but only 12 out of the 13 cores are used for computation. A single compute
core is also called Processing Element (PE) in the ARMv8 terminology. The A64FX has a
peak DP performance of 3.1 TFLOPs and is used in the Fugaku supercomputer which is
currently listed as #1 in the TOP500 list as of November 2021. Table 2.1 summarizes the
most important hardware details [Fuj21a, Arm21].

2.2.1 Memory System

The memory hierarchy of the A64FX has two on-chip cache levels. Each core has a private
L1 cache which is divided into L1D cache and L1I cache. The L1 caches of a CMG are
connected to a shared L2 cache via a shared bus. A Move In Buffer (MIB) and Move Out
Buffer (MOB) asynchronously manage move-in and move-out requests to the L2 cache (see
Figure 2.5). Each of the four CMGs is connected to a 8GB High Bandwidth Memory (HBM)
unit via its Memory Access Controller (MAC). The physical address space is divided between
the CMGs. The read and write requests from the L2 cache are managed by the MAC. The
L2 caches of the CMGs are interconnected by a two-way ring bus (see Figure 2.6). The
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2.2 A64FX CPU

Table 2.1 – A64FX CPU and memory system facts.

Instruction set architecture ARMv8-A, ARMv8.1, ARMv8.2, ARMv8.3, SVE
SVE-implemented vector length 128 / 256 / 512 bits
Number of compute cores 48 (12 per CMG)
Number of CMGs 4 (1 MAC per CMG)
Frequency 1.8GHz, 2.0GHz, 2.2GHz
Peak DP FLOPs 3.1TFLOPs (@ CPU 2GHz 2x FMA)
L1D cache size 64 KiB / 4-way set-associative VIPT (per Core)
L2 cache size 8 MiB / 16-way set-associative PIPT (per CMG)
Cache line size 256 bytes
Write method Writeback
Memory capacity 8 GiB HBM Gen2 (per CMG)
L1D <-> L2 R/W 64/32 bytes / cycle (per Core)
L1D <-> L2 (shared) R/W 512/256 bytes / cycle (per CMG)
L2 <-> Memory R/W 128/64 bytes / cycle (per CMG)

peak memory bandwidth of one MAC is 256GB/s and 1024GB/s for the whole system (read-
only). A hardware prefetcher detects streaming access patterns and can be refined using the
hardware prefetch assist mechanism [Fuj21a].

L2

L1I

MIB

L1I

L1D

MIB MOB

Processor core #0

L1I

MIB

L1I

L1D

MIB MOB

Processor core #1

L1I

MIB

L1I

L1D

MIB MOB

Processor core #12

Figure 2.5 – A64FX memory hierarchy: the private L1 caches of one CMG are connected to a
shared L2 cache via a shared bus.

Taken from [Fuj21a, Fig. 9-2]

2.2.2 Instruction Set Architecture
The A64FX is the first processor of the ARMv8-A Scalable Vector Extension (SVE) archi-
tecture and supports a maximum vector length of 512 bits. SVE is a vector extension of
the ARM Instruction-Set Architecture (ISA) that allows the programmer to write vectorized
code without specifying the actual vector length. The ARMv8-A ISA is extended by the
Fujitsu HPC extensions on the A64FX [Fuj21a].

ARMv8-A Exception Levels

The ARMv8-A architecture [Arm21] defines a set of Exception Levels (ELs) from EL0 to
EL3 that indicate software execution privileges in ascending order. Execution at EL0 is
called unprivileged execution and user applications typically run in EL0. EL1 is commonly
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Figure 2.6 – A64FX memory hierarchy: the A64FX is organized in four CMGs. Each CMG
has a L2 caches and is connected to its HBM unit via its MAC. The CMGs are
interconnected by a ring bus.

Taken from [Fuj21a, Fig. 9-1]

used for the OS kernel and associated functions that are typically described as privileged.
User applications typically run in EL0. The EL becomes important for the sector cache
configuration, because some of the required system registers are only accessible in EL1.
Accessing these registers from a user application requires switching to EL1.

Memory Tagging

Today, there is no need yet for a 64-bit address space. Memory tagging means that additional
information – a tag – is stored in the otherwise unused high bits of the 64-bit virtual addresses
and it is part of the ARMv8 memory model. Although ARM requires that the top 16 bits of
addresses must be either 0x0000 or 0xFFFF, a hardware feature introduced with ARMv8,
called top-byte ignore, allows software to use the 8 most significant bits of pointers as a tag.
When the top-byte ignore feature is activated, the 8 high bits of the virtual address are
ignored during address translation. Setting the top eight bits of the virtual address is called
top-byte override [Arm21].

One of the use cases is the memory tagging extension [Fra19] introduced with ARMv8.5-A
that aims to increase memory safety. A lock value is associated with the memory locations
of a memory allocation. Access to those memory locations is only granted when the key of
a reference, stored in the tag of the virtual address to that location, matches the lock value.
Memory tagging is also required in the Fujitsu HPC extensions of the A64FX.

Fujitsu HPC Extensions

The Fujitsu HPC extensions consist of four hardware features that derive from previous
Fujitsu processors (e.g. SPARC64 VIIIfx) and can potentially improve the performance of
applications. The hardware barrier supports the synchronization between software threads
with hardware. The HPC tag address override function is equivalent to the top-byte ignore
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and top-byte override functionality of the ARMv8 ISA and is required for the control of the
hardware prefetch assistance and the sector cache features. Software can hint the A64FX’s
hardware prefetch mechanism through the hardware prefetch assistance in order to reduce
the penalty of memory accesses by providing an access pattern in advance. The sector cache
feature is also part of the Fujitsu HPC extensions [Fuj20b, Fuj21a].

2.3 Sector Cache
Sector cache is a cache partitioning function which can virtually split a cache in multiple
configurable partitions (“sectors”). Cache partition sizes are chosen by allocating a number
of cache ways to each sector in the related system registers (see subsection 2.3.3) and may
be changed dynamically during program execution. The partitioning effectively changes the
replacement policy and can improve performance especially in memory-intensive programs
by protecting data with high temporal locality from eviction.

The technical name for the hardware implementation is instruction-based way partitioning
[PS12] and it was first employed in the SPARC64VIIIfx processor [YHKS12] for the K
computer (at that time #2 TOP500). The SPARC64VIIIfx is a predecessor of the A64FX.

There are sector cache controls for each L1D cache of each core and each L2 cache of each
CMG. The L1D and L2 caches each have four sectors, but the L2 cache sectors are structured
hierarchically. The four sectors of the L2 cache are grouped into two sector groups as shown
in Figure 2.7. The four sectors of each core’s L1D cache are mapped to two sectors of one
sector group within the L2 cache of their CMG. Each core can use two sectors of one selected
group of the L2 cache [Fuj21a].

Figure 2.7 – Sector cache partitioning on the A64FX CPU. Within each CMG, the four sectors
of each core’s L1D cache are mapped to the two sectors of one sector group of the
L2 cache.

Taken from [Fuj21a, Fig. 12-1]

2.3.1 Sector Cache Behaviour
Tagged addresses on load, store and prefetch instructions specify the sector for the data on
each memory instruction and the data is stored together with the sector id in cache. If no
sector id is specified, the default sector is assumed. When the sector id in a tag differs from
the stored sector id of an accessed block, the sector cache operating mode decides whether
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or not the sector id is updated on access. The sector information is stored and propagated
on write-back from L1D to L2, even if the L1D sector cache is disabled [Fuj21a, Fuj20b].

Data in a sector is not evicted from cache as long as the consumed area of the sector is
lower than its maximum capacity. When an entry has to be evicted, a block is selected such
that each sector does not exceed its specified sector size. Software can always access data in
all cache ways [Fuj21a].

Dynamic Capacity Adjustment

The maximum capacity of a sector may change during program execution and the hardware
will gradually bring the capacity of the sectors to the newly specified maximum capacity on
data loads [Fuj21a, Fuj20b]. The behaviour in case the capacity is changed is explained using
the next two examples. The current situation is shown on top, whereas the new situation is
shown on the bottom of each figure. Both examples show one set of an n-way set-associative
cache with two sectors. The numbers show the LRU numbers: the block with number 1 is
the most recently used and the block with number n is the LRU-block. The LRU numbers
are increased by one in the step from current to new.

Figure 2.8 – Sector cache behaviour when data with sector tag is loaded and the sector capacity
is currently lower than specified.

Taken from [Fuj21a, Fig. 12-2]

In Figure 2.8, the current capacity of sector 0 is 2 ways and was increased to the new
maximum capacity of 3 ways. On the other hand, the current capacity of sector 1 is n-
2 ways and was decreased to the new maximum capacity of n-3 ways. Thus, the current
capacity of sector 0 is lower than specified and the current capacity of sector 1 is higher than
specified. In this case, when data with specified sector 0 is loaded, instead of the LRU-block
of sector 0, the LRU-block of sector 1 is evicted and replaced with the new data of sector 0.
The capacities of the sectors changed to the specified values.

Figure 2.9 shows the same initial and specified capacities with different LRU numbers, but
data with specified sector 1 is loaded. The LRU-block in the set is in sector 0, but since
sector 1 was specified and the current capacity of sector 1 is not lower than the specified
capacity, the LRU-block of sector 1 (number n-1) is evicted. The capacities of both sectors
did not change in this case.
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Figure 2.9 – Sector cache behaviour when data with sector tag is loaded and the sector capacity
is currently higher than specified.

Taken from [Fuj21a, Fig. 12-3]

2.3.2 Sector Cache Replacement Policy
Unfortunately, Fujitsu did not publish every detail of the A64FX sector cache mechanism in
the available A64FX documentations [Fuj20b] and [Fuj21a]. Also the replacement strategy
of the L1D and L2 caches was not published. A more detailed description of the sector
cache mechanism can be found in the SPARC64 VIIIfx extensions documentation [Fuj10].
According to [Fuj10], all sets have the same sector sizes and a capacity counter keeps track of
each sector’s consumed area within each set. Each sector must implement its own LRU policy
to determine the LRU-block of the sector. It is not documented if the caches use true-LRU
and how multiple (partitioned) LRU policies are managed. Perarnau and Sato state in [PS]
that the SPARC64 VIIIfx L2 cache uses a PLRU policy.

It is reasonable to assume that the A64FX sector cache mechanism is similar to that of the
SPARC64 VIIIfx and that the replacement of the L2 cache likely obeys a PLRU policy. The
underlying replacement policy implementation of the A64FX sector cache could be similar to
that in [CLS06], where the authors combine a way partition binary tree with a binary bit-tree
to implement a partitioned tree-PLRU algorithm in a way-partitioned cache. However, the
replacement policy of the A64FX could also be based on the bit-PLRU policy. Regarding the
available information provided by the Fujitsu documentations, a model is derived how the
bit-PLRU policy can be efficiently extended to a partitioned policy – we call it partitioned bit-
PLRU policy – and is explained below. The policy shall reproduce the sector cache behaviour
described above and approximate LRU.
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Partitioned Bit-PLRU Policy
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Figure 2.10 – Partitioned bit-PLRU policy in a set of a 4-way set-associative cache with two
sectors. Five tagged memory accesses are made. The cache’s state before and
after the accesses is shown from (a) to (f). The MRU column indicates the most
recently used cache lines w.r.t. each sector. The sector id is updated on access
and stored in the Sec column. C0 and C1 are the sector capacity counters.

1. The cache is extended by an array of sector id bits (Sec) and MRU-bits.
The MRU-bits are initialized to 0.

2. When a cache hit occurs:
• Set the MRU-bit of the cache line to 1 and update its sector id according to the

sector cache operating mode.

3. When a cache miss occurs:
• Compare the sector capacity counter of the specified sector in the address with

the corresponding maximum sector capacity to determine the sector from which
the evicted cache line is selected.
a) counter ≥ max. capacity: select from specified sector for eviction.
b) counter < max. capacity: select from other sector for eviction.

Increment and decrement the corresponding capacity counters by 1.
• Choose the uppermost cache line whose MRU-bit is 0 and whose stored sector id

matches the previously selected sector to be replaced from.
• Replace the selected cache line, set its MRU-bit to 1 and update its sector id

according to the sector cache operating mode.

4. As soon as all MRU-bits in the cache lines whose stored sector id matches the selected
sector are set to 1, they are set to 0, except in the replaced cache line.
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An example of the partitioned bit-PLRU policy for a set within a 4-way set-associative cache
with two sectors is illustrated in Figure 2.10 for five tagged memory address accesses. The
sector cache operating mode is chosen such that the sector id is updated on access. In the
end, the most recently used cache lines (F,G,C,H) are kept and the consumed areas of the
sectors meet the specified maximum capacities. Additional overhead occurs for the sector
select and capacity counter logic compared to bit-PLRU. To our best knowledge, this policy
mimics the sector cache behaviour described in the documentations.

