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Abstract

Recent breakthroughs in the field of quantum computing have sparked fears that the cryp-
tographic methods we rely on every day may be broken in the near future. Even worse,
encrypted network communication protocols like the IPsec suite rely on an asymmetric key
exchange to derive a set of symmetric keys used to encrypt network traffic. An attacker
storing recordings of the key exchange and the following communication can break the key
exchange, extract the symmetric keys and compromise the clear text data once a powerful
enough quantum computer is available in the future .

The goal of this work is to make the IKEv2 protocol and thus the whole IPsec communication
quantum-resistant, using novel cryptographic methods collected in the NIST post-quantum
standardization project, without introducing new security weaknesses. The challenge lies in
the constraints of the new cryptographic schemes, such as enormous key sizes, which the
IKEv2 protocol was not designed for.

A thorough analysis of the quantum-resistant key exchange methods in regards to their
constraints and an analysis of the IKEv2 protocol in terms of its limitations and security
properties gives a clear insight of the changes required to support the new methods. Because
the security of most methods is unclear, the protocol design should not repeat the mistake
to favor a single cryptographic method. Instead, all key exchange schemes should be
interchangeable and even combinable in a hybrid key exchange. To ensure the security of
the protocol, this work employs a formal analysis driven protocol design approach similar to
TLS 1.3.

The resulting protocol, named PQ-IKEv2, is the result of a comparison of previous work
on the subject and new original ideas. It enables a hybrid key exchange with all NIST
post-quantum key exchange contestants. To assert its security properties, it is subjected
analysis using the Tamarin prover. A preceding analysis of IKEv2 confirms the results of
previous security analysis and is then extended to show that the new PQ-IKEv2 protocol
provides the same security against a more powerful quantum computer attacker. A benchmark
of a PQ-IKEv2 reference implementation proofs to be usable in real world settings with an
added latency of merely 10% for a hybrid ECDH and post-quantum exchange.
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1 Introduction

Quantum computing is a field encompassing physics, engineering and computer science to
develop a new type of computer processor which utilizes quantum mechanical phenomena like
superposition and entanglement. The resulting “quantum computer” is theoretically able to
solve certain problems that have high computational complexity much more efficiently than
it is possible with today’s computers (in the following also referred to as classical computers).

While on the one hand this opens many doors, on the other hand quantum computers
present a threat to fields that require computational complex problems. An example of such
disciplines is the field of cryptography which relies on particular operations, like decryption
of a cipher without possession of a specific key, to be unsolvable using a classical computer.
In 1994 Peter Shor at Bell Labs discovered a quantum computing algorithm that can solve
integer factorization and the discrete logarithm problem in polynomial time, given a fully
functioning quantum computer [Sho99] leveraging a high enough number of qubits (the
quantum computer equivalent of bits). This algorithm, often simply called Shor’s algorithm,
can be utilized to effectively make all public key cryptosystems based on those two problems
useless. Unfortunately this applies to almost all public key crypto systems (PKCS) effectively
in use today. As a result, an attacker in possession of a powerful enough quantum computer has
the ability to compromise any of today’s cryptographically protected network communication.

Since Shor’s discovery, the field of quantum algorithms has attracted the attention of the
research community and numerous algorithms have been found to provide theoretical expo-
nential speedup for problems in physics and mathematics utilizing the technique which also
enables Shor’s Algorithm, called Quantum Fourier Transform. The total number of exponen-
tial speedup algorithms however is still very limited. Another prominent quantum algorithm
found by Lov Grover offers a quadratic speedup for unstructured search problems [Gro96].
While the speedup is less than Shor’s exponential one, Grover’s algorithm comes with the
advantage that it can be applied to a broad range of problems. It has been shown that is
can be used to find a 128-bit AES key in only 264 iterations instead of 2128 with a classical
computer, or a 256 bit key in only 2128 iterations instead of 2256. While it does not break
cryptographic systems like Shor’s algorithm, it raises the required size of both symmetric and
asymmetric keys in cryptography. Table 1.2 summarizes the impact of different quantum
algorithms and possible mitigations for commonly used classical encryption, signature and
hashing schemes.

All explained attacks remain theoretical as there is no quantum computer existing today
that is able to execute any of these algorithms with values in the order of magnitude that
are used in cryptography. The highest number factored with Shor’s algorithm as of yet has
been the number 21 with a technique described in [MLLL+12], which can easily be done
with a non-quantum computer today. It is however unclear when quantum computers will be
built that can outperform classical computers with these algorithms. Multiple big technology
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1 Introduction

Category Cryptographic Scheme Quantum Algorithm Mitigation
Symmetric Encryption AES Grover Double key size
Hashing SHA2 Double output size
Public Key Encryption RSA

ECIES
Public Key Signatures DSA Shor None

ECDSA
Key Exchange Diffie-Hellman

ECDH

Table 1.2: Impact of quantum algorithms on popular crypgraphic systems

companies including Intel, IBM and Google have reported to have built proof of concept
computers with two-figure numbers of qubits. Once a reasonably sized quantum computer is
available, all critical communication should employ mitigations against quantum computer
attacks. It should also be noted that a possible attack vector is to start recording encrypted
confidential communication today and decrypt it with a quantum computer in the future.
Contrary to what is sometimes assumed, Diffie-Hellman’s forward secrecy property does not
protect it from future quantum computer attacks.

To provide information security in a future with quantum computers the scientific discipline
of Post-Quantum Cryptography has developed. Post-Quantum, or quantum-resistant cryp-
tography aims to develop cryptographic systems that are secure against both quantum and
classical attacks. It is not to be confused with the field of quantum cryptography which
uses quantum effects itself. Instead post-quantum cryptography is meant to replace broken
systems used in today’s network protocols and computers and runs on classical computers.
In December 2016 the North American Institute for Standards and Technology (NIST) began
a standardization process for post-quantum cryptography, requesting public key schemes,
signature schemes and key encapsulation methods that can resist quantum computer attacks.
Since the beginning of the process, the number of considered schemes was reduced from 69
to 26, with no clear winner in sight as of today.
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2 Background

This section summarizes the scientific background required to understand the later chapters of
this thesis. It first outlines the IPsec architecture and its protocols, with a focus on the IKEv2
key exchange, and then presents the state of the art of post-quantum cryptography. Most
of the information on IPsec is compiled from the IETF IPsec RFCs, most notably [SK05],
[Ken05a], [Ken05b] and the most recent IKEv2 RFC in [KHN+14] as well as all relevant
extensions.

2.1 The IKEv2 Key Exchange Protocol

IKEv2 is an IETF protocol standard which allows dynamic key agreement for the IPsec
protocol suite. The protocol works in two phases. The first negotiates a secure and authenti-
cated channel between two IKEv2 peers which provides a mean of confidential and authentic
communication between the two. The second phase which is negotiated using the protected
IKEv2 channel establishes security parameters for encrypted ESP or AH flows and the actual
IPsec traffic protection. IKEv2 works on two kinds of security associations (SAs), the IKE
SA which defines security parameters for IKEv2’s communication itself and Child SAs which
are used by the IPsec traffic protection protocols ESP and AH.