2.3.3 Sector Cache Configuration
To use the sector cache function in user software, the related system registers must be
configured and the virtual addresses of memory instructions must be tagged with the sector
id. Accessing the system registers can generally be performed with the MRS and MSR
instructions of the ARMv8 instruction set. The MRS instruction moves data from a system
register to a general-purpose register and the MSR instruction moves data from a general-
purpose register to a system register. Registers with a register name suffix “EL0” may be
accessible from every EL while registers ending with “EL1” require EL1 or higher [Fuj20b,
Arm21].

1. Enabling the HPC tag address override function

2. Setting the access control of the system registers

3. Setting the allocation and operation control of the system registers

4. Configuring the maximum sector capacity of the L1D and L2 caches

5. Tagging of memory accesses (loads, stores, prefetches) to specify sectors on data access

These steps can be performed either manually or with the Fujitsu software compiler package.
Each of these steps is explained in this section. A more detailed description can be found in
the Fujitsu HPC Extension documentation [Fuj20b]. For the sake of readability, the registers
are referenced without their prefix and suffix below. The purpose, full name and the shared
domain of the relevant registers are listed in Table 2.2. The RES0 fields in the registers are
unused and reserved.

Enabling the HPC Tag Address Override Function

The system register FJ_TAG_ADDRESS_CTRL controls the ARMv8 memory tagging and
the HPC tag address override function for the hardware prefetch assistance and the sector
cache. It contains fields that activate the sector cache (SCE{0|1}) and the prefetch assistance
(PFE{0|1}). Only when the SCE field is set to 1, the sector id of a tagged address is valid.
The fields TBO{0|1} activate the ARMv8 top-byte ignore function and must also be set (see
Figure 2.11).

Setting the Access Control

The system register SCCR_CTRL (Figure 2.12) controls the access rights to the sector cache
configuration registers. It has two fields, el1ae and el0ae. Both fields must be set to 1 access
the sector cache configuration registers from EL0 (see Figure 2.12).
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Table 2.2 – Tag address and sector cache control and setting registers.
Shared domain PE: one register per PE.
Shared domain CMG: one register per CMG.

Purpose Register Name Shared domain
HPC tag address override control IMP_FJ_TAG_ADDRESS_CTRL_EL1 PE
Access control IMP_SCCR_CTRL_EL1 PE
Allocation and operation control IMP_SCCR_ASSIGN_EL1 PE
L1D capacity setting IMP_SCCR_L1_EL0 PE
L2 maximum capacity setting IMP_SCCR_SET{0|1}_L2_EL1 CMG
L2 capacity setting IMP_SCCR_VSCCR_L2_EL0 PE

31 14 13 12 11 10 9 8 7 2 1 0

RES0 PFE1 SCE1 RES0 PFE0 SCE0 RES0 TBO1 TBO0 

Figure 2.11 – HPC tag address override control register.
Taken from [Fuj20b]

Setting the Allocation and Operation Control

The operating mode can be set in the mode field of the system register SCCR_ASSIGN (see
Figure 2.13). When the mode field is set to zero, the sector id of the accessed cache line is
updated to the sector id specified in a tag, otherwise it is kept.

The assign field controls which of the two L2 maximum capacity setting registers is up-
dated when a PE sets the L2 capacity by writing to its (window) register SCCR_VSCCR_L2.

The default_sector field specifies the default sector in case the sector id is not specified in
a tag.

Setting the L1D and L2 Sector Cache Capacities

The maximum number of L1D cache ways allocated to each sector can be assigned by setting
the l1_secN_max fields (N is the sector id) of the L1D sector cache capacity setting register
SCCR_L1 (see Figure 2.14). The L2 sector cache configuration is a bit more involved, because
the L2 cache is shared by all PEs of one CMG. The l2_sec0_max and l2_sec1_max fields
of the two registers SCCR_SET{0/1}_L2 define the sector capacities of sector group 0 and
sector group 1 within one CMG. Setting the corresponding register from EL0 is performed
by writing to the window register SCCR_VSCCR_L2 from one PE. The update of one PE is

63 62 61 32

el1ae el0ae RES0 

Figure 2.12 – Sector cache access control register.
Taken from [Fuj20b]
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31 4 3 2 1 0

RES0 mode assign default_sector 

Figure 2.13 – Sector cache allocation and operation control register.
Taken from [Fuj20b]

valid for all PEs of the same CMG.

31 15 14 12 11 10 8 7 6 4 3 2 0

RES0 l1_sec3_max l1_sec2_max l1_sec1_max l1_sec0_max 

RES0┘ RES0┘ RES0┘

Figure 2.14 – L1D sector cache capacity setting register.
Taken from [Fuj20b]

31 13 12 8 7 5 4 0

RES0 l2_sec1_max RES0 l2_sec0_max 

Figure 2.15 – L2 sector cache capacity setting registers.
Taken from [Fuj20b]

Tagged Address Allocation

The upper 8 bits – the HPC tag – of a tagged address are shown in Figure 2.16. The pf_func
field controls the hardware prefetch assistance and the SBZ fields are ignored. The two bits
of the sector_id field specify the sector id (0-3).

Sector Cache using the Fujitsu C/C++ compiler

The Fujitsu software compiler package includes compilers for the C, C++ and Fortran lan-
guage that leverage the use of the Fujitsu HPC extensions for software developers through
compiler directives, called Optimization Control Lines (OCLs). Instead of a manual con-
figuration, the setup of the system registers is taken over by the compiler and the setting
registers are made accessible from a user application. In this thesis, the Fujitsu C/C++
Compiler (FCC) was used for compilation and the sector cache configuration.

Listing 2.1 shows an example of the OCL usage for the sector cache. The L2 cache is
partitioned into n1 ways for sector 1 and 16-n1 ways for sector 0. The directives #pragma
statement scache_isolate_way and #pragma statement end_scache_isolate_way mark the be-
ginning and end of the cache partitioning. The number of L2 cache ways reserved for
sector 1, and optionally L1D cache ways, has to be provided after the directive (see line
2). Pointers and arrays can be assigned to sector 1 through the OCL #pragma statement
scache_isolate_assign. The end of the assignment has to be marked with a matching #
pragma statement end_scache_isolate_assign. In this example, a is assigned to sector 1 and all
other accesses go to sector 0.
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63 60 59 58 57 56

pf_func SBZ SBZ sector_id 

Figure 2.16 – Address tag for the Fujitsu HPC extensions.
Taken from [Fuj20b]

1 /∗ Reuse the array a that can f i t in n1 ways in the L2 cache ∗/
2 #pragma statement scache_isolate_way L2=n1 // [ L1=n2 ]
3 #pragma statement s cache_i so l a t e_as s i gn a
4 f o r ( i n t j = 0 ; j < n ; j++) {
5 #pragma omp p a r a l l e l f o r
6 f o r ( i n t i = 0 ; i < m; i++) {
7 a [ i ] = a [ i ] + b [ j ] [ i ] ;
8 }
9 }

10 #pragma statement end_scache_iso late_ass ign
11 #pragma statement end_scache_isolate_way

Listing 2.1 – Sector cache example.

The OCLs for the sector cache can either be applied to a region of code using the begin and
end delimiters as shown in the example code, or to a whole function. The interface for whole
function OCLs is very similar: instead of a #pragma statement [...], the directive begins with
#pragma procedure [...] and does not require an end delimiter because it applies to the whole
function it is placed in.

Listing 2.2 shows the relevant fields of the sector cache system registers state from a user
application point of view using FCC. Line 5-9 is the output of the tool pmsecstat, which
allows to read the registers from user space. Line 5 shows that configuring the sector sizes
is made accessible from EL0. Line 6 shows that the sector cache operates in mode 0 (see
section 2.3.3). It also shows that the register SCCR_SET0_L2 (sector group 0) is used for
the L2 cache partitioning and that the default sector is sector 0. Line 7 and 8 show that
only sector 0 and sector 1 of sector group 0 are used with the OCLs and that the number of
cache ways specified in the OCL applies to sector 1. All cores of the A64FX are configured
the same using FCC.
1 #pragma statement scache_isolate_way L2=7 L1=3
2 system ( ” pmsecstat ” ) ;
3 #pragma statement end_scache_isolate_way
4

5 SCCR_CTRL : e l 1a e=1 e l 0a e=1
6 SCCR_ASSIGN : mode=0 a s s i gn=0 de fau l t_sec=0
7 SCCR_L1 : l1_sec3=0 l1_sec2=0 l1_sec1=3 l1_sec0=1
8 SCCR_SET0 : l2_sec1=7 l2_sec0=9
9 SCCR_SET1 : l2_sec1=0 l2_sec0=2

Listing 2.2 – Sector cache register state using the Fujitsu compiler with partitioning
scheme L2 cache 7:9 ways and L1D cache 3:1 ways.
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From a practical point of view, there are some drawbacks to this interface. For example,
if a pointer aliases the assigned isolated pointer or array, the compiler does not generate
a tagged memory instruction for accesses via the aliasing pointer [PS12]. In this case, the
default sector is used if not stated otherwise explicitly in code. The same applies to arrays
and pointers passed as function arguments. However, the differentiation is also necessary.
Another problem is that the compiler does not automatically use the sector cache or give
application developers advice on where the feature could improve code performance. A tool-
based approach could help programmers identify regions of code where this is the case. The
reuse distance metric discussed in the next section can form the basis of such a tool.

2.4 Reuse Distance
Reuse distance or LRU stack distance is a measure for program locality (data reuse) that can
be used to estimate the number of cache misses of an application that runs on a machine
with a cache with (pseudo-) LRU replacement policy. The reuse distance metric is purely a
property of programs and not machine-specific [ACP02].

Definition 1. The reuse distance of a reference to element x is the number of distinct
data elements that have been referenced since the last access of x, or ∞ if x has not been
referenced before [SPP10].

2.4.1 Reuse Distance Calculation
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Figure 2.17 – Reuse distance histogram. References with reuse distance lower than the cache
size are cache hits, others are misses.

Taken from [JZTS10, Fig 1.]

Reuse distance can be calculated using a stack processing algorithm based on the LRU replace-
ment policy – the LRU stack algorithm. Mattson et al. introduced the LRU stack algorithm in
[MGST70], where they evaluated various replacement strategies for virtual memory paging –
LRU being one of them – using page reference traces of typical applications. However, cache
behaviour can be modelled using cache line references instead of page references. Today,
reuse distance is often used to analyze the cache behaviour of applications. The number of
cache misses in fully associative caches with LRU replacement policy is computed exact, and
can be approximated in set-associative caches by reuse distance. In a fully associative LRU
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cache with space for n cache lines, a reference with reuse distance d < n will hit. A reference
with reuse distance d ≥ n will miss [ACP02, BD01].

Definition 2. A trace T is a sequence of memory references: T = (x0, x1, . . . , xn).

The LRU stack algorithm is shown in Algorithm 1 in its most simple form. It takes a trace
of memory references as input and associates the reuse distance with each reference. Each
time when a memory location was referenced, its reference is pushed on top of a stack. Older
references sink towards the bottom of the stack. If a location is referenced for the first time,
its reuse distance is defined as ∞. If a location was already referenced before, its reference
is already present somewhere in the stack. When it is referenced again, its current distance
to the top is the reuse distance. The reference is moved to the top of the stack after the
distance is recorded. The stack can be represented as a doubly-linked list.

The algorithm’s output is a sequence of stack distances that can be coalesced into a stack
distance histogram. An example of such a histogram is shown in Figure 2.17. The reuse
distance is plotted on the x-axis while the number of references with the corresponding reuse
distance, typically related to the total number of references made, is plotted on the y-axis.
References with reuse distance lower than the cache size are cache hits, others are misses.

The algorithm can be divided into three phases: the search phase is required to check if
the reference is already present in the stack and its current position. The reuse distance is
obtained during the count phase. Bringing the most recent reference to the top of the stack
is done in the update phase [ACP02].

The search phase can be performed in O(1) operations using a hash map. The update
phase involves simply removing and inserting an element in the beginning of a linked list
and is also cheap. The expensive part is the count phase. In a naive implementation, the
stack is traversed until the reference is found and, in the worst case, is located at the bottom
of the stack. Almasi et al. provide an overview of stack processing methods, including more
sophisticated approaches, in [ACP02].

Algorithm 1 LRU stack distance
stack ← ∅
for all memory references x in T do

if x /∈ stack then ▷ search phase
x.dist←∞

else
x.dist← distance(x) ▷ count phase
remove(stack, x) ▷ update phase

end if
insert(stack, x) ▷ inserts on top

end for

2.4.2 Concurrent Reuse Distance
While reuse distance can predict the cache behaviour of a single threaded application, it does
not reflect the interaction of multiple cores accessing a shared cache in a shared-memory
environment and the distances may change when a sequential program is parallelized. For
example program transformations that create parallel loops can change the stack distance
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of references within the loop [BD01]. Jiang et al. [JZTS10] extend the concept of reuse
distance for shared caches by the introduction of concurrent reuse distance.