2.1.1 The IPsec Protocol Suite

Originally introduced as the “Security Architecture for the Internet Protocol” [SK05], IPsec is
a secure protocol suite working on the IP level. Fundamentally, this architecture is composed
of the two security protocols ESP and AH, the Security Association and Policy concepts
as well as the accompanying key management. It is designed as an open IETF standard to
provide interoperable secure communication via IPv4 and IPv6. This secure communication
is achieved by cryptographic protection of network traffic providing confidentiality, integrity
and access control. Because these properties are provided on IP layer, they also apply to all
protocol carried over protected IP traffic. A main advantage of IPsec over other encrypted
network protocols like TLS for example is that it does not have to be configured on a per
application basis but works transparently between hosts and IP networks. Additionally IPsec
includes a minimalist firewalling functionality as a form of access control which enforces
authentication and integrity protection of IPsec traffic.

Traffic security is provided by the Encapsulating Security Payload (ESP) or the Authentication
Header (AH) protocol. Support for ESP is specified as mandatory in the IPsec RFC while
AH support is only a recommendation. One reason for this is that AH does not provide any
security services that ESP does not provide while ESP additionally offers traffic confidentiality
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2 Background

BEFORE APPLYING ESP
---------------------------------------

IPv6 | | ext hdrs | | |
| orig IP hdr |if present| TCP | Data |
---------------------------------------

AFTER APPLYING ESP
---------------------------------------------------------

IPv6 | orig |hop-by-hop,dest*,| |dest| | | ESP | ESP|
|IP hdr|routing,fragment.|ESP|opt*|TCP|Data|Trailer| ICV|
---------------------------------------------------------

|<--- encryption ---->|
|<------ integrity ------>|

Figure 2.1: ESP tunnel mode, from [Ken05b]

through cryptographic encryption. Because today’s computer processors usually provide
hardware accelerated cryptography instructions such as the Intel Advanced Encryption
Standard New Instructions, short AES-NI, symmetric encryption as used in ESP has barely
any performance impact, which makes it the more commonly used of the two protocols.

2.1.1.1 Modes of Operation

The IPsec protocols AH and ESP support two modes of operation, tunnel mode and transport
mode. Tunnel mode is the more commonly used mode, while transport mode is only applied
in the special case of end-to-end IPsec communication. Tunnel mode is meant to be used in
setups where the IPsec peers function as gateways connecting protected networks. In tunnel
mode the entire original IP packet including the IP header is confidentiality and integrity
protected. The original packet is encrypted and wrapped in an ESP packet with a fresh IP
header that is addressed to the IPsec peer gateway. The structure of an ESP packet using
tunnel mode is shown in Figure 2.1.

In transport mode the receiver of the ESP packet is usually different from the receiver of
the original IP packet. Upon receive the gateway decrypts the ESP to recover the original
IP packet and then simply route the decrypted packet the same way as if it was received
in plain text. Transport mode is used for end-to-end connections. The original IP header
stays intact and the ESP header is inserted between original header and protected original
body. The receiver of a transport mode is always the receiver of the original packet, thus a
received packet is decrypted and passed to the upper layer of the network stack. A notable
difference to tunnel mode is that in transport mode the original header is not encrypted or
integrity protected. An example of the application of an IPv6 packet before and after being
encapsulated with ESP in tunnel mode can be seen if Figure 2.1.
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2.1 The IKEv2 Key Exchange Protocol

BEFORE APPLYING ESP
----------------------------

IPv4 |orig IP hdr | | |
|(any options)| TCP | Data |
----------------------------

AFTER APPLYING ESP
-------------------------------------------------

IPv4 |orig IP hdr | ESP | | | ESP | ESP|
|(any options)| Hdr | TCP | Data | Trailer | ICV|
-------------------------------------------------

|<---- encryption ---->|
|<-------- integrity ------->|

Figure 2.2: ESP transport mode, from [Ken05b]

2.1.1.2 Security Associations & Security Policy Databases

The IPsec architecture [SK05] specifies three major databases that hold the state required to
process incoming and outgoing IP packets in regard to IPsec. The implementation of the
databases is not standardized, but their interface is a requirement for every compliant IPsec
implementation in order to ensure interoperability between different implementations. The
databases are the Secure Policy Database (SPD), the Security Association Database (SAD)
and the Peer Authorization Database (PAD).

The Secure Policy Database specifies how network traffic is handled when IPsec is active. More
precisely it filters all network traffic by three categories: DISCARD, BYPASS and PROTECT.
For the first two categories the SPD acts similarly to a firewall. DISCARDED traffic is
not allowed to pass through the network interface, BYPASS can pass through unmodified.
For PROTECTED traffic the SPD also holds information on the security protocol to use,
allowed cryptographic algorithms and other security protocol options. Traffic that matches a
PROTECTED rule can only pass the SPD in a protected state, either encapsulated in AH or
ESP. This requires an SA with a set of keys and parameters for the protected connection.

The Peer Authorization Database (PAD) contains a list of peers that are authorized to
communicate via the policies specified in the SPD as well as their associated authentication
values such as public keys, pre-shared authentication values or certificates. When an SA
management protocol like IKE negotiates a fresh SA the PAD is used to ensure the peer is
authenticated and authorized to negotiate said SA.

Active Security Associations (SAs) are stored in the Security Association Database (SAD).
Each SAD entry is associated with a policy in the SPD and holds the parameters for a
single negotiated or statically configured SA such as its Secure Parameter Index (SPI) as
an unique identifier, the negotiated security protocol, keying material for the connection,
selected cryptographic algorithms, sequence number counters, lifetime of the SA and other
state of the protected connection. When PROTECTED traffic passes the IPsec interface of
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2 Background

the kernel, the matching SA is looked up in the SAD and then used to encrypt or decrypt
the protected network traffic. When no matching SA is available, either the negotiation of a
new SA is initiated or the traffic is not allowed to pass through the interface.

IPsec SAs can either be configured statically or managed dynamically by one of the supported
key exchange protocols, of which IKEv2 is the most recent. The IKEv2 protocol can not only
exchange key material, but also negotiate support for different ciphers and other cryptographic
algorithms. The advantage of using a protocol over static configuration lies in the reduced
complexity to initially configure and to refresh the keys in many-to-many connection settings
as well as in the simplicity of upgrading to newer ciphers or even key lengths.

2.1.2 IKEv2 Exchanges

IKEv2 communication takes place in so-called exchanges. An exchange consists of a request
and a corresponding response. They are identified by their exchange types. An IKEv2
message is built up from a header which looks the same for every message as well as a list
of payloads. A special payload is the encrypted payload (SK) which in itself contains a
confidentiality and integrity protected list of payloads. The types of payloads that may be
included in a message are determined by the message’s exchange type. The order of payloads
in a IKEv2 message is not enforced.

2.1.2.1 Establishing the Initial IKE SA

Two exchanges are required to establish the initial IKE SA: the IKE_SA_INIT and the
IKE_AUTH exchange. Usually four messages are exchanged to establish a common IPsec
SA, but in some cases more may be required. The IKE_SA_INIT exchange negotiates cipher
algorithms, exchanges nonces and exchanges keying material to derive a shared session secret.
Then IKE_AUTH authenticates the first pair of messages, exchanges a unique identifier for
each peer and usually establishes the first Child SA.