Concurrent reuse distance is defined as the number of distinct data elements that all
sharers of a cache access between the current and the previous references to the same data
element. This definition is no longer hardware-independent because its value depends on the
relative execution speeds of cache sharers. Typically, reuse distance information is obtained
by instrumenting an application’s memory accesses. The instrumentation changes the execu-
tion speed, making this definition problematic for independent concurrent applications, but
the relative speed of concurrent threads within an application remains the same [JZTS10].
Schuff et. al [SPP10] propose a thread interleaving with one cycle per instruction per core.
A probabilistic approach is taken in [JZTS10]. The interleaving can be performed either
during or after the instrumentation.

2.5 Related Work
Soft-OLP

Lu et al. developed the binary instrumentation framework Soft-OLP [LLD+09] that performs
automatic software cache partitioning of “objects” based on OS page coloring. Objects are
e.g. dynamically allocated memory regions in their terminology, and called data structures
throughout this thesis and also in next discussed paper [PS12]. The authors analyze serial
program traces at the whole-program level to obtain two types of reuse histograms: per
object and inter-object interference histograms. Applications are instrumented and profiled
with varying training input parameters. A polynomial curve fitting function is applied on the
obtained reuse histograms to extrapolate the reuse distances for other input parameters. By
assigning objects to cache partitions e.g. in the CG and LU benchmark of the NAS parallel
benchmarks, a cache miss and run time reduction is achieved.

Tool-based Approach for the Sector Cache

The closest related work is [PS12] by Perarnau and Sato. The authors find that making good
use of the sector cache is hard without deep knowledge about the code locality and the mem-
ory hierarchy of their considered system (SPARC64 VIIIfx processor). They develop a tool
to identify code regions that could benefit from the sector cache to simplify the optimization
of memory-intensive HPC applications when they are ported to their system. The authors
design a binary instrumentation tool to measure the locality of program data structures in
order to determine the best sector cache configuration. The locality measurement is based
on reuse distance. Application binaries are instrumented using Intel PIN [LCM+05].

To predict the cache misses in case a certain data structure is isolated from others, they
calculate two reuse distance histograms: one for addresses that belong to the data structure
and one for those outside the address range of the data structure. Reuse distance is calculated
using Olken’s algorithm [Olk81].

The user has to provide the symbol names of the considered data structures. The pro-
gram’s DWARF debugging information, which is standard debugging information format
under Linux, is used to associate memory references with the data structures.

A handcrafted 2-d multigrid solver is used for the evaluation. The multigrid method
applies a stencil kernel to matrices of varying sizes. This class of applications was chosen
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because stencil kernels are typically memory-intensive and the matrices of the multigrid
solver each have different cache size requirements for optimal reuse. The authors find that
their tool can predict a near optimal sector cache configuration, reducing the number of
cache misses up to 20%. In the follow-up paper [PS], the tool is applied to the NAS parallel
benchmarks and the sector cache is found to be beneficial to the CG and LU benchmarks.
As future work, they want to compute reuse distances for each function, instead of just the
whole-program reuse distances, in order to refine the profiling.

Sector Cache on the A64FX

In [AML+21] the authors provide an architectural analysis of the A64FX CPU and also
investigate the HPC extension features of the A64FX processor. The sector cache is applied
to dense- and sparse matrix-vector multiplication. They find that by isolating the non-
reusable matrix data in a small sector of the L2 cache, they can extend a high performance
level to larger vectors (from 2MB to 5MB) compared to execution without sector cache in
the dense matrix-vector multiplication, because data can be kept in L2. The performance
of the sparse matrix-vector multiplication was be improved up to 30%, but this strongly
depends on the input matrix.
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It is not always clear beforehand when and if the sector cache feature can improve an
application’s performance. Even the hardware manufacturer states that it is difficult to use
the sector cache function meaningfully [Fuj21b]. A method of detecting these cases can
simplify the application design or porting process. In this work, a tool-based approach is
followed and is explained in the following chapter. The metrics used to evaluate the sector
cache effectiveness and the tool are defined at the end of the chapter.

In order to gain a better understanding of the effects on performance and behavior using
the sector cache, as well as an upper limit for the potential improvement in performance,
a number of microbenchmarks are also developed. They are described and evaluated in
chapter 5.

3.1 Data Structure Interference
Let us consider the following example of a trace shown in Figure 3.1, but first let us define
terms in order to be able to explain the basic idea of data structure interference and its
application to the sector cache with the help of the reuse distance.

Definition 3. X is the set of all unique references in a trace T .

Definition 4. A data structure D ⊆ X is a subset of X.

Definition 5. The complementary data structure D is defined as X \D.

The example trace consists of references belonging to two data structures: A and B (B is
the complementary to A and vice versa in this case). The block with reference a1 is accessed
twice and the reuse distance of the second access is RD = 5. If we split the trace by data
structure into one trace containing all references to A and one trace for A, the reuse distance
of the second access to a1 is reduced to RD = 1. Accesses to B interfered (increased the
reuse distance) with accesses to A. Assuming we have a fully associative LRU cache with
space for four cache blocks, the second access to a1 would be a miss. However, if the cache
is partitioned into one partition with at least two blocks dedicated to A and one partition
with the remaining quota allocated to A, the access to a1 would be a hit and exactly such a
partitioning is possible using the sector cache. The reuse distances of B are not negatively
affected by the partitioning and the sector cache can improve the cache behaviour in this
example. The example is typical for a code region where one data structure is accessed
repeatedly (A), while other data (B) is streamed in a loop.

This leads us to the following general approach: an application’s memory trace is recorded
and for each data structure of interest, the trace is split into two traces: T (D) and T (D) and
their reuse distances are calculated. From the difference of the reuse distances, compared to
the original trace, it is possible to calculate the benefit of isolating D in a partition. The
trace can be recorded by instrumenting the application binary to obtain the application’s
reuse distance profile.
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Figure 3.1 – Data structure interference. Non-reusable data of data structure B (red) interferes
with reuse of A (green). The reuse distance of the second reference to a1 is reduced
from RD = 5 (left) to RD = 1 after extracting the accesses to A from the trace
(right).

3.2 Program Phases
The locality properties of a program typically depend on its current program phase (code
region). For example, an application might first do some initialization of data, then process
data with one algorithm and afterwards process data with another algorithm. The initial-
ization and different algorithms can have completely different access patterns and localities.
Whole program analysis would ignore this fact and it does not apply to the dynamic cache
partitioning capabilities of the sector cache, because the same partitioning that significantly
reduces cache misses in one program phase might increase the misses dramatically in an-
other. Thus, the partitioning has to be dynamically adopted according to the current phase.
It is crucial to take this into account, but defining and detecting program phases is difficult.
Program phase detection is a whole area of research [DS03] and can be supplemented by
reuse distance as shown in [SZD04].

Typically, applications are structured in functions that fulfill a certain task or implement
an algorithm, and it is reasonable to assume that each function has its own static locality
property. Throughout this work, we define one program phase for each function. The code
region granularity might be too high, or too low in some cases, but the assumption should
roughly hold.

3.3 Data Structures
Not only identifying program phases is difficult, but also determining which data structures
should be considered is challenging. In general, a data structure could be any subset of
X. But calculating the reuse distances of the split traces for each possible subset of X
(powerset P(X)) would require the stack processing of |P(X)| = 2|X| possible traces. This
is not feasible and the considered data structures must be restricted.

3.3.1 Data Structure Selection

Most virtual addresses within a trace refer to either heap-allocated memory, or to stack-
allocated memory and larger memory regions often reside on the heap. The stack usually
contains variables of basic types or small arrays. We restrict the data structures of interest
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to dynamically allocated heap memory with a size above a certain threshold. The threshold
is chosen in the order of magnitude of the smallest possible cache partition size. Ratio-
nale: most of the accesses in scientific applications are made on large dynamically allocated
memory within loops.

3.3.2 Data Structure Composition

There are cases where the simultaneous isolation of two or more heap-allocated memory
regions leads to better results compared to isolation of a single memory region.

Definition 6. The composed data structure of two data structures Di and Dj is the union
of both data structures: Dij := Di ∪Dj = Dji.

If there are ND heap-allocated memory regions, there are ND(ND − 1)/2 possible combi-
nations of them. In order to obtain their reuse distances, the number of times the stack
processing algorithm must process their split traces is in the order of O(N2

D). If ND is kept
low by preselecting data structures, this is still feasible. Stack processing of the composition
of all possible triplets of data structures already requires O(N3

D) passes. However, it is pos-
sible to obtain the reuse distances for the composition of three or more data structures with
a number of passes in the order of O(N2

D) by construction from the reuse distances of single
data structure traces and their interference with others. This was shown in [LLD+09], but
not applied in this thesis.

3.4 Optimal Cache Partitioning

Although the A64FX sector cache can in principle divide the cache into more than two
partitions, the FCC’s compiler directives only allow a maximum of two sectors to be specified.
The directives are used for the configuration, and it is also difficult to imagine when having
more than two partitions could further improve the performance of a single application.
Thus, only partitioning schemes with two partitions are considered.

A partitioning is defined by the capacities c0 and c1 of sector 0 and sector 1 respectively.
The number of cache misses given a partitioning C = (c0, c1) and isolated data structure D
can be estimated for a set-associative (pseudo-)LRU cache from the reuse distances RDD(x)
and RDD̄(x) of the split traces:

miss(C,D) =
∑

RD(x)≥c0

RDD(x) +
∑

RD(x)≥c1

RDD̄(x) (3.1)

The optimal cache partitioning w.r.t. the defined data structures is the partitioning that
minimizes the total number of cache misses:

(C,D)opt = argmin
C,D

(miss(C,D)) (3.2)

Note that one of the valid configurations is the configuration without sector cache partition-
ing: C = (cmax, 0) and D = X, D̄ = ∅.
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3.5 Metrics
Metrics are required for three different purposes in this thesis: to measure program locality,
effects due to the sector cache and the success of the tool-based approach. Program locality is
measured using the stack distance of memory references as explained in section 2.4. The effect
of the sector cache is measured based on cache misses, cache miss rate, utilized bandwidth
and the speedup due to the sector cache. The cache miss reduction (difference in cache
misses) with and without the sector cache optimization is used as a metric to measure the
success of a sector cache configuration. The tool’s predictiveness is evaluated by comparison
of the predicted and the measured number of cache misses. The total numbers of misses
are not of interest as long as they are high enough to be meaningful. Thus, the relative
error is chosen as metric to measure the predictiveness. These metrics are obtained by
instrumentation of programs, as explained in section 4.1.

The relevant performance monitoring events and derived metrics for measuring cache
performance are taken from the A64FX Microarchitectural Manual [Fuj21a] and listed below.
Due to an error in the performance monitoring unit of the A64FX, correction terms must be
applied to some of the L2 cache events. They are listed in the A64FX PMU Events Errata
document [Fuj20a] and were applied.

Performance Monitoring Events

• L1D_CACHE_REFILL / L2D_CACHE_REFILL:
Number of L1D/L2 cache misses

• L1D_CACHE_REFILL_DM / L2D_CACHE_REFILL_DM:
Number of L1D/L2 cache misses (demand)

• L1D_CACHE_REFILL_PRF / L2D_CACHE_REFILL_PRF:
Number of L1D/L2 cache misses (prefetch)

• L2D_CACHE_WB:
Number of writebacks from the L2 cache

• EFFECTIVE_INST_SPEC:
Number of committed instructions instructions

Metrics

• Bandwidth = (L2D_CACHE_REFILL + L2D_CACHE_WB) * 256 / time

• Cache miss rate = (cache misses) / EFFECTIVE_INST_SPEC

• Speedup S = t/tSC is the ratio of wall-clock run times without using the sector cache
and using the sector cache

• Relative cache miss reduction: 1− (cache misses)SC / (cache misses)

• Relative error = | 1− (cache misses)pred / (cache misses)meas |
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4 Implementation
This chapter describes the implementation of the tool designed to detect code regions where
the sector cache can improve cache behavior. The tool can be viewed in three parts: profiling,
stack processing, and reuse distance profile analysis. Profiling and stack processing are
implemented in C++ and based on the pindist tool [WB16] by Weidendorfer and Breitbart.
The implementation of each of the three parts is described in the following sections. Profiling
is also required to measure the impact of the sector cache on cache behavior.

4.1 Profiling and Instrumentation
Gathering information about a program’s behavior is called profiling and achieved by in-
strumentation. Instrumentation is an essential part of software analysis and performance
optimization. Typically, measurement probes are inserted into application code, often aug-
mented by the additional counting of hardware performance events. The actual measurement
occurs during execution of the instrumented binary and the measured metrics are recorded.
Binary instrumentation, in contrast to source instrumentation, does not require any modi-
fication of the source code [DFF+03, HW10]. Instrumentation is performed for two distinct
purposes in this thesis: to obtain the reuse distance profile of an application and for the
measurement of performance events on the A64FX.

• PAPI [MBDH99] is a source instrumentation library that enables transparent reading
of hardware performance counters across different architectures. To count the number
of performance events that occur while executing a section of code on the A64FX, the
associated hardware performance counters are measured before and after the section.