IKE_SA_INIT

The IKE_SA_INIT exchange is the first exchange of each IKEv2 SA. The initiator of the new
SA will first generate a new Secure Parameter Index (SPI) which is later used as an identifier
for the newly initiated SA. It then sends its SPI in the IKE header (HDR), a proposal of
supported cryptographic algorithms in the SAi payload, a KEi payload containing a fresh
public key (traditionally a Diffie-Hellman public value) and finally a fresh nonce in the Ni
payload. Optionally the initiator may append any number of Notify (N) payloads which are
used in several IKEv2 extensions to negotiate support for additional features.

The responder receives the initiator’s request and first generates its own SPIr. The concate-
nation SPIi | SPIr is further called the IKE SA’s SPI and uniquely identifies the new SA.
The responder parses the SA payload containing a list of supported algorithms and returns
its own list which must be a subset of the received one and contains one entry per type which
the responder wishes to use. Then it sends its own key material in the KE payload and a
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2.1 The IKEv2 Key Exchange Protocol

fresh nonce in the Nr payload. Finally it might reply to the initiator’s notifies and optionally
include a certification request (CERTREQ) payload.

At this point the responder can use the received and the freshly generated keys and nonces
to compute the so called SKEYSEED. It is used to derive a number of shared session secrets
that are later used to encrypt and integrity protect further exchanges.

When the initiator receives the IKE_SA_INIT response it first learns the responder’s SPIr
value and updates its internal SA’s SPI. Next it parses the payloads and also generates the
SKEYSEED from the common Diffie-Hellman secret and the nonces. At this point both peers
have shared encryption and integrity keys and can further communicate in cryptographically
protected messages.

IKE_AUTH

There has not been any peer authentication up to this point. Neither of the peers knows
who he is talking to at the other end. The problem is solved with the IKE_AUTH exchange
that must always follow after the IKE_SA_INIT exchange. The actual IPsec SAs used by
the ESP and AH protocols are called Child SAs in IKEv2. Child SAs belong to an IKE SA,
which serves as a control channel for establishing and managing IPsec key material. The
IKE_AUTH exchange is usually used to negotiate the first ESP or AH Child SA for the
IKE SA that is being authenticated, in order to save the round trip time for and additional
CREATE_CHILD_SA exchange.

Initiator Responder
HDR(SPI), SK {IDi, [CERT,] [CERTREQ,]

[IDr,] AUTH, SAi2,
TSi, TSr} -->

<-- HDR(SPI), SK {IDr, [CERT,] AUTH,
SAr2, TSi, TSr}

Figure 2.3: The IKE_AUTH exchange

IKE_AUTH messages are cryptographically protected using keys derived from the SKEY-
SEED, therefore the first payload in the IKE_AUTH message is always the encrypted and
integrity protected SK payload. Inside SK follows an IDi payload which includes a unique
identifier for the peer, an optional CERT payload containing a certificate and corresponding
trust anchors, the AUTH value which authenticates the initiator and integrity protects the
first exchange, an SAi payload which contains the algorithm proposal for an eventual ESP or
AH Child SA, and lastly the traffic selectors TSi and TSr which define the traffic that should
be protected by the resulting Child SA. The initiator may optionally include an IDr identifier
to select the desired peer identity, in case the responder is running multiple identities on the
same network address.

The responder asserts its identity in the IDr payload, authenticates its ID and integrity
protects the second message and includes all that is needed to negotiate the first Child SA.

The AUTH value consists of a signature over a predefined block of data that differs between
initiator and responder. The initiator signs a concatenation of the full first message of the
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exchange (the IKE_SA_INIT request), the responder’s nonce and prf(SK_pi, IDi_data)
where SK_pi is one of the keys derived from the SKEYSEED, IDi_data is the content of
the IDi payload without the header and prf is the pseudorandom function negotiated in
IKE_SA_INIT. The responder signs Message2 | NonceIData | prf(SK_pr, IDr_data)
respectively. This way the AUTH value authenticates the signer with the supplied ID and
integrity protects its message of the first exchange, the received nonce, and the claimed
identity value. If certificates are exchanged in IKE_AUTH the peers verify the validity of
the certificate chain and that the ID values IDi and IDr match the respective name in the
certificate.

2.1.2.2 Negotiation of Cryptographic Algorithms

The negotiation of the cryptographic algorithms happens in the IKE_SA_INIT exchange,
more specifically in the Security Association payload. The SA payload contains a list of
proposals, where each proposal addresses one of the IPsec protocols ESP, AH or IKE. A
proposal contains so-called Transforms which are the actual algorithms that are proposed.
Each Transform has a Transform Type which can be one the following:

• ENCR: Encryption Algorithm
• PRF: Pseudorandom Function
• INTEG: Intgerity Algorithm
• D-H: Diffie-Hellman Group
• ESN: Extended Sequence Numbers

Which transform types can or must be included in a proposal depends on the chosen IPsec
protocol. An AH proposal can’t have an encryption algorithm, while ESP cannot have a
pseudorandom function but must have an encryption algorithm. Some combinations can only
be modeled by including multiple proposals of the same type. Combined mode encryption
and integrity ciphers for example are listed as encryption algorithm, but do not allow an
additional integrity algorithm to be specified. In order to propose combined and non-combined
algorithms, two proposals have to be sent.

Proposals sent by the initiator are allowed to include multiple transforms of the same type.
Two or more transforms having the same type means the peer proposes to use any of the
supplied transforms, in other words it is equivalent to a logical OR relation between the
transforms. A single transform can further have multiple attributes, which model the choice
of parameters for the same algorithm, for example the key length of the AES encryption
algorithm. A transform may not have multiple attributes of the same type, instead it is
required to have two transforms of the same value with the respective attribute set to the
desired values.

Figure 2.4 provides an example of a full SA payload with two ESP proposals.

The peer in the example proposes two configurations. The first says AES-CBC-128 or
AES-CBC-192 or AES-CBC-256 as encryption algorithm, and AUTH_HMAC_SHA1_96 or
AUTH_AES_XCBC_96 as integrity algorithm and ESN enabled or disabled. The second is
AES-GCM with a 8 octet ICV with either 128 or 256 bytes key length and ESN enabled or
disabled.
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2.1 The IKEv2 Key Exchange Protocol

SA Payload
|
+--- Proposal #1 ( Proto ID = ESP(3), SPI size = 4,
| | 7 transforms, SPI = 0x052357bb )
| |
| +-- Transform ENCR ( Name = ENCR_AES_CBC )
| | +-- Attribute ( Key Length = 128 )
| |
| +-- Transform ENCR ( Name = ENCR_AES_CBC )
| | +-- Attribute ( Key Length = 192 )
| |
| +-- Transform ENCR ( Name = ENCR_AES_CBC )
| | +-- Attribute ( Key Length = 256 )
| |
| +-- Transform INTEG ( Name = AUTH_HMAC_SHA1_96 )
| +-- Transform INTEG ( Name = AUTH_AES_XCBC_96 )
| +-- Transform ESN ( Name = ESNs )
| +-- Transform ESN ( Name = No ESNs )
|
+--- Proposal #2 ( Proto ID = ESP(3), SPI size = 4,

| 4 transforms, SPI = 0x35a1d6f2 )
|
+-- Transform ENCR ( Name = AES-GCM with a 8 octet ICV )
| +-- Attribute ( Key Length = 128 )
|
+-- Transform ENCR ( Name = AES-GCM with a 8 octet ICV )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform ESN ( Name = ESNs )
+-- Transform ESN ( Name = No ESNs )

Figure 2.4: Contents of an initiator SA payload
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2 Background

SA Payload
|
Proposal #1 ( Proto ID = ESP(3), SPI size = 4,
| 7 transforms, SPI = 0x052357ba )
|
+-- Transform ENCR ( Name = ENCR_AES_CBC )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform INTEG ( Name = AUTH_HMAC_SHA1_96 )
+-- Transform ESN ( Name = ESNs )

Figure 2.5: Example Responder SA Payload

A responder receiving this payload must now choose a subset of the proposed algorithms,
and return them in its own SA payload. The payload therefore can only contain a single
proposal in which no transform type can be included more than once. In the example above
the initiator may choose AES-CBC-256 and AUTH_HMAC_SHA1_96 without extended
sequence numbers. A visualization of the response is given in Figure 2.5.