• The Intel PIN [LCM+05] binary instrumentation framework is used for the reuse
distance profile generation and explained below.

4.1.1 Intel PIN
PIN is a dynamic binary instrumentation framework that supports the IA-32, x86-64 and
MIC ISAs. Many of Intel’s profiling and analysis tools use PIN. Tools created with PIN are
called pintools and can be written in C, C++ or assembly. PIN is dynamic because it can
instrument the binary code just-in-time (JIT), right before the code is executed. User-defined
instrumentation code (analysis routines) can be inserted at different levels of granularity:
instruction, basic block, function and image granularity. The pintool programmer defines
where analysis routines are inserted using instrumentation routines of the PIN library [Int21].

PIN can run in two different modes: JIT mode and probe mode. In probe mode, the
application and the replacement routines are run natively. This can improve performance
compared to JIT mode, but instrumentation is possible only at image and function granular-
ity. JIT mode, on the other hand, allows instrumentation at finer granularity. The input to
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PIN is the application binary image, but the actual application’s instructions never get exe-
cuted in JIT mode. Instead, the application runs in a virtual machine (VM) where the JIT
compiler repeatedly fetches chunks of code from the binary to generate new instrumented
code from it. The instrumented code is cached for reuse and executed by the dispatcher as
illustrated in Figure 4.1 [Int15, Int21].
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Figure 4.1 – PIN software architecture.
Taken from [Int15, Fig 2.]

The application, PIN library and pintool share the same address space, but do not share
any libraries. In particular, each part uses its own copy of glibc [Int15]. PIN also sup-
ports multi-threading. Application threads execute instrumented code in parallel and must
be synchronized if required. Limited access to the symbol and debug information of the
application image is also available [Int21].

4.1.2 Memory Instructions
Instrumentation of memory instructions is required to obtain their addresses as input to
the stack processing algorithm. The instrumentation is performed in JIT-mode, because
instruction granularity is required. Calls to an analysis routine performing the stack pro-
cessing are inserted before every memory instruction. Write instructions within the binary,
for instance, are identified using the instrumentation routine INS_MemoryOperandIsWritten
. The insertion of the analysis routine is performed using the instrumentation routine
INS_InsertPredicatedCall. The address and size of the memory access is obtained using the
instrumentation routines INS_MemoryOperandCount and INS_MemoryOperandSize.

There are two general approaches: either the whole memory trace is recorded first and
processed afterwards (offline), or each memory reference is processed while the instrumented
application is running (online). An advantage of offline processing is that the trace can be
processed multiple times without recording the trace another time and that recording the
trace of individual threads can be performed without thread synchronization. However, the
references must be interleaved in a meaningful way to calculate concurrent reuse distance and
synchronization points must be inserted and recorded to be able to reconstruct the thread
timing. This is one example of a major disadvantage of processing offline: all the required
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metadata besides the order, address and size of memory references must also be recorded.
The trace processing was decided online. For performance reasons, however, this decision
should be carefully reconsidered. Sampling of references at the cost of accuracy can also be
considered to improve performance [SKP10].

Thread Interleaving

When the trace is processed online using multiple threads, they must act on shared global
data (hash map and linked list) of the chosen stack processing algorithm (see section 4.2).
Their accesses must be synchronized to keep consistency and correctness. The analysis
routines and the synchronization can influence the total order of threads. A simple approach
would be to not pay any attention to the ordering. But the resulting calculated concurrent
reuse distance from the interleaved trace may be meaningless.

In this thesis, an interleaving of one memory instruction per thread is chosen. Other
interleaving schemes are proposed e.g. in [SPP10]. The interleaving is implemented using
a cyclic queue-based spinlock that leads to a round-robin scheduling of the threads when
locked and unlocked before and after each memory instruction (critical section). Because
PIN does not provide an implementation of the C++ atomic library, the C atomic library
is used instead. Applying the lock slows down the instrumented application. For example,
using 12 threads, a slowdown of ≈ x10 was measured compared to sequential execution.

4.1.3 Data Structures

Only heap-allocated data structures above a certain size (5KB) are considered, as reasoned in
section 3.3. The tool identifies heap-allocated memory by replacing the C standard memory
allocation functions such as malloc or calloc with an analysis routine. Within the analysis
routine, the original function is invoked and the line of code, return pointer and size of each
dynamic memory allocation are stored. Whether or not a reference belongs to a particular
data structure can be determined by checking whether its virtual address is in the range
of the starting address and the starting address plus the size of the memory allocation.
When a cache line is shared between two distinct data structures, it is assigned to the first
data structure that accessed it. The function replacement is be implemented with PIN by
searching the C standard library image for names using RTN_FindByName and replacing the
functions using RTN_ReplaceSignature.

4.1.4 Program Phases

As described in section 3.2, each function is assigned a program phase. When loading the
application image via PIN, the application image sections are searched for functions and
each function is instrumented by inserting calls at the entry and exit of the function (see
Listing 4.1).

Storage is allocated for reuse distance counts of each code region. When a code region
enters or exits, a snapshot of the current global reuse distances is taken. The difference
in global reuse distance counts before and after the region is the number of accesses made
within the region and their associated reuse distances. The differences are accumulated at
each region exit.
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A region can be traversed multiple times and include other regions. For example, the
main function includes all other regions. In case function-granularity is inappropriate, it is
possible to create a custom code region by marking the begin and end in the source code.
1 i f ( IMG_IsMainExecutable ( img ) )
2 // loop over a l l s e c t i o n s in the image :
3 f o r (SEC sec = IMG_SecHead( img ) ; SEC_Valid ( s ec ) ; s e c = SEC_Next( s ec ) ) {
4 // sk ip non−executab l e s e c t i o n s :
5 i f (SEC_TYPE_EXEC != SEC_Type( sec ) ) cont inue ;
6 // loop over a l l f un c t i on s in the s e c t i o n :
7 f o r (RTN rtn = SEC_RtnHead( sec ) ; RTN_Valid( rtn ) ; r tn = RTN_Next( rtn ) ) {
8 RTN_InsertCall ( rtn , IPOINT_BEFORE, . . . ) ; // on entry
9 RTN_InsertCall ( rtn , IPOINT_AFTER, . . . ) ; // on e x i t

10 } }
Listing 4.1 – Searching an application image and inserting analysis routine calls to other

functions using PIN.

4.2 Stack Processing Algorithm
The exact reuse distance of memory references might not be always of interest. To be able
to infer if a memory access is a cache miss, it is sufficient to determine if its reuse distance
is below or above the cache capacity. The markers algorithm, described in [ACP02], can be
modified to efficiently determine a range of the reuse distance of a memory access instead
of its exact value, as shown in [KHW91]. The resolution of the resulting reuse distance
histogram decreases, but as an advantage and in contrast to most other stack processing
algorithms, the time complexity of the count phase is independent of the memory trace’s
locality and only proportional to the constant resolution R. The time complexity for the
stack processing of the whole trace is then proportional to the length of the trace times the
resolution (O(|T |·R)), because the search phase and update phase can be performed in O
operations (see subsection 4.2.2). Exact tree-based algorithms, such as [Olk81], have time
complexity of O(|T | · logD), where D is the (locality-dependent) mean stack distance.

In the modified markers algorithm of [KHW91], the space of reuse distances is divided into
a sequence of n ranges (buckets). Each bucket Bi is defined by its minimum reuse distance
mini. mini+1 is the minimum reuse distance of the bucket with the next higher reuse distance
Bi+1 in the sequence. All accesses with reuse distance mini ≤ RD(x) < mini+1 are assigned
to bucket Bi. The last bucket in the sequence has infinite minimum reuse distance and
accounts for compulsory misses. Algorithm 2 shows pseudo-code of the algorithm described
in [KHW91]. The algorithm was also implemented in [WB16] and the implementation of the
authors is used as base for the implementation in thesis.

4.2.1 Data Structure Interference Detection
To detect data structure interference, Algorithm 2 is applied to the split trace of each
considered data structure. Two stacks for each data structure are maintained instead of a
single stack. This essentially simulates the cache behavior of a partitioned fully associative
LRU cache for the isolation of each data structure. The extension is shown in Algorithm 3
as pseudo-code. For performance reasons, accesses referencing the same cache line as the
previous reference (zero reuse distance) are ignored. They do not alter the stack because
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Algorithm 2 Markers algorithm with reuse distance buckets
1: stack ← ∅
2: markers[. . .]← ∅
3: buckets[. . .]← 0
4: next_bucket← 1
5: for all memory references x in T do
6: if x /∈ stack then
7: insert_top(stack, x)
8: if stack.size = markers[next_bucket].distance then
9: markers[next_bucket].position← stack.end ▷ activate new marker

10: next_bucket← next_bucket+ 1
11: end if
12: increment_buckets(markers.position) ▷ stack elements sliding above marker
13: buckets[∞]← buckets[∞] + 1 ▷ (count phase)
14: else
15: remove(stack, x)
16: insert_top(stack, x)
17: buckets[x.bucket]← buckets[x.bucket] + 1 ▷ read bucket of access (count phase)
18: x.bucket← 0
19: end if
20: end for

the reference’s cache line must be already on top of the stack and they do not contribute to
cache misses.

The output of Algorithm 3 is the reuse distance buckets of the split traces for each data
structure and is stored with additional metadata in csv-format. The buckets minimum
distances are set according to the possible cache partition capacities of the L1D and L2
caches of the A64FX.

4.2.2 Search Phase
The search phase is implemented using the unordered hash map of the C++ standard library
with the block addresses of the references as the key and the iterators within the LRU stacks
as values. When a reference is made, the hash map is searched for the block address, and if
found, its iterators are retrieved as a vector. A new entry in the map is made if it was not
found. Given enough hash buckets, hash table access and update require O(1) operations.
The number of necessary hash buckets can be approximated with |X|, the number of distinct
references in the trace [ACP02].

Since only the block address of the references is used as the key, and the block offset
is masked, the last bits of the keys are always zero. This leads to a poor mapping of the
hash function to hash buckets using the default C++ hash function for pointers, because
the keys are always multiples of the offset length. Therefore, the hash function is replaced
by a user-defined hash function which first shifts the reference’s block address to the right
by the number of bits of the offset length. This significantly speeds up the table lookup
compared to using the default hash function. The authors of [KHW91] use the hash function
bucket = (block address)MOD(hash table size).
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Algorithm 3 Extension to the markers algorithm for data structure interference detection.
stacksD[. . .]← ∅
stacksD̄[. . .]← ∅
[...] ▷ same as Algorithm 2 line 2-4 with separate variables for D and D

last ← 0
for all memory references x ∈ T do

if last = x then ▷ x maps to the same cache line as the previous reference
continue

end if
last ← x
for all data structures D do

if x ∈ D then
[...] ▷ same as Algorithm 2 line 6 with stack = stacksD[D]

else
[...] ▷ same as Algorithm 2 line 6 with stack = stacksD̄[D]

end if
end for

end for

4.3 Reuse Distance Profile Analysis
During analysis, a recommended sector cache configuration and isolated data structure is
calculated from the reuse distance profile for each code region. To identify the symbol name
of the data structure, it is annotated with the file name and line number where the memory
is allocated in source code. In addition, the predicted cache miss reduction and number
of cache misses using the recommended sector cache configuration as well as the predicted
number of cache misses without using the sector cache are calculated. The best sector
cache configuration for each code region is found by a simple brute-force search on the reuse
distance profile for all possible configurations. A reuse distance histogram can be created
for manual inspection of the locality properties (see Figure 5.5 for an example).

The recommendation is then used to modify the source code accordingly. Whether the
configuration results in better cache behavior and whether the measured cache metrics are
close to the predicted values is evaluated by profiling the modified program on the A64FX.
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The sector cache on the A64FX is a relatively understudied hardware feature. In order to
gain a better understanding of specific hardware behaviors using the sector cache, isolated
from the noise normally introduced in real programs, a set of minimal artificial computational
kernels (microbenchmarks) is first developed. The kernel’s source code is instrumented to
measure relevant occurring performance events and the obtained profile is analyzed.

The developed tool serves to indicate opportunities for the application of the sector cache
in real-world programs. The NAS parallel benchmarks [BBB+91] were decided to evaluate
the tool and to furthermore the sector cache. There is an implementation of PIN for ARM
ISAs [HK06], but to the best of our knowledge it is no longer supported. Therefore an x86-
binary serves as input to the pintool to record the reuse distance profiles of the benchmarks.
If the analysis indicates an advantage using the sector cache, the source code is modified
accordingly. The original and modified source code are instrumented and compiled using
FCC to be run on the A64FX. The resulting performance metrics of the modified code are
then compared against the tool’s predictions and the performance metrics of the original
code.

5.1 Experimental Setup
Two systems are used in this work: the A64FX processor is used for measurements concerning
the sector cache and the x86-based 64-core AMD Epyc 7742 processor is used to record
reuse distance profiles. Because we wanted to exclude NUMA-effects, we used at most 12
cores because there are 12 cores grouped in each of the four available CMGs on the A64FX.
Thread pinning and placement is enforced using OpenMP [DM98] by setting the environment
variables OMP_PROC_BIND=close and OMP_PLACES=cores on both systems. On the
A64FX, they must be set close and cores anyways, otherwise the L2 sector cache becomes
ineffective in parallel execution using the Fujitsu sector cache library.

Microbenchmarks are repeated such that each measurement takes at least one second and
the number of repetitions, total run time as well as the performance events that have
occurred are recorded. The memory allocations are aligned at page boundaries.

Reuse distance profiles are recorded using 1 and 12 threads, but only once because of the
instrumentation overhead.

NAS parallel benchmark measurements are repeated 10 times and the mean and standard
deviation of the run time as well as the performance events that have occurred are
recorded.

A64FX Setup
The sector cache measurements are performed on the A64FX processor. The bina-
ries for execution on the A64FX are compiled using FCC 4.5.0 in “trad mode” us-
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ing the compiler flags -Kfast -Kopenmp -Kocl. -Kfast sets the highest possible op-
timization level and also enables the HPC tag address override. -Kocl must be set
to configure the Fujitsu HPC extensions using FCC, otherwise the compiler ignores
the Fujitsu-specific compiler directives (OCLs). -Kopenmp is set to use the Fujitsu
OpenMP library for multi-threading. However, even for single-threaded execution
-Kopenmp must be set for the L2 sector cache to become effective. This is not doc-
umented in the FCC manual [Fuj21b] and found by experiment. In addition, the
environment variables FLIB_HPCFUNC=true and FLIB_SCCR_CNTL=true/false
are set to enable and disable the sector cache function. The Fujitsu huge page li-
brary [Fuj21b] with a page size of 2MiB is used by setting the environment variable
XOS_MMM_L_HPAGE_TYPE=hugetlbfs. PAPI v6.0.0.4 is used to access the hard-
ware performance counters.

AMD Epyc Setup
The binaries for the reuse distance profile recording are compiled using gcc v7.5.0 using
the compiler flags -O1 -g -fnoinline. The optimization level is set to -O1 to prevent the
compiler from merging dynamic memory allocations. Otherwise, memory allocation
code lines retrieved by PIN may differ from the line in source code. -g and -fnoinline are
required to access debug symbols and to prevent the compiler from function inlining.
The function entry and exit of inlined functions cannot be instrumented using PIN.
The pintool is linked with the PIN library v3.19 for the binary instrumentation.

5.2 Microbenchmarks
To better understand how much performance can potentially be gained under which circum-
stances using the sector cache, we performed measurements on two artificial kernels. They
represent the two simplest cases we can think of where the sector cache can contribute to a
speedup of the application:

1. Access reusable data, then access non-reusable data long enough to evict most of the
reusable data from cache in a loop (Kernel1).

2. Access reusable data while accessing non-reusable data in a loop (Kernel2).

The access pattern is chosen sequential in both cases to enable autovectorization, spatial
locality and hardware prefetching. This resembles the typical access pattern of many scien-
tific applications. Other results may be observed when there is indirection in the accesses or
when the access pattern (e.g. random) cannot be predicted by the prefetcher. The effect of
vectorization is discussed at the end of this section using Kernel2 as an example.

5.2.1 Kernel1 - Alternating Access
Kernel1 accesses two arrays a and b alternately in an inner loop. a is reused in every iteration
of the outer loop. b is a large array with streaming access and never reused (see Listing 5.1).
The size of a (na) is chosen in the order of magnitude of the largest possible L1D or L2 cache
partition capacity respectively. This is expected to have the maximum positive effect when
a is isolated. The L1D partition size is 3 cache ways (48KiB) and the L2 partition size is 14
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cache ways (7MiB). The number of subsequent accesses to b (nb) is varied from few accesses
up to a number of accesses large enough to evict most of a, if a is not isolated in a partition
separate from b.
1 #pragma procedure s cache_i so l a t e_as s i gn a
2 f o r ( i n t i t e r = 0 ; i t e r < NITER; i t e r++) {
3 // ac c e s s a
4 f o r ( i n t i = 0 ; i < na ; i++) a [ i ] += a [ i ] ;
5 // e v i c t a from cache by a c c e s s i n g non−reu sab l e b
6 f o r ( i n t i = 0 ; i < nb ; i++) b [ i t e r ∗nb + i ] += b [ i t e r ∗nb + i ] ;
7 }

Listing 5.1 – Kernel1: alternating access to reusable data (a) and non-reusable data (b).

Expected Behaviour

The sector cache is expected to improve performance when na + nb > C. To be specific:
when nb > 16KiB for the L1D cache and when nb > 1MiB for the L2 cache. Leaving out
prefetching, there are two contrary effects: the amount of data from a that is driven out of
the cache before a gets reused increases with nb. This leads to an increase of the advantage
by isolating a in a sector with increasing nb. On the other hand, the time where a is unused
also increases with nb, compensating the positive effect of isolating a at some point for large
enough nb. This is expected to lead to a peak in the speedup and diminishing returns for
nb→∞.

Performance

Figure 5.1 shows the performance and cache miss rate due to prefetching of Kernel1 for
three different values of na without sector cache and when isolating array a, as well as the
resulting speedup due to the sector cache. The L1D cache is shown on the left, the L2 cache
is shown on the right.

The L1D cache behaves as expected: from nb > 16KiB, the performance without sector
cache decreases because cache misses begin to occur when na + nb > C. This is where the
sector cache starts improving performance. The speedup reaches a peak at nb = 30KiB with
a maximum value of SL1D = 1.449 when na is equal to the sector size. When na is above or
below the sector size, the advantage decreases.

The L2 cache behaves different: the performance without using the sector cache even
increases when more cache misses occur at na+nb > C. At this point, as can be seen from the
cache miss rates, the prefetcher starts to recognize the streaming access pattern to a and b and
the demand miss rate vanishes. The performance using the sector cache, on the other hand,
remains at a consistently high level regardless of nb. The effect on performance due to the
sector cache can only be observed for values of nb where the prefetch mechanism constantly
detects the streaming access pattern and thereby avoids demand misses. This is the case
from nb >2000KiB where a maximum speedup of SL2 = 1.025 is observed when na is about
equal to the sector size (7100KiB). If na is just over the sector size at 7400KiB, performance
is even worse when using the sector cache. Conversely, if na is significantly larger than the
sector size at 7700KiB, the sector cache will not improve or degrade performance. Observing
the cache miss rates reveals the reason. If na is just slightly larger than the sector size, the

37



5 Evaluation

4

5

6

7

GF
LO

Ps
No

Se
ct

or
Ca

ch
e

L1D Cache (Sector size: 48KiB)

na [KiB]
44 48 50

3.0

3.5

4.0

4.5
L2 Cache (Sector size: 7168KiB)

na [KiB]
7100 7400 7700

4

5

6

7

GF
LO

Ps
Se

ct
or

Ca
ch

e

3.0

3.5

4.0

4.5

1.0

1.2

1.4

Sp
ee

du
p

0.95

1.00

1.05

0

2

4

6

M
iss

Ra
te

(P
re

fe
tc

h)
[m

iss
es

pe
ri

ns
tr.

]

1e−2

no SC
SC

16 32 48 64
nb [KiB]

0

1

2

3

4

M
iss

Ra
te

(D
em

an
d)

[m
iss

es
pe

ri
ns

tr.
]

1e−3

500 1000 1500 2000 2500 3000
nb [KiB]

0

1

2

3

41e−3 0

2

4

6

1e−2

Figure 5.1 – Performance, speedup, and cache miss rate of Kernel1 without using the sector
cache and using the sector cache with maximum partition sizes for the L1D cache
and L2 cache. The size of the reusable data a is set close to the partition size.

prefetcher is not fully effective and does not completely avoid demand misses. However, if
na is significantly larger than the sector size, the prefetcher becomes fully effective.

Summary

1. Maximum measured speedup for alternating access to reusable and non-reusable data
(Kernel1) was SL1D = 1.449 , SL2 = 1.025.

2. Best speedup is achieved when the size of the reusable data matches the sector capacity
and its size should not be above the sector capacity.

5.2.2 Kernel2 - Simultaneous Access
Kernel2 accesses two arrays – a and b – simultaneously in an inner loop (see Listing 5.2).
The whole array a and a section of b is accessed in each iteration of the outer loop. The
sections of b are never reused and each section has the same size as a. The size of a is chosen
in the order of magnitude of the L1D and L2 cache capacity respectively. Array a is isolated
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in a sector of varying capacity. Array b does not fit into any of the cache levels (nb = 0.5GB)
and must be fetched from memory. But it is still small enough to avoid NUMA-effects.
1 #pragma procedure s cache_i so l a t e_as s i gn a // i s o l a t e a
2 f o r ( i n t i t e r = 0 ; i t e r < NITER; i t e r++) {
3 /∗ #pragma omp f o r ∗/
4 f o r ( i n t i = 0 ; i < na ; i++) {
5 a [ i ] += a [ i ] ;
6 b [ i t e r ∗na + i ] += b [ i t e r ∗na + i ] ;
7 } }

Listing 5.2 – Kernel2: simultaneous access to reusable data (a) and non-reusable data (b).

Expected Behaviour

Let us assume a fully associative LRU cache with capacity C without partitioning. In this
case, data from a will not be replaced with data from itself or data from b as long as na ≤ C/2
holds since data from the arrays is loaded in equal shares in each iteration. An increase in the
cache miss rate is expected when na > C/2 without the sector cache. Using the sector cache,
the cache miss rate is expected to increase once the size of a exceeds the sector capacity.

Sequential Performance

Figure 5.2 shows the performance and cache miss rates due to demand misses and prefetch
misses of Kernel2 for several partitioning schemes in sequential execution and in dependence
of the size of a. The x-axis shows the size of a and is chosen in units of cache ways. na is
also referenced in units of cache ways in the following (CL1D = 4, CL2 = 16).

Let us first consider the kernel’s behaviour without sector cache. The L1D cache be-
haviour is as expected: when na ≈ 2, the demand miss rate increases and the performance
decreases. The prefetcher, which was already active for array b, becomes active for array
a as well and the prefetch miss rate doubles. However, the demand miss rate does vanish
completely. The L2 cache behaviour differs from expectation: the demand miss rate in-
creases already once na > 6 holds. This indicates a different replacement policy than LRU.
Performance drops by up to 20% once na > 6, but as soon as the prefetcher becomes fully
effective, the demand miss rate vanishes and performance returns to its previous level.

The L1D sector cache can extend the high performance level up to na = 3 using 3 cache
ways. The L2 sector cache has no considerable effect on performance in sequential execution.
Nevertheless, the cache miss rate can be kept at a lower level for larger na.

Parallel Performance

The inner loop of Kernel2 is parallelized to measure the impact on performance due to the
sector cache when contention on shared resources increases. Figure 5.3 shows the perfor-
mance, speedup and bandwidth of Kernel2 using multiple cores.

The performance behaviour using 2 cores is the same as for single-threaded execution. The
“speedup” peaks using 1-2 cores result from prefetching, as previously discussed. However,
using 4 cores, the bandwidth is saturated once a must be fetched from memory and the
sector cache can improve performance. The effect increases with the number of active cores
up to 8 cores. Using more than 8 cores does not improve performance or speedup any further

39



5 Evaluation

4.0

4.5

5.0

5.5

6.0

GF
LO

Ps

L1D Cache

L1 ways
no sc
1
2
3

L2 Cache

L2 ways
no sc
2

4
8

12
14

1 2 3 4
na [L1 ways]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
iss

Ra
te

(D
em

an
d)

[m
iss

es
pe

ri
ns

tr.
]

1e−2

2 4 6 8 10 12 14 16
na [L2 ways]

Prefetch
Demand

0

1

2

3

4

5

6

7

(P
re

fe
tc

h)

1e−2

Figure 5.2 – Performance and cache miss rate of Kernel2 in sequential execution for varying
partition sizes. The x-axis is in units of cache ways (L1D cache has 64KiB and 4
ways; L2 cache has 8MiB and 16 ways).

because the bandwidth is already saturated using 8 or more cores, even when a can be kept
in the L2 cache.

Summary

1. Maximum measured speedup due to the L1D sector cache in serial execution with
simultaneous accesses to reusable and non-reusable data was SL1D = 1.23.

2. The L2 sector cache does not improve performance for Kernel2 in sequential execution
using the huge page library.

3. The performance can benefit most from the L2 sector cache in memory-intensive paral-
lel kernels because the L2 sector cache reduces the amount of contention to bandwidth.

4. Maximummeasured speedup in parallel execution with simultaneous accesses to reusable
and non-reusable data was SL2 = 1.95 using at least 8 cores.