2.1.2.3 Authentication Modes

IKEv2 without extensions defines 3 different modes of authentication: Public Key authenti-
cation (PK), Pre-Shared Key Authentication (PSK) and authentication using the Extensible
Authentication Protocol (EAP) which itself supports various modes of authentication. The
PK authentication mode of IKEv2 is based on the SIGMA protocol family, a key exchange
and authentication protocol that was originally developed for IKE(v1). PK authentication
mode in its original form supports only RSA and DSA signatures.

The PSK authentication mode, also referred to as MAC, allows the use of a pre-shared value
that is then used in an hmac with a fix value and further hashed together with relevant fields
of the IKE_SA_INIT message and the shared DH secret. The resulting hmac protects the
derived secret, the first exchange and the pre-shared key all at the same time. When PSK is
used, the same key is usually used to protect both directions of traffic. EAP mode allows to
embed the powerful Extensible Authentication Protocol with all supported authentication
modes into the IKEv2 protocol, but can only be used in addition to the PK mode. All
IKE authentication modes can be combined asymmetrically, meaning both peers can use
different modes of authentication. IKEv2 extensions additionally provide authentication
using various ECDSA [FS07] signatures, EAP only authentication [EST10], PAKEs [Kiv11],
NULL Authentication [SW15] or a new, more general Digital Signature mode [KS15] that
supports a variety of cryptographic schemes and hashes. Because in some cases using a single
mechanism of authentication may not be enough, there is also an IKE extension allowing
multiple authentication mechanisms to be used in conjunction [KE06].
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Initiator Responder

HDR, SK {SA, Ni, [KEi,]
TSi, TSr} -->

<-- HDR, SK {SA, Nr, [KEr,]
TSi, TSr}

Figure 2.6: The CREATE_CHILD_SA exchange

2.1.2.4 Creating Child SAs

After the IKE SA is established as a result of a successful IKE_AUTH exchange a peer
may create additional Child SAs, rekey the existing Child SA or the IKE SA using the
CREATE_CHILD_SA exchange. In all three cases a new SA is created. Rekeying of an SA is
implemented by creating a new SA and deleting the replaced SA. The CREATE_CHILD_SA
may be initiated by either of the peers. In case of the CREATE_CHILD_SA exchange
“initiator” refers to the initiator of the exchange, not the original initiator of the IKE SA.
The exchange consists of a single pair of request/response messages carrying what is needed
to create a new ESP, AH or IKE SA.

The payloads are similar to what has been exchanged in IKE_SA_INIT and IKE_AUTH.
The SA payload contains proposals for the new Child SA, including encryption algorithm,
integrity algorithm, and optionally a Diffie-Hellman group in case a new key exchange should
be done for this Child SA. The Ni and Nr payloads carry a fresh set of nonces used in the
key derivation. If a Diffie-Hellman transform was included in the SA payload, the initiator
also attaches its new public key. Lastly traffic selectors are exchanged in the TSi and TSr
payloads, to negotiate IP address ranges and ports of traffic that should be handled with
this new SA. Once the responder answers with appropriate values, the new keying material
is generated using the following formula:

KEYMAT = prf+(SK_d, [g^ir (new) |] Ni | Nr)

SK_d comes from the IKE SA, gˆir is the optional new shared Diffie-Hellman secret value in
case it was negotiated, and omitted in case it was not. Lastly Ni and Nr are the new nonces.
A single CREATE_CHILD_SA exchange may result in multiple SAs. For ESP and AH,
each SA protects a single direction of traffic, so two new SAs are derived for each selected
traffic protection protocol.

2.1.2.5 Rekeying SAs

In order to preserve forward secrecy of connections, IKEv2 allows the rekeying of existing
IKE SAs as well as Child SAs after a configured time interval or message count limit. Other
reasons to rekey SAs include the depletion of fixed-amount counters in the SA (like the
sequence number). Both types of SAs use the CREATE_CHILD_SA exchange for rekeying.

The IKE SA rekey exchange resembles the initial IKE_SA_INIT exchange, except for the
exchange ID header field which is CREATE_CHILD_SA. The request contains a new SA
payload including proposals for cryptographic algroithms, a fresh nonce in Ni and a key share
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Initiator Responder

HDR, SK {SA, Ni, KEi} -->
<-- HDR, SK {SA, Nr, KEr}

Figure 2.7: Rekeying the IKE SA

in KEi. In case of IKE SA rekeying the KE payload in the CREATE_CHILD_SA exchange
is required, not optional as in the other uses of the exchange. The SA payloads SPI field
contains a new initiator SPI for the resulting SA. The responder replies with the accepted
proposal and new responder SPI in the SA payload, a fresh nonce in Nr and its own fresh
key share in KEr. The message id in the response header must match the message id of the
request. The result is a new IKE SA which has all fields (including counters and window
size) initialized to 0. This new SA can be used from there on, but the old SA also remains
active without explicit deletion.

Initiator Responder

HDR, SK {N(REKEY_SA), SA, Ni, [KEi,]
TSi, TSr} -->

<-- HDR, SK {SA, Nr, [KEr,]
TSi, TSr}

Figure 2.8: Rekeying a Child SA

2.1.2.6 Message Fragmentation

IKEv2 Message Fragmentation [Smy14] is an IKEv2 extension that allows to fragment a
single big IKEv2 message over multiple UDP datagrams. The goal is to allow IKEv2 to be
used in networks where IP fragments cannot pass through because of non-permissive firewalls
or network middleware. The motivation was the discovery of several IP fragmentation based
attacks which lead to many firewalls filtering IPv6 fragments.

Using Message Fragmentation, IKEv2 messages exceeding a pre-defined size limit are split up
into smaller so-called fragment messages. Before it can be used an additional notification of
type IKEV2_FRAGMENTATION_SUPPORTED has to be exchanged in the IKE_SA_INIT
exchange to negotiate mutual support for the extension. Once both peers have agreed on the
support, the sender may split up the following messages.

Only messages containing only the encrypted payload can be fragmented in IKEv2. When
the Message Fragmentation was originally introduced the biggest objects sent in IKEv2 were
certificates which are usually sent in the IKE_AUTH exchange which is why fragmentation of
the IKE_SA_INIT exchange was not a design goal. The content of the original SK payload
is treated as a binary blob that is split into pieces smaller than the configured maximum
size regardless of boundaries of inner payloads. The resulting chunks are then sent in new
messages containing the encrypted fragment payload SKF. It differs from the SK payload
only in the header which has two extra fields: Fragment Number and Total Fragments. The
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content of SKF is encrypted and authenticated just like the SK payload, so each fragment
receives individual protection.

A receiver will wait until it has collected all fragments, then decrypt them, verify them and
reassemble them according to their Fragment Number header fields. The resulting packet
can be parsed as if it had been received as a single message.

Below is an example of fragmenting a message taken from the original RFC document:

HDR(MID=n), SK(NextPld=PLD1) {PLD1 ... PLDN}

Original Message

HDR(MID=n), SKF(NextPld=PLD1, Frag#=1, TotalFrags=m) {...},
HDR(MID=n), SKF(NextPld=0, Frag#=2, TotalFrags=m) {...},
...
HDR(MID=n), SKF(NextPld=0, Frag#=m, TotalFrags=m) {...}

2.2 Quantum-Resistant Key Agreement

Today effectively all key agreement methods used in real world network protocols rely either
on the presumed hardness of the discrete logarithm problem or on the hardness of integer
factorization. Examples are public key encryption schemes like RSA and ElGamal but
also Diffie-Hellman and the more recent elliptic curve Diffie-Hellman (ECDH) key exchange
protocols. While the two problems are not equivalent, they both are special cases of the
problem of finding a hidden subgroup for finite Abelian groups which can be efficiently solved
with Shor’s Algorithm.

Quantum-resistant cryptography systems rely on problems that are not known to be solved
efficiently by a quantum algorithm. Several problem categories are known that can be used
to construct cryptographic encryption, signature and key agreement schemes. Some of them
have been known and used for years, others have just been discovered in the recent effort to
develop new quantum-resistant cryptographic schemes.

2.2.1 Post-Quantum Cryptography Standardization

As in other fields of cryptography before, the American National Institute of Standards
and Technology (NIST) is organizing a standardization project with the goal of finding
suitable candidates for real-world use of post-quantum cryptography [NIS19]. Unlike previous
standardization processes, this project is not a contest with a single winner. Rather a set of
algorithms based on different presumably quantum-resistant problem-classes shall be found.
Because of the heterogeneity of these new schemes with regard to key size, speed and security
properties there may be multiple “winners” for different applications. Originally, 59 PKE and
KE schemes and 23 signature schemes were submitted before the initial deadline in late 2017.
Since then the number of considered Post-Quantum schemes was reduced to 17 encryption
and key exchange and 9 signature schemes, over the course of 2 selection rounds. There is
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currently no public information on when and how the process is planned to end and how
many more rounds there are going to be.

2.2.2 KEMs and KEXs

In order to understand the NIST submissions it is important to provide some definitions
for different nomenclature first, as even academic literature is sometimes ambiguous. As
mentioned before, the IKEv2 protocol provides key agreement. The property meant here
is defined as a mechanism which allows multiple parties to agree on an identical common
secret. Cryptographic key agreement methods usually provide key secrecy, so that only the
original peers who agreed on the keys have knowledge of it. An important distinction to
make between different kinds of key agreement is who can influence the resulting key to what
extent.

One solution for key agreement is the key exchange, where both peers’ exchange material
resulting in a shared secret key. In an ideal key exchange scheme, all peers contribute equally
to the final key. A perfect example for a key exchange protocol is the Diffie-Hellman key
exchange [DH76]. Both peers exchange exactly the same amount of data (the public share)
to derive a common key that is equally influenced by the peers. This is possible because of
the commutativity of the modular exponential function used in the original Diffie-Hellman
construction.

It has further been shown that the original Diffie-Hellman construction is not the only one
allowing for this kind of commutative combination. The same is used in the ECDH protocol,
only that it uses elliptic curves instead of multiplicative groups. Of the proposed quantum-
resistant protocols in the NIST competition, only few have provided a Diffie-Hellman like
key exchange. Those that can be seen as proper key exchange schemes in most cases have
to exchange additional parameters in addition to the public share, like generator matrices,
seeds or reconciliation helpers. Examples for key exchange schemes in the NIST process are
the lattice-based NewHope and Frodo schemes which both exploit a commutative property
constructed from the (R-)LWE problem.

Most of the NIST submissions instead is provide a so called key encapsulation mechanism
(KEM). KEMs are usually the result of a public key scheme being converted to a key
agreement. The most basic transformation is trivial: Given a public key scheme with a public
key Kpub, a private key Kpriv and the operations c = enc(m,Kpub) and m = dec(c,Kpriv) for
encryption and decryption, the scheme could look as follows: peer A sends its public key KA

pub

to B. B generates a new uniformly random secret key s and calculates c = enc(s,KA
pub). c is

returned to the sender, who can then decrypt s = dec(c,KA
priv). At this point, provided only

A knows KA
priv, both A and B know the shared secret s without exposing it to an eventual

eavesdropper. A problem in this design is that the key s was actually solely generated by B
and A has to trust B to generate a secure key. A better general transformation from a public
key encryption scheme was proposed in [Den03], which allows to construct a secure KEM
from almost any known cryptographic scheme. An improvement to the construction above
is the introduction of a key derivation function (KDF) which, when used with the shared
secret s, outputs an algebraic unrelated value s′ that has only been seeded with the value
generated by B.
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The majority of the key agreement methods in the NIST process are actually KEMs. Examples
are NTRU-Prime, Crystals-Kyber or SIKE. One reason for the high number of KEMs in the
process may be due to NIST’s wording for the request which explicitly mentioned KEMs
instead of more generally key agreement methods as discussed in [NIS16]. It should be noted
that many of the submitted KEM constructions use sophisticated mechanisms to counter the
problems of KEMs mentioned before and use cryptographic password derivation functions to
derive a key from a common seed resulting from the exchange.

2.2.3 Overview of the Known Methods

The following section will give an overview of problem spaces that have been used to construct
cryptographic schemes that can resist quantum computer attacks, a description of some of
the more prominent schemes and an assessment of their relevance with regards to the NIST
standardization process.

• Lattice-Based Cryptography: Lattices are amongst the most promising approaches
for quantum-resistant PQC systems that could be used in real world applications.
The lattice problems include the shortest vector problem (SVP), the closest vector
problem (CVP) and the learning with errors (LWE) problem. In 1998 the lattice-based
NTRU PKE system was proposed and has not been broken yet [HPS98]. Lattice-based
schemes can be further divided by whether they use structured or unstructured lattices,
where the former introduce some structure for a gain of performance and smaller key
sizes. An example of a structured-lattice problem is the Ring Learning With Errors
(RLWE) problem which resembles the LWE problem but is adapted for polynomial
rings over finite fields. This allows RLWE schemes to have smaller keys than schemes
based on LWE. On the downside, the RLWE problem’s security reduction proves SVP
hardness in ideal lattices, not in general lattices. It is believed that solving SVP in
ideal lattices is as hard as in regular lattices, but the confidence in structured lattices
is lower. Lattice-based systems make up the biggest share of PKE and KEM schemes
in the NIST project (9 out of the 17 proposed schemes), as of October ’19.