Vectorization

In this experiment, an autovectorized and unvectorized version (compiled with the additional
flag -Knosimd) of Kernel2 are compared. The size of the reusable data is set to values that
were proven to result in a high speedup during the previous experiments. The size of a
(44KiB and 6000KiB) is set slightly below the chosen partition sizes for a (48KiB and
6MiB). Because each core has a private L1D cache, the size of a is scaled with the number
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and 16 ways).

of active cores for the L1D measurement. To avoid bandwidth saturation effects during the
L1D experiment using multiple cores, nb is set to 6000KiB. That way, a and b both fit into
L2 cache. False sharing is avoided by data alignment.

Figure 5.4 shows the sector cache speedup and cache miss reduction for the L1D cache on
the left and for the L2 cache on the right. The number of cache misses (not shown in the
graph) and the cache miss reduction does not depend on the vectorization. The speedup
for the L1D cache is roughly independent of the number of active cores, but higher using
vectorized code. However, the L2 speedup of the unvectorized code is negligible, except once
the contention to the bandwidth is high using 12 cores. In contrast, the performance of the
vectorized code does profit from the L2 sector cache using 3 or more threads. The maximum
speedup of factor 2 makes sense: if the contention to the bandwidth is the bottleneck and
the cache miss reduction is 50%, the performance can double. The conclusion is that code
must be “fast” (memory-intensive) to improve the performance with the L2 sector cache.
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5.3 Evaluation of the Tool-based Approach

To evaluate the tool-based approach, we performed a proof of concept on the Dense Matrix
Transposed Vector Multiplication (DMTVM) from [AML+21] and selected the NAS parallel
benchmarks for further evaluations. The NAS benchmarks are well accepted among other
scientists and they offer a wide spectrum of typical HPC applications. The original NAS
benchmarks are written in Fortran. Because the tool was designed to identify data structures
by replacing the C standard dynamic memory allocation functions, a fairly recent C++
implementation [LGM+21] was chosen. The implementation supports serial execution and,
among other parallel programming models, an OpenMP implementation. The working set
data can be allocated with the C dynamic memory allocation functions without further
modification of the code. Since the profiling involves a huge overhead, the iteration count
was decreased to achieve shorter run times during profiling. This does not change the locality
of the applications.

Eight benchmarks are included in the NAS parallel benchmarks: BT, CG, EP, IS, LU,
FT, MG, SP, and seven different working set sizes: S, W, A, B, C, D, E (ascending order).
We instrumented the benchmarks with working set sizes from A up to C and evaluated
them, using the recommended sector cache configuration. Class S and W have very small
working set sizes and Class D and E have a memory requirement exceeding the available
memory (32GB) of a single A64FX compute node for some of the benchmarks. The EP
(Embarrassingly Parallel) and IS (Integer Sort) benchmarks showed no temporal locality.
The tool also did not predict any considerable advantage using the sector cache for the BT
(Block Tri-diagonal solver) and SP (Scalar Penta-diagonal solver) benchmarks. For the FT
(3D fast Fourier Transform) benchmark, the tool predicted ≈ 10% L1D cache miss reduction
using the sector cache, but the measurements showed no effect. Those benchmarks are not
further discussed.

As shown in the previous section, the benefit of the sector cache strongly depends on the
working set size. When the tool detects a code region where the sector cache may improve
performance for one input size, it most likely cannot be applied to other input sizes. The
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same applies to the parallelized OpenMP versions, since reuse distances may change due
to parallelization. The benchmarks with their corresponding class where the tool detected
beneficial code regions are discussed in this section. Most benchmarks and problem classes
showed no benefit from using of the sector cache. However, the tool has indicated that
the sector cache brings a benefit in the benchmarks CG, MG and LU. They are discussed
below. The code of the loop responsible for most cache misses is shown if it is not too long.

5.3.1 Proof of Concept
DMTVM was chosen to verify the tool, because the authors of the paper [AML+21] showed
that the multiplication performance can be improved with the sector cache for certain sizes
of the result vector. It is similar to Kernel2 and simple enough to illustrate the approach.

There are three functions and three data structures in the application: the main function,
the init function where the data structures are initialized, and dmtvm, where the multipli-
cation takes place. The multiplication operates on the input matrix m, the multiplicand
vector b and stores the result in the vector x. The code of the function dmtvm is shown in
Listing 5.3. x is reused in every row of the multiplication, m is streamed and never reused
and b can be ignored regarding memory accesses, because only one element of b is loaded
per row. m interferes with the reuse of x and doubles the reuse distances of accesses to x,
because equal amounts of data from x and m are required during the calculation of each
row.
1 #pragma procedure s cache_i so l a t e_as s i gn m
2 /∗ #pragma omp f o r ∗/
3 f o r ( i n t i = 0 ; i < nrow ; ++i ) {
4 f o r ( i n t j = 0 ; j < nco l ; ++j ) {
5 x [ j ] += m[ i ∗ nco l + j ] ∗ b [ i ] ;
6 }}

Listing 5.3 – DMTVM code based on [AML+21].

Figure 5.5 shows the output of the profiling as reuse distance histograms. Instead of
a single reuse distance histogram, we obtain one reuse distance histogram for each data
structure – namely b, x, m and the global address space. Because only the file and line
of code of the memory allocation is obtained during instrumentation, the identifier of the
variables is inserted manually for the sake of clarity. The number of the double precision
floating-point matrix rows is set to 500 and the number of columns is set to 5000. This
leads to the sizes of sizeof(b) = 4KB, sizeof(x) = 40KB and sizeof(m) = 20MB. Thus, x can
fit in 3 ways of the L1D cache and m does not fit in the L2 cache. In the main function
(third row), accesses to the global address space (first column) have only reuse distances
higher than the L1D capacity. The accesses with RD(x) = ∞ are attributable to the init
function (second row) and are compulsory misses. Accesses with other reuse distances occur
during the multiplication (first row). Isolating b (second column) does not change the reuse
distances and can be omitted as option. Isolating x (third column) shifts the reuse distances
of accesses to x (blue) below the L1D capacity between 32KiB ≤ RD(x) < 48KiB. Other
accesses (orange) are not negatively affected. This is exactly as expected, because x is
reused frequently and sizeof(x) = 40KB. The isolation of m (fourth column) shifts the reuse
distances of accesses to its complementary data structure below the L1D cache capacity.

The output of the analysis is shown Table 5.1. Again, identifiers are inserted manually for
clarity. The optimal sector cache configuration is the isolation of m in the smallest possible
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Figure 5.5 – Reuse distance histograms of the DMTVM data structure split traces.

Table 5.1 – Tool’s output of the sector cache configuration for DMTVM. The number of L1D
cache misses can be reduced significantly by isolating m in the function dmtvm in
a partition with quota of one cache way.

region data struct cache level nways misses sc misses nosc reduction [%]
main m 1 1 156824 236875 33.79
main m 2 2 156583 157742 0.73
dmtvm m 1 1 78447 157277 50.12
dmtvm m 2 2 78237 78450 0.27

sector of each cache level and halves the L1D misses when applied. This is again as expected,
because half of the accesses are made to x which can be reused when it is isolated from the
interfering accesses to m. Isolating m in a small sector slightly decreases the cache misses
compared to isolating x in a sector of appropriate size, because it has a minor positive affect
on the reuse of b. The configuration has been applied and the measurements of the L1D
and L2 misses on the A64FX are in line with the predictions of the tool. The measured L2
misses in the dmtvm function remained unchanged at around 80000 when the sector cache
was applied. On the other hand, the measured L1D misses went down from 142000 to 81000.

Similar results could be observed for the L2 cache partitioning. The reuse distance his-
togram did not change much in parallel execution, because the threads share the work on
the result vector and the entire vector is used in every row. The sequential configuration, in
which non-reusable data is isolated in a sector with minimum capacity, can also be applied
to the parallel execution.
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5.3.2 CG

CG is a conjugate gradient program spending most of its time in the function conj_grad on
a sparse matrix-vector multiplication: q = a ·p. q and p are dense vectors and a is the sparse
matrix stored in Compressed Row Storage (CRS) format. The code is shown in Listing 5.4.
rowstr and colidx are the row and column index arrays.
1 #pragma procedure s cache_i so l a t e_as s i gn a , c o l i dx
2 f o r ( j = 0 ; j < las t row − f i r s t r ow + 1 ; j++){
3 suml = 0 . 0 ;
4 f o r ( k = rowstr [ j ] ; k < rowstr [ j +1] ; k++){
5 suml += a [ k ] ∗ p [ c o l i dx [ k ] ] ;
6 }
7 q [ j ] = suml ;
8 }

Listing 5.4 – Sparse matrix-vector multiplication in the function conj_grad of the CG
benchmark in the NAS parallel benchmarks.

Table 5.2 shows the tool’s recommended sector cache configuration of the CG benchmark
class C using 1 or 12 threads. It is found that isolating colidx and a in a minimal cache space
of the L2 cache (2 ways) is the best option. This prevents the reusable vectors q and p from
being thrashed by the streaming access to colidx and a, and is in line with the findings of
other researchers for sparse matrix-vector multiplications e.g. in [LLD+09] and [AML+21].

Table 5.2 – Average measured and predicted L2 cache miss reduction using the sector cache in
the function conj_grad of the CG benchmark Class C.

region class cores data struct L2 ways reduction m. [%] reduction p. [%]
conj_grad C 1 a, colidx 2 0.92 1.37
conj_grad C 12 a, colidx 2 1.25 1.23

Performance Results

Figure 5.6a shows the measured L2 cache misses, run time and bandwidth of the CG bench-
mark with and without using the sector cache optimization and varying number of cores.
Note that the y-axis for the L2 misses does not start at zero, so the sector cache effect
becomes visible. The predicted and measured L2 cache miss reduction is just ≈ 1% and the
run time did not improve – the utilized bandwidth is far below the available bandwidth of
the HBM. Nevertheless, the tool’s prediction fits the measurement and the sector cache was
effective.

Using the same configuration leads to a cache miss reduction in case of the CG benchmark,
regardless of the number of threads. The optimization by isolating low temporal locality
data in a minimal cache space also applies to multiple threads. Another matrix layout may
lead to higher improvements for sparse matrix-vector multiplications as recently shown in
[AML+21].
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Figure 5.6 – L2 misses, run time and bandwidth using the same sector cache configuration and
varying number of cores.

5.3.3 LU

LU is a lower-upper Gauss-Seidel solver, spending most of the time in the function ssor.
A variety of other functions is invoked in ssor and the codes are too long to be shown
or analyzed. Applying the sector cache based on the tool’s recommendation was quite
tedious. The pointers to the heap allocations are passed as function arguments multiple
times. They have to be marked as isolated in the invoked function implementations with their
corresponding identifier. This is error-prone, when the argument list is long and the identifier
within the invoked function does not match the identifier within the calling function.

However, the tool predicts that the number of L2 misses can be reduced in class B and C
by 45% and 14% respectively in sequential execution and in class C by by 38% and 17% using
12 threads. For class C, the isolated data structures and optimal sector cache configurations
differ depending on the number of cores and input size, as shown in Table 5.3. For class B the
optimal sector cache configuration is the same using 1 or 12 threads because, as previously
in the CG benchmark, data with low temporal locality is isolated in a minimal cache space.

Table 5.3 – Average measured and predicted L2 cache miss reduction using the sector cache in
the function ssor of the LU benchmark.

region class cores data struct L2 ways reduction m. [%] reduction p. [%]
ssor B 1 u, b 2 18.18 45.37
ssor B 12 u, b 2 17.88 38.24
ssor C 1 rsd, b 13 8.94 14.29
ssor C 12 rsd, a 13 - 16.84
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Performance Results

Figure 5.6b shows the measured L2 cache misses, run time and bandwidth of the LU bench-
mark class B with and without using the sector cache optimization and varying number of
cores. The optimization is effective, independent of the number of threads. This was not
true for the configuration used in class C. In fact, applying the sector cache in class C using
12 threads even increased the number of L2 cache misses. The measurement significantly
differs from the predicted cache miss reduction. However, the tool could not make an ac-
curate prediction on the number of cache misses in the first place. These inaccuracies are
discussed at the end of this section.