• Code-Based Cryptography This approach uses error-correcting codes (ECC) as
they are used in information and coding theory, especially the problem of recovering
information from a noisy message. In 1978 Robert McEliece published a cryptosys-
tem [McE78] based on the hardness of decoding a general linear error correction code.
The public key of the scheme is a random binary Goppa code, a special kind of error
correction code disguised as a random linear code. The ciphertext is the plaintext plus
random errors. The private key is what is needed to extract the Goppa code from
the public key. Because the problem of decoding general linear codes is NP-hard, but
decoding binary Goppa codes can be solved efficiently using Patterson’s algorithm the
construction can be used as a public key encryption scheme. Another notable candidate
is the Niederreiter scheme [Nie86] which also applies McEliece’s approach to build a
crypto system that can be used as a digital signature scheme. Many others have tried
to make the original McEliece scheme more efficient by using different kinds of codes,
but most of them have turned out to be insecure. Code-based schemes also make up
the second biggest group in the NIST PQC standardization project: Currently 7 of the
remaining 17 PKE and KEM submissions are based on error correction codes.
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• Supersingular Isogenies The security of supersingular isogeny (SI) schemes is related
to the problem of finding an isogeny mapping between two supersingular elliptic curves
with the same number of points. Even though these constructions use elliptic curves,
they are not to be confused with elliptic curve cryptography used today. De Feo, Jao
and Plut proposed SIDH, a new Diffie-Hellman like key exchange scheme based on
supersingular isogenies that provides forward secrecy and has relatively small keys in
comparison to other quantum-resistant schemes. The list of presented SI cryptography
systems is limited. Only SIDH and its Key Encapsulation Mechanism (KEM) version
SIKE have been proposed before the NIST deadline which makes SIKE the only SI
scheme to remain in the standardization process. Since then, a novel but promising
scheme called CSIDH was proposed in 2018 [CLM+18]. It is built around a similar
problem as SIDH and also promises a Diffie-Hellman-like commutative construction,
which is a rare property among presumably quantum-resistant schemes.

• Multivariate Equations These are a class of systems built around the hardness of
solving polynomial equations over finite fields. Most of the proposed systems using
this approach have been broken. Prominent examples include the C∗ crypto system by
Matsumoto and Imai [MI88]. Of the few PKE and KA schemes originally proposed
in the NIST PQC project, not a single multivariate equation scheme made it into the
second round of the standardization process.
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Different previous works have looked at ways to integrate post-quantum cryptography into
real world applications. Some have integrated PQC implementations into cryptography
software libraries, others replaced old asymmetric schemes in network protocols like TLS
with newer lattice or code-based PQKE alternatives. This section gives an overview of the
previous work that has been done in integrating PQC schemes into real world software and
their results.

3.1 Transport Layer Security

The Transport Layer Security (TLS) protocol, previously named Secure Socket Layer (SSL)
is the presumabely most used network encryption protocol today. It is not only used in VPN
solutions like OpenVPN, but also in the HTTPS and QUIC protocols which secure most
of today’s world wide web traffic. According to the Google Transparency Report 90 of the
100 most visited web sites default to the TLS encrypted HTTPS protocol [Goo19]. TLS
is implemented in various major crypto libraries such as OpenSSL, Google’s OpenSSL fork
BoringSSL, LibreSSL and Mozillas NSS.

Many of the popular protocol implementations as well as independent academic researchers
have built “proof of concept” implementations of PQC schemes into the TLS protocol:

BCNS: In a 2015 scientific paper [BCNS15] Bos et al. proposed a novel LWE based key
agreement scheme which was specifically developed to be used in the TLS protocol.
In later mentions the scheme is usually referred to as BCNS, after the names of the
authors: Bos, Costello, Naehrig and Stebila. While the paper mentions TLS, the
contribution is rather a new general PQC scheme that is motivated by the necessity
of PQC alternatives for the TLS protocols. The paper itself does not deal with TLS
specific problems in combination with PQC but rather treats the new scheme as a drop
in replacement for RSA and DH. The scheme itself can be thought of as a predecessor of
many following unstructured lattice schemes, especially Frodo which is one of the NIST
candidates entered by the same research group. Douglas Stebila, one of the original
BCNS authors is also project leader of the Open Quantum Safe project as well as the
author of an IETF internet draft [SFG19] that proposes a hybrid post-quantum key
exchange for TLS 1.3 which is not limited to a single PQC scheme.

IETF Work: Various Authors have submitted IETF drafts to introduce different PQC
schemes for the TLS handshake. An early draft in 2001 introduced the NTRU
scheme [Sin01] as a drop in replacement for RSA in TLS 1.0, but was later aban-
doned. Later drafts rely on hybrid post-quantum and classical scheme combinations to
deal with the low confidence in the newer PQC schemes. A currently proposed draft
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called “Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport
Layer Security 1.2 (TLS)” [CC19] introduces ECDH-BIKE and ECDH-SIKE, based
on hybrid combinations of the NIST entries SIKE and BIKE with the popular elliptic
curve Diffie-Hellman key exchange. Contrary to what the names might suggest, SIKE
and BIKE are not related. SIKE promises the smallest public keys of all the NIST
submissions but is based on the novel supersingular isogenies that are considered
immature by some, while BIKE relies on codes which leads to relatively big keys but is
mostly considered a well studied problem. Another recent draft by Stebila and Gueron
has the goal to provide a scheme agnostic framework to introduce hybrid post-quantum
and classical key exchanges in TLS 1.3 [SFG19]. While their approach is very similar
to this work, the draft is in a very early stage and does not provide any noteworthy
groundwork today. While many solutions have been proposed, none has been adopted
and published as an official RFC.

CECPQ1/2: In 2016 Google announced first experiments with post-quantum cryptography
in the desktop version of their popular Chrome web browser as well as their own HTTP
servers [Goo16]. Their choice of Key Agreement scheme fell on the “NewHope” scheme
by Schwabe et al. which they deemed the “most promising” of the ones they investigated
on the search for a suitable candidate. The post-quantum scheme is used in combination
with the already present and well studied ECDH key exchange. This guarantees that
in case the new PQC scheme is broken the connection security degrades to the security
of ECDH and specifically Curve25519 which is still regarded secure against classical
computers today. The results of their experiments were published in [Lan16]. Because
of the additional size of the NewHope exchange, a increase in network latency could be
expected which was confirmed by their measurements. According to their report, “[. . . ]
the latency of the slowest 5% of connections increased by 20 ms and, for the slowest
1%, by 150 ms”. The conclusion of this first experiment was that, even though the new
key agreement added measurable latency, a quick deployment of NewHope in TLS 1.2
and 1.3 in case of need would indeed be possible. Two years later in December 2018.
Adam Langley et al. announced a new round of experiments with PQC in the Chrome
Browser called CECPQ2 [Lan18]. Because of the success of the previous experiments
the authors decided to remain with a structured lattice scheme which is used in a
hybrid combination with the x25519 elliptic curve. This time the choice fell on the
NTRU-HRSS scheme by Schwabe et al. The scheme is one of many structured lattice
schemes in the NIST competition for PQC schemes. At the moment of writing Google
has not yet published any results and the authors noted that results cannot be expected
soon because the experiment depends on the new TLS 1.3 standard which rolls out
slowly.