5.3.4 MG
MG is a 3-dimensional multi-grid method on a sequence of meshes. Most of the time is
spent in the function mg3P in calls to the functions resid and psinv within a loop. resid
computes the residual: r = v − Au. psinv applies an approximate inverse as smoother:
u = u + Cr. Both functions perform similar stencil operations on the 3-dimensional grids
with two inner loops iterating over the x-direction. The second inner loops of the functions
do not autovectorize with FCC and are vectorized using a compiler directive. This does
not invalidate the computation. The outermost loop iterates over the z-direction and is
parallelized. The code for resid is shown in Listing 5.5.
1 #pragma procedure s cache_i so l a t e_as s i gn u
2 double u1 [M] , u2 [M] ;
3 #pragma omp f o r
4 f o r ( i 3 = 1 ; i 3 < n3−1; i 3++){
5 f o r ( i 2 = 1 ; i 2 < n2−1; i 2++){
6 f o r ( i 1 = 0 ; i 1 < n1 ; i 1++){ // does au tov e c t o r i z e
7 u1 [ i 1 ] = u [ i 3 ] [ i2 −1] [ i 1 ] + u [ i 3 ] [ i 2 +1] [ i 1 ]
8 + u [ i3 −1] [ i 2 ] [ i 1 ] + u [ i 3 +1] [ i 2 ] [ i 1 ] ;
9 u2 [ i 1 ] = u [ i3 −1] [ i2 −1] [ i 1 ] + u [ i3 −1] [ i 2 +1] [ i 1 ]

10 + u [ i 3 +1] [ i2 −1] [ i 1 ] + u [ i 3 +1] [ i 2 +1] [ i 1 ] ;
11 }
12 f o r ( i 1 = 1 ; i 1 < n1−1; i 1++){ // does not au tov e c t o r i z e
13 r [ i 3 ] [ i 2 ] [ i 1 ] = v [ i 3 ] [ i 2 ] [ i 1 ]
14 − a [ 0 ] ∗ u [ i 3 ] [ i 2 ] [ i 1 ]
15 − a [ 2 ] ∗ ( u2 [ i 1 ] + u1 [ i1 −1] + u1 [ i 1 +1] )
16 − a [ 3 ] ∗ ( u2 [ i1 −1] + u2 [ i 1 +1] ) ;
17 }}}

Listing 5.5 – 3-d stencil in the function resid of the MG benchmark in the NAS parallel
benchmarks.

In single-threaded execution and problem size class C, the tool finds that isolating r in 13
L2 ways in the function psinv and u in 13 L2 ways in the function resid significantly reduces
the L2 cache misses (see Table 5.4).

Sequential Performance

The total execution time without sector cache was t = (89.63 ± 0.14)s. After applying the
sector cache optimization, the run time tSC = (88.80 ± 0.22)s was reduced on average by
∆t = 0.83s. Even though the total number of L2 cache misses was reduced by ≈ 26%, the run
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5 Evaluation

Table 5.4 – Average measured and predicted L2 cache miss reduction using the sector cache
in the functions resid and psinv of the MG benchmark Class C. Using 12 threads,
the cache misses are not measured for each function individually, but for the whole
function mg3p.

region class cores data struct L2 ways reduction m. [%] reduction p. [%]
resid C 1 u 13 30.71 28.46
psinv r 13 26.21 45.51
resid C 12

u 13 38.08
psinv (scaled) u 3 35.44
mg3p 13.84

time decreased only by ≈ 1%. However, the tool could indicate an appropriate sector cache
configuration and predicted the cache miss reduction with high accuracy. Differentiating
between program phases was useful, because the data structure that had to be isolated
depended on the current function.

Parallel Performance

Simply adding multiple threads using the same sector cache configuration as well as input
size had a negative effect on the number of L2 cache misses and run time. Programmers
familiar with stencil codes will likely guess, that the reuse distances shift when the outer
z-loop is parallelized due to the resulting domain decomposition in z-direction. When the
input size of the 3-dimensional grid is scaled in z-direction by the number of threads, the
sector cache does indeed decrease the L2 cache misses using the same configuration as used
for single-threaded execution. The size in y-direction was divided by the number of threads
to avoid memory overcommitment and to keep equal total amount of work. The grid size
dimensions in dependence of the number of threads is set to (512, 512/threads, 512 ·threads).

Without scaling and using 12 threads, the tool indicated no advantage in the sector cache,
but it did in the z-scaled MG benchmark. However, the resulting recommended configuration
(B) differs from the configuration (A) found by profiling the single-threaded MG benchmark.

Figure 5.7 shows the z-scaled MG performance, bandwidth and run time using multiple
cores for config A on the left and config B on the right. Although the number of L2 cache
misses and utilized bandwidth was decreased significantly by the sector cache, there was no
improvement in run time. Even using all cores of a CMG, the utilized bandwidth is still far
below the available 256 GB/s. Configuration A performed better than configuration B using
1 thread – configuration B performed better than configuration A using 12 threads.

However, the MG benchmark showed the relationship between the number of threads,
input parameters and the shift in reuse distance due to interference. It should in general
be possible to infer a pattern in the shift of reuse distances, depending on the number of
threads and input parameters, by applying a fitting function on the record of a few samples
of the reuse distance profiles for a varying number of threads and (small) input parameters.
It has been shown in [LLD+09] that this is possible, but only for input parameters.
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5.3 Evaluation of the Tool-based Approach
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Figure 5.7 – L2 misses, run time and bandwidth of the MG benchmark class C (z-scaled) using
the recommended sector cache configuration for 1 thread (A) and 12 threads (B)
and varying number of cores.

5.3.5 Tool Accuracy
A key requirement is the tool’s ability to make reliable predictions about the approximate
number of cache misses. Table 5.5 shows the relative error of the predicted L1D and L2 cache
misses compared to the measured performance monitoring events. The tool always predicted
less cache misses than actually occurred. For the FT benchmark in particular, the prediction
does not reflect the measured cache misses at any cache level. One of the problems is that
PIN cannot instrument ARMv8 ISA binaries which is used in the compiled binaries by FCC.
An x86 binary had to be compiled with another compiler for the reuse distance profiling.
The instructions are different and the compiler’s optimizations may also differ. This can
change the locality of the application. Another issue is that the tool assumes true-LRU and
does not take cache associativity into account. Conflict misses are ignored without modeling
the associativity of the caches and the actual replacement policy is likely a PLRU policy.
Additionally, stack accesses are ignored during instrumentation, as also previously done in
[WB16], but this may not be valid when large stack arrays are used. Prefetching is also
not modeled in the tool. Many factors may cause the inaccuracies and they require further
investigation.

49



5 Evaluation

Table 5.5 – Relative error of the L1D and L2 cache miss predictions compared to the measure-
ments. The total number of L2 misses in EP is too low for the relative error to be
meaningful.

bench / rel. error L1 [%] rel. error L2 [%]
class A B C A B C
BT 47.3 46.7 46.5 8.1 6.7 11.1
CG 5.8 2.4 1.4 8.0 32.8 37.5
EP 0.1 0.2 0.3 - - -
FT 37.8 41.9 44.1 81.2 85.7 86.2
LU 6.8 22.0 11.0 9.4 15.5 7.9
MG 1.7 1.7 35.0 4.1 2.0 0.1
SP 67.8 62.2 64.4 9.6 7.7 11.7
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6 Conclusion
Throughout this thesis, we have studied and analyzed the sector cache behavior on the
A64FX – one of the fastest HPC CPUs developed so far. We have identified typical use cases
where the sector cache can improve performance or keep a high performance level for larger
input sizes. Moreover, we have designed a binary instrumentation tool with the ability to
record reuse distance profiles of a program’s separated data structures. With the help of the
tool, we could identify several benchmarks of the NAS parallel benchmark collection that
benefit from the sector cache. Furthermore, we showed that the number of cache misses of
these benchmarks can be significantly reduced by applying the tool’s recommendation for
code modifications concerning the sector cache.

It is difficult to improve performance using the sector cache and many codes will likely
not benefit from it. To improve performance with the sector cache, the program’s code
must be memory-intensive in the first place. However, even when the sector cache does not
improve run time, its ability to reduce the occurrence of cache misses makes it still a useful
feature. The memory subsystem is responsible for a major part of the energy consumption
in computing and reducing the number of cache misses can significantly improve energy
efficiency.

Two different types of use cases have been identified by the tool: either data with high
temporal locality is isolated in a sector of appropriate size, or data with low temporal locality
is isolated in a sector of minimal size. The first use case strongly depends on the program’s
input size and is not independent of parallelization. However, the second use case applies to
single-threaded execution as well as to multi-threaded execution, because the reuse distance
of accesses to data with low temporal locality will likely not shift below the cache size due
to parallelization.

During this work it became clear that in general the recommendations of the developed
pintool apply only to the number of threads and input sizes used during profiling. Sampling
the reuse distance profiles for varying numbers of threads and input parameters to extrapo-
late the reuse distance for different numbers of threads and parameters is is needed to make
the tool more practical, because the tool’s overhead is too high. From a practical point of
view, it is cumbersome to use the line of code of a dynamic memory allocation to identify
a data structure. Especially when the return pointer is passed through multiple functions,
it is very error prone and time consuming to identify which pointer should be isolated. It
would be much better if the identifier used in the function is provided directly by the tool.
The additional inclusion of a program’s debug information can greatly enhance the tool.
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6 Conclusion

Future Work
As a future work, it would be interesting to design an experiment to find the underlying
hardware mechanism of the sector cache replacement policy. Also finding more code where
the sector cache is beneficial by applying the tool to other benchmarks or compute kernels
could be part of future work. However, the performance and predictive power of the tool
should be improved in advance. As mentioned, the tool is not very user-friendly in its current
state. Improving the user interface or even including such a tool as a compiler feature to
generate automatic code transformations for the sector cache would be an interesting task
as well.

52



Acronyms
ALU Arithmetic Logical Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
CAT Cache Allocation Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CMG Core Memory Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CPU Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
CRS Compressed Row Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DMTVM Dense Matrix Transposed Vector Multiplication . . . . . . . . . . . . . . . . 42
DRAM Dynamic Random-Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . 3
EL Exception Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
FCC Fujitsu C/C++ Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
FPGA Field-programmable Gate Array . . . . . . . . . . . . . . . . . . . . . . . . . . 9
GPU Graphics Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
HBM High Bandwidth Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
HPC High-Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
ISA Instruction-Set Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
LLC Last Level Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LRU Least Recently Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MAC Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MMU Memory Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MIB Move In Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MOB Move Out Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
NUMA Non-Uniform Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
OS Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
OCL Optimization Control Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PE Processing Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PLRU Pseudo-LRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
SRAM Static Random-Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
SVE Scalable Vector Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
TLB Translation Lookaside Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

53





Listings

2.1 Sector cache example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Sector cache register state using the Fujitsu compiler with partitioning scheme

L2 cache 7:9 ways and L1D cache 3:1 ways. . . . . . . . . . . . . . . . . . . . 20

4.1 Searching an application image and inserting analysis routine calls to other
functions using PIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Kernel1: alternating access to reusable data (a) and non-reusable data (b). . 37
5.2 Kernel2: simultaneous access to reusable data (a) and non-reusable data (b). 39
5.3 DMTVM code based on [AML+21]. . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Sparse matrix-vector multiplication in the function conj_grad of the CG

benchmark in the NAS parallel benchmarks. . . . . . . . . . . . . . . . . . . . 45
5.5 3-d stencil in the function resid of the MG benchmark in the NAS parallel

benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

55





List of Figures

2.1 Typical memory hierarchy on a multicore system. The L1 cache is divided
into the L1D (data) and L1I (instruction) caches. L1 caches are local to the
cores and the LLC is shared by many cores. Multiple cache levels may be
between the L1 cache and the LLC. The LLC is connected to the off-chip main
memory. Latency to the ALUs increases with the distance. . . . . . . . . . . . 4

2.2 The two parts of a word’s address: block address and block offset. The block
address can be further divided into the tag and index. . . . . . . . . . . . . . 4

2.3 Cache placement of a data word in a set of a 16-way set-associative cache.
The set is selected by the index, the position in the cache line is determined
by the offset. The tag is stored together with the cache line data to indicate
the cache line content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Illustration of the page coloring technique for a set-associative cache. Memory
pages mapping to the same cache lines are assigned the same color. . . . . . . 10

2.5 A64FX memory hierarchy: the private L1 caches of one CMG are connected
to a shared L2 cache via a shared bus. . . . . . . . . . . . . . . . . . . . . . . 11

2.6 A64FX memory hierarchy: the A64FX is organized in four CMGs. Each CMG
has a L2 caches and is connected to its HBM unit via its MAC. The CMGs are
interconnected by a ring bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Sector cache partitioning on the A64FX CPU. Within each CMG, the four
sectors of each core’s L1D cache are mapped to the two sectors of one sector
group of the L2 cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Sector cache behaviour when data with sector tag is loaded and the sector
capacity is currently lower than specified. . . . . . . . . . . . . . . . . . . . . 14

2.9 Sector cache behaviour when data with sector tag is loaded and the sector
capacity is currently higher than specified. . . . . . . . . . . . . . . . . . . . . 15

2.10 Partitioned bit-PLRU policy in a set of a 4-way set-associative cache with two
sectors. Five tagged memory accesses are made. The cache’s state before and
after the accesses is shown from (a) to (f). The MRU column indicates the
most recently used cache lines w.r.t. each sector. The sector id is updated
on access and stored in the Sec column. C0 and C1 are the sector capacity
counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.11 HPC tag address override control register. . . . . . . . . . . . . . . . . . . . . 18
2.12 Sector cache access control register. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.13 Sector cache allocation and operation control register. . . . . . . . . . . . . . 19
2.14 L1D sector cache capacity setting register. . . . . . . . . . . . . . . . . . . . . 19
2.15 L2 sector cache capacity setting registers. . . . . . . . . . . . . . . . . . . . . 19
2.16 Address tag for the Fujitsu HPC extensions. . . . . . . . . . . . . . . . . . . . 20
2.17 Reuse distance histogram. References with reuse distance lower than the cache

size are cache hits, others are misses. . . . . . . . . . . . . . . . . . . . . . . . 21

57



List of Figures

3.1 Data structure interference. Non-reusable data of data structure B (red)
interferes with reuse of A (green). The reuse distance of the second reference
to a1 is reduced from RD = 5 (left) to RD = 1 after extracting the accesses
to A from the trace (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 PIN software architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Performance, speedup, and cache miss rate of Kernel1 without using the sector
cache and using the sector cache with maximum partition sizes for the L1D
cache and L2 cache. The size of the reusable data a is set close to the partition
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Performance and cache miss rate of Kernel2 in sequential execution for varying
partition sizes. The x-axis is in units of cache ways (L1D cache has 64KiB
and 4 ways; L2 cache has 8MiB and 16 ways). . . . . . . . . . . . . . . . . . . 40

5.3 Performance, speedup and bandwidth of Kernel2 for varying number of active
cores without using the sector cache compared to using a sector partition size
of 12 L2 cache ways for a. The x-axis is in units of cache ways (L2 cache has
8MiB and 16 ways). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Speedup and cache miss reduction due to sector cache optimization of Kernel2
for vectorized code to unvectorized code with the same sector cache configu-
ration for varying number of cores . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Reuse distance histograms of the DMTVM data structure split traces. . . . . . 44
5.6 L2 misses, run time and bandwidth using the same sector cache configuration

and varying number of cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 L2 misses, run time and bandwidth of the MG benchmark class C (z-scaled)

using the recommended sector cache configuration for 1 thread (A) and 12
threads (B) and varying number of cores. . . . . . . . . . . . . . . . . . . . . 49

58



Bibliography

[ACP02] George Almási, Cǎlin Caşcaval, and David A Padua. Calculating stack distances
efficiently. In Proceedings of the 2002 workshop on Memory system performance,
pages 37–43, 2002.

[AML+21] Christie Alappat, Nils Meyer, Jan Laukemann, Thomas Gruber, Georg Hager,
Gerhard Wellein, and Tilo Wettig. Execution-cache-memory modeling and per-
formance tuning of sparse matrix-vector multiplication and lattice quantum
chromodynamics on a64fx. Concurrency and Computation: Practice and Expe-
rience, page e6512, 2021.

[Arm21] Arm Limited, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan. Arm®
Architecture Reference Manual - Armv8, for A-profile architecture, issue g.b
edition, July 2021.

[BBB+91] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L
Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A
Lasinski, Rob S Schreiber, et al. The nas parallel benchmarks summary and
preliminary results. In Supercomputing’91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 158–165. IEEE, 1991.

[BD01] Kristof Beyls and Erik D’Hollander. Reuse distance as a metric for cache be-
havior. In Proceedings of the IASTED Conference on Parallel and Distributed
Computing and systems, volume 14, pages 350–360. Citeseer, 2001.

[Bel66] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems journal, 5(2):78–101, 1966.

[BJM11] Rajeev Balasubramonian, Norman P Jouppi, and Naveen Muralimanohar.
Multi-core cache hierarchies. Synthesis Lectures on Computer Architecture,
6(3):41–55, 2011.

[CLS06] Wen-tzer Thomas Chen, Peichun Peter Liu, and Kevin C Stelzer. Implementa-
tion of a pseudo-lru algorithm in a partitioned cache, June 27 2006. US Patent
7,069,390.

[DFF+03] Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda
Torczon, and Andy White. Sourcebook of parallel computing, volume 3003.
Morgan Kaufmann Publishers San Francisco^ eCA CA, 2003.

[DM98] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

59



Bibliography

[DMS+97] Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. Top500 supercom-
puter sites. Supercomputer, 13:89–111, 1997.

[DS03] Ashutosh S Dhodapkar and James E Smith. Comparing program phase detec-
tion techniques. In Proceedings. 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2003. MICRO-36., pages 217–227. IEEE, 2003.

[Fra19] Vincenzo Frascino. Arm v8. 5 memory tagging extension. In Linux Plumbers
Conference, 2019.

[Fuj10] Fujitsu Limited, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan.
SPARC64™ VIIIfx Extensions, version 15 edition, April 2010.

[Fuj20a] Fujitsu Limited, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan.
A64FX PMU Events Errata, version 1.0 edition, November 2020.

[Fuj20b] Fujitsu Limited, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan.
A64FX specification Fujitsu HPC Extension, version 1.0 edition, November
2020.

[Fuj21a] Fujitsu Limited, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan.
A64FX Microarchitecture Manual, version 1.5 edition, June 2021.

[Fuj21b] Fujitsu Limited, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan. FU-
JITSU Software Compiler Package C User’s Guide, version 1.0l20 edition,
March 2021.

[Han98] Jim Handy. The cache memory book. Morgan Kaufmann, 1998.

[HK06] Kim Hazelwood and Artur Klauser. A dynamic binary instrumentation engine
for the arm architecture. In Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for embedded systems, pages 261–270,
2006.

[HP17] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 6th edition, Nov 2017.

[HP20] James J Hack and Michael E Papka. The us high-performance computing
consortium in the fight against covid-19. Computing in Science & Engineering,
22(6):75–80, 2020.

[HVA+16] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gi-
anos, Ronak Singhal, and Ravi Iyer. Cache qos: From concept to reality in
the intel® xeon® processor e5-2600 v3 product family. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pages
657–668, 2016.

[HW10] Georg Hager and Gerhard Wellein. Introduction to High Performance Comput-
ing for Scientists and Engineers. CRC Press, Inc., USA, 1st edition, 2010.

[Int15] CAT Intel. Improving real-time performance by utilizing cache allocation tech-
nology. Intel Corporation, April, 2015.

60



Bibliography

[Int21] Intel. Pin 3.21 user guide, 2021. accessed on Jan/21/2020.

[JWN10] Bruce Jacob, David Wang, and Spencer Ng. Memory systems: cache, DRAM,
disk. Morgan Kaufmann, 2010.

[JZTS10] Yunlian Jiang, Eddy Z Zhang, Kai Tian, and Xipeng Shen. Is reuse distance
applicable to data locality analysis on chip multiprocessors? In International
Conference on Compiler Construction, pages 264–282. Springer, 2010.

[KHW91] Yul H Kim, Mark D Hill, and David A Wood. Implementing stack simulation
for highly-associative memories. ACM SIGMETRICS Performance Evaluation
Review, 19(1):212–213, 1991.

[KMCV10] Kamil Kędzierski, Miquel Moreto, Francisco J Cazorla, and Mateo Valero.
Adapting cache partitioning algorithms to pseudo-lru replacement policies. In
2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), pages 1–12. IEEE, 2010.

[KW03] Markus Kowarschik and Christian Weiß. An overview of cache optimization
techniques and cache-aware numerical algorithms. Algorithms for memory hi-
erarchies, pages 213–232, 2003.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’05, page 190–200, New York, NY,
USA, 2005. Association for Computing Machinery.

[LDDB+21] Núria López, Luigi Del Debbio, Marc Baaden, Matej Praprotnik, Laura Grigori,
Catarina Simões, Serge Bogaerts, Florian Berberich, Thomas Lippert, Janne
Ignatius, et al. Lessons learned from urgent computing in europe: Tackling the
covid-19 pandemic. Proceedings of the National Academy of Sciences, 118(46),
2021.

[LGM+21] Júnior Löff, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Massimo
Torquati, Marco Danelutto, and Luiz Gustavo Fernandes. The nas parallel
benchmarks for evaluating c++ parallel programming frameworks on shared-
memory architectures. Future Generation Computer Systems, 125:743–757,
2021.

[LGY+16] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side channel
attacks in cloud computing. In 2016 IEEE international symposium on high
performance computer architecture (HPCA), pages 406–418. IEEE, 2016.

[LLD+08] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
Ponnuswamy Sadayappan. Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems. In 2008 IEEE 14th
International Symposium on High Performance Computer Architecture, pages
367–378. IEEE, 2008.

61



Bibliography

[LLD+09] Qingda Lu, Jiang Lin, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P Sa-
dayappan. Soft-olp: Improving hardware cache performance through software-
controlled object-level partitioning. In 2009 18th International Conference on
Parallel Architectures and Compilation Techniques, pages 246–257. IEEE, 2009.

[MBDH99] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A
portable interface to hardware performance counters. In Proceedings of the
department of defense HPCMP users group conference, volume 710. Citeseer,
1999.

[MGST70] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Eval-
uation techniques for storage hierarchies. IBM Systems journal, 9(2):78–117,
1970.

[Mit16] Sparsh Mittal. A survey of cache bypassing techniques. Journal of Low Power
Electronics and Applications, 6(2):5, 2016.

[Mit17] Sparsh Mittal. A survey of techniques for cache partitioning in multicore pro-
cessors. ACM Computing Surveys (CSUR), 50(2):1–39, 2017.

[OFK12] Simone Ferlin Oliveira, Karl Fürlinger, and Dieter Kranzlmüller. Trends in com-
putation, communication and storage and the consequences for data-intensive
science. In 2012 IEEE 14th International Conference on High Performance
Computing and Communication 2012 IEEE 9th International Conference on
Embedded Software and Systems, pages 572–579, 2012.

[Olk81] Frank Olken. Efficient methods for calculating the success function of fixed-
space replacement policies. Technical report, Lawrence Berkeley Lab., CA
(USA), 1981.

[PLM09] Sascha Plazar, Paul Lokuciejewski, and Peter Marwedel. Wcet-aware soft-
ware based cache partitioning for multi-task real-time systems. In 9th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET’09). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

[PS] Swann Perarnau and Mitsuhisa Sato. Discovering cache partitioning optimiza-
tions for the k computer.

[PS12] Swann Perarnau and Mitsuhisa Sato. Toward automated cache partitioning for
the k computer. IPSJ SIG-HPC, 2012.

[SIT+20] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya
Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo
Miyoshi, et al. Co-design for a64fx manycore processor and” fugaku”. In SC20:
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1–15. IEEE, 2020.

[SKP10] Derek L Schuff, Milind Kulkarni, and Vijay S Pai. Accelerating multicore reuse
distance analysis with sampling and parallelization. In Proceedings of the 19th
international conference on Parallel architectures and compilation techniques,
pages 53–64, 2010.

62



Bibliography

[SPP10] Derek L Schuff, Benjamin S Parsons, and Vijay S Pai. Multicore-aware reuse
distance analysis. In 2010 IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–8. IEEE,
2010.

[SXS+15] Yakun Sophia Shao, Sam Xi, Viji Srinivasan, Gu-Yeon Wei, and David Brooks.
Toward cache-friendly hardware accelerators. In HPCA Sensors and Cloud
Architectures Workshop (SCAW), pages 1–6, 2015.

[SZD04] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. ACM
SIGPLAN Notices, 39(11):165–176, 2004.

[WB16] Josef Weidendorfer and Jens Breitbart. Detailed characterization of hpc ap-
plications for co-scheduling. In Proceedings of the 1st COSH Workshop on
Co-Scheduling of HPC Applications, page 19, 2016.

[XS20] Wenjie Xiong and Jakub Szefer. Leaking information through cache lru states.
In 2020 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 139–152. IEEE, 2020.

[YHKS12] Toshio Yoshida, Mikio Hondo, Ryuji Kan, and Go Sugizaki. Sparc64 viiifx: Cpu
for the k computer. Fujitsu Sci. Tech. J, 48(3):274–279, 2012.

[YTY21] Kohji Yoshikawa, Satoshi Tanaka, and Naoki Yoshida. A 400 trillion-grid vlasov
simulation on fugaku supercomputer: large-scale distribution of cosmic relic
neutrinos in a six-dimensional phase space. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis, pages 1–11, 2021.

[ZDS09] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th ACM
European conference on Computer systems, pages 89–102, 2009.

63


	Introduction
	Background
	Caches
	Memory Hierarchy
	Data Transfer
	Cache Mapping
	Replacement Policies
	Cache Performance and Optimization
	Cache Partitioning

	A64FX CPU
	Memory System
	Instruction Set Architecture

	Sector Cache
	Sector Cache Behaviour
	Sector Cache Replacement Policy
	Sector Cache Configuration

	Reuse Distance
	Reuse Distance Calculation
	Concurrent Reuse Distance

	Related Work

	Methodology
	Data Structure Interference
	Program Phases
	Data Structures
	Data Structure Selection
	Data Structure Composition

	Optimal Cache Partitioning
	Metrics

	Implementation
	Profiling and Instrumentation
	Intel PIN
	Memory Instructions
	Data Structures
	Program Phases

	Stack Processing Algorithm
	Data Structure Interference Detection
	Search Phase

	Reuse Distance Profile Analysis

	Evaluation
	Experimental Setup
	Microbenchmarks
	Kernel1 - Alternating Access
	Kernel2 - Simultaneous Access

	Evaluation of the Tool-based Approach
	Proof of Concept
	CG
	LU
	MG
	Tool Accuracy


	Conclusion
	Listings
	List of Figures
	Bibliography