Cloudflare: Similar to Google’s CECPQ experiments Cloudflare has published an imple-
mentation of the isogeny based SIDH key exchange written in the Go programming
language which can be used in Cloudflare’s Go TLS library where it can be used in a
hybrid key exchange together with x25519. The only official statement for the addition
is a blog post [Val17] explaining their setup but no evaluation or internal test results
with the new KE have been published.
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3.2 IPsec Protocol Suite

There has been considerable previous work in the area of PQKE in the IPsec key exchange
protocol IKEv2. The contributions go from popular applications adding experimental support
for PQKE schemes, over academic contributions evaluating the feasibility of different schemes,
to standardization efforts at the IETF. As of now there is no official IETF RFC document
providing quantum-resistance for IPsec, but various solutions have been proposed to make
the IKEv2 protocol quantum-safe.

Strongswan: Strongswan is one of the most wide spread implementations of the IKEv2
protocol for Linux. The project implements several non-standard post-quantum key
exchange methods, including the lattice based “NTRU” and “NewHope” schemes. They
are implemented in the form of IKEv2 DH groups and thus can be used as a replacement
for the normal Diffie-Hellman key exchange of the IKEv2 protocol. Because the protocol
does not normally allow multiple key exchanges per SA they can not be used in a
hybrid way. As they use “private” IDs the quantum-resistant algorithms can only be
used between two Strongswan clients. In a special test environment there have also
been tests using different PQC key agreement methods provided by “liboqs” [SM16] in
a hybrid key exchange similar to what was proposed in an early version of the IETF
draft [TTg+19]. The result is a modified IKEv2 protocol that allows the negotiation of
an additional hybrid KE in the “IKE_AUX” (now IKE_INTERMEDIATE) exchange
in between the IKE_SA_INIT and IKE_AUTH exchanges. The negotiation is done
via the optional “Notify” payload. To the time of writing no results of the experiment
have been published except for the Strongswan Documentation1 of the Setup and an
introduction talk at the IETF group meeting2.

Post-Quantum Cryptography for IPsec: In 2014 Ephraim Zimmer published a paper
based on his thesis which examined ways to integrate a post-quantum key exchange,
specifically the code-based Niederreiter scheme, in the IKEv2 protocol [Zim15]. The
result was a Strongswan extension adding the code PQC scheme as a Diffie-Hellman
alternative. Code based schemes, and especially the Niederreiter schemes come with the
disadvantage of very big keys (>65535 Bytes). As IKEv2 is a UDP-based protocol those
keys exceed the maximum message size of the protocol, which is why the author had to
resort to the “Hash and URL” method. Instead of the actual key a participant sends
an URL and a hash of its public key. The peer then downloads the key from the URL
via the HTTP protocol and verifies the downloaded key with the previously received
hash. The downside of this method are the requirement for HTTP and the additional
protocol complexity due to the side-channel key exchange. The author concluded that
code-based PQC schemes come at a cost of big keys and thus worse performance than
the classical DH or ECDH key exchanges, but in general a code-based PQC in IKEv2
is practical.

IETF Work: Since mid 2017 there have been efforts to achieve quantum-resistance in the
IKEv2 protocol. One approach that has since been adopted by the working group and
is waiting to become an official RFC document is “Postquantum Preshared Keys for

1https://www.strongswan.org/testing/ikev2-qske/swanctl/rw-qske-l5/index.html
2https://datatracker.ietf.org/meeting/104/materials/slides-104-ipsecme-pqc-for-ikev2-in-strongswan-00
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IKEv2”. The proposed draft adds pre-shared encryption keys that are hashed into the
Child SA key derivation hashes. The resulting keys are quantum-resistant as pre-shared
keys can not be cryptographically broken by either classical or quantum computer. The
obvious downside is that this approach reintroduces one of the fundamental problem
that IKE was meant to solve which is manual key management. A second draft named
“Framework to Integrate Post-quantum Key Exchanges into Internet Key Exchange
Protocol Version 2 (IKEv2)” has the goal to develop a well defined set of rules for how
IKEv2 can be extended to do multiple key exchanges (where the additional ones will in
most cases be PQKE). The content of the draft has changed drastically over 4 revisions
and further redesigns can not be ruled out, as the authors try to find the consensus
of the working group. At the time of writing the authors propose the use of another
IKEv2 extension called IKE_INTERMEDIATE [Smy19] to handle the additional KE. It
adds the Intermediate Exchange between IKE_SA_INIT and IKE_AUTH in order to
exchange large amounts of data before IKE_AUTH. While the Intermediate Exchange
is meant to be used to exchange arbitrary data, it was developed with the PQKE draft
as motivation and first use-case. Despite having gone through a number of revisions the
IKEv2 PQKE draft is in an early stage and has not yet been adopted by the ipsecme
working group.

3.3 Other Implementations

A lot of related work that has been done is neither specific to TLS nor IPsec. Among these are
pure implementations of PQKE schemes in popular cryptographic software libraries or other
encrypted and authenticated network protocol implementations that implement PQKEs.

OpenQuantumSafe: The open quantum safe project is a research effort lead by D.
Stebila an M. Mosca from the university of Waterloo, working on the integration
of post-quantum cryptography into network protocols [SM16]. One result of their
work is LIBOQS, an open source software library implementing some of the most
popular PQC schemes in a single library with a unified API. Additionally the team has
integrated liboqs into OpenSSL and OpenSSH to make it usable in a variety of real
world projects. Several experimental projects and software forks use liboqs or OQS
OpenSSL to demonstrate real world PQC applications.

PQCRYPTO: Another research project in the field of applied PQC coordinated by
Technische Universiteit Eindhoven. Besides many of the schemes submitted to the
NIST standardization process they have compiled a software library of all NIST code
submissions called libpqcrypto [PQC19]. The library unifies the usage of the different
schemes under the API of the popular NaCL cryptography library.
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One of the biggest obstacles in the integration of new quantum-resistant cryptographic
schemes into existing network protocols like IKEv2 is the fact that most schemes cannot be
used as a drop in replacement for nowadays cryptographic schemes like RSA or ECDH because
of constraints in key size, encryption or decryption speed and other special circumstances.
On the other side modifications to the protocol come with the danger of introducing new
security holes that could be worse than the threat of an adversary leveraging a quantum
computer.

The most fundamental requirement for a secure protocol arises from the research question of
this work itself. It is the relatively vague requirement to provide security against an attacker
in the future that can leverage a quantum computer capable to solve the discrete logarithm
and prime factorization problems efficiently using Shor’s algorithm. All other requirements
for the protocol are in some way derived from this single goal. Many of the requirements arise
from constraints in the IKEv2 protocol which was designed around the Diffie-Hellman key
exchange, other arise from uncertainties regarding specific properties of the cryptographic
post-quantum key agreement schemes presented in Chapter 2.2.

This Chapter starts with a closer look at the existing post-quantum cryptographic landscape
and a comparison of the new schemes in regards to properties such as key sizes and encryption
speed to find out what changes to the protocol are required to use those new techniques. The
goal of this work is to add security to the protocol. To make sure there is no loss of security
when the protocol is modified, the next section analyzes the existing security properties of the
IKEv2 protocol and what is required to preserve those properties. At last, a method to verify
the security properties of a network protocol is introduced in the form of assisted formal
verification as it was used in the design of several other IETF protocol standards. It will aid
in the evaluation of the new protocol by giving a means of comparing the security properties
of the modified and the original IKEv2 protocol. In the end a number of clearly defined
requirements can be formulated which will guide the design and the following evaluation of a
quantum-resistant IKEv2 successor.

4.1 PQKE Requirements

Due to the standardization efforts of NIST and the combined research and development results
of several projects like PQCRYPTO and OpenQuantumSafe, a broad range of quantum-
resistant key agreement methods utilizing the known quantum-hard problems have been
proposed and tested in academic settings. The goal of this work is also the first requirement
for a post-quantum protocol: to protect the IPsec key exchange against a future
quantum attack. The reason none of the published post-quantum schemes has been
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Type Name
Code BIKE

Classic McEliece
HQC
LAC
LEDAcrypt
NTS-KEM
Rollo
RQC

Lattice CRYSTALS-KYBER
FrodoKEM
NewHope
NTRU
NTRU Prime
Round5
Saber
Three Bears

Isogeny SIKE

Table 4.1: The NIST round 2 candidates for Quantum-Resistant Key Exchange

officially standardized for existing protocols is not a lack of interest of the responsible parties
(for IKEv2 mainly the IETF ipsecme working group) in modern cryptographic primitives. In
fact many cryptographic schemes have been added to IKEv2 after the original RFC in the
from of extensions, for example all supported ECDH curves. Most such extensions define
a new static Transform ID value identifying the added algorithm, as well as some security
considerations and additional checks to be performed by the IKEv2 agents. In the case of
ECDH for example, peers have to check that a received point actually lies on the elliptic
curve.

The problem with the proposed quantum-resistant schemes is that they have heterogeneous
constraints that make it difficult to use them as drop-in replacement for the Diffie-Hellman
or ECDH exchange. These constraints include exceptionally big public keys that have to
be transmitted over the network, high computational complexity or the requirement to
regenerate certain values after each application, all of which have not been considered when
designing the network protocols used today.

Because not all schemes that claim quantum resistance can be considered, this work limits its
considerations to the schemes that are in the NIST process at this point. More specifically,
all key exchange schemes that made it into the second round of the standardization process.
A full list of the considered schemes is given in Table 4.1.

4.1.1 Comparison of Schemes

To understand the specific constraints mentioned before it is useful to compare the quantum-
resistant schemes in regards to properties relevant for cryptographic systems. The properties
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Figure 4.1: The NIST Submissions in Comparison

most suitable for comparison are those that can be reliably measured, such as byte sizes of
keys and cipher as well as encryption and decryption speed. The security of the new schemes
on the other hand cannot trivially be compared. As most of the proposed schemes have only
been published recently and thus have not received in-depth security analysis by a third
party.

Because individual security claims cannot be easily verified, a common but informal property
used to evaluate a scheme is the confidence that exists in the security of the scheme. Older
schemes that have been analyzed in more depth and have received more attention from
academic reviewers enjoy a higher confidence than newer schemes. This is a relevant factor for
quantum-resistant schemes as most are built on hardness assumptions that have been found
only recently and that have never been used in the construction of cryptographic systems
before. Moreover the NIST process has induced a high number of individual submissions
that all happened at the same time, while the number of security researchers in the field is
limited. As a result, existing thought to be post-quantum schemes could not receive enough
attention in the form academic reviews yet to consider them trustworthy. At the same time
even systems that have had public attention and that have received much more analysis in
comparison have had security holes that remained undiscovered until many years later, as
seen in the Logjam attack [ABD+15] that showed how some settings of the Diffie-Hellman
key exchange are less secure than assumed before.

Figure 4.1 shows a plot of the NIST PQKE candidates with their problem category denoted
by color, the average encryption speed in cycles on the X-axis and the public key size on
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the Y-axis. The color encoding is explained in the legend. Several patterns can be observed
in this graph. The single red dot in the bottom left corner of the diagram is RSA-2048
which was added to set the post-quantum schemes for comparison with a commonly used
comparable non-quantum scheme. It becomes clear that the quantum-resistant schemes are
all either slower or have bigger keys than RSA. The slowest scheme seems to be around 500
times slower than RSA-2048, the biggest keys are more than 2500 times the size of RSA’s.
It becomes obvious that, at least with the known methods, resistance against quantum
computers comes at a cost.

A notable pattern are the two yellow points at the very bottom of the diagram. They are in
the singular isogeny category, more precisely they are two different configurations of SIKE,
the only isogeny based scheme in the NIST competition. What makes them special is that
they are among the best when it comes to public key size (around 500 Byte), but seem
to perform badly in terms of encryption speed compared to both code and lattice based
primitives.

For code- and lattice-based schemes it can be observed that some schemes, even though they
can almost compete with RSA when it comes to encryption speed, use public keys of immense
size compared to the RSA system. At the most extreme keys can grow to over 1 Megabyte of
size. In comparison: RSA-2048 has 256 Byte keys, the popular ECDH key exchange needs to
send only 32 Byte of public key shares. Public key size is a serious limitation for network
protocols. UDP datagrams have a maximum size of 65536 Bytes or 65 Kibibytes and thus
can’t fit some of the lattice and code-based schemes keys. The IKEv2 protocol has even lower
size limitations.

Figure 4.2 shows a comparison of the code-based McEliece scheme with other round 2
candidates. The Y-axis this time shows the public key size in Megabyte. It can be observed
that McEliece can have keys up to 1 MB and more in size. In comparison the red line shows
the 1280 Byte mark, an important limit for the IKEv2 protocol as this is the minimum
MTU in IPv6 and thus the maximum packet size that guarantees that the IPv6 packet is not
subject to fragmentation on IP protocol level. IP fragmentation is often seen as a security
risk, with the result that network middleware and firewalls block IP fragments from passing
through. This constraint makes many of the post-quantum schemes in this comparison
unusable in such networks. Not only most code-based constructions but also almost all of the
unstructured lattice schemes have public key sizes of more than a Kilobyte. Only structured
lattice schemes and SIKE which is based on supersingular isogenies can be used without a
workaround in those cases.

Even though those keys seem unpractical compared with what we have used before, there is
a reason the schemes are still in the NIST competition (unlike the more than 70 schemes
that have dropped out by now). As mentioned before, the confidence in the security of the
new quantum-resistant schemes is generally low, as most have not been thoroughly been
analyzed and field-tested. The McEliece scheme is a rarity because it has been published
in 1978 which makes it the oldest scheme in the competition followed by NTRU which was
first proposed in 1992. Moreover the McEliece scheme has withstood years of cryptographic
analysis without being broken, giving it a fair amount of confidence compared to the PQC
competitors. This makes McEliece almost the only choice for high-security applications and
the only recommended KEM by the PQCRYPTO project [ABB+15]. On the other hand it is
not practical to use in low bandwidth or low memory settings where the newer SIKE may be
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Figure 4.2: McEliece in Comparison

preferred for its small size which again may be too slow for some other settings that require
low latency.

The number of key exchange schemes in scope cannot easily be reduced because their probably
most important attribute - the provided security - cannot be reliably judged with today’s
knowledge. All of the compared schemes present a trade-off between speed, communication
overhead and security. Consequently, a quantum-resistant key exchange protocol should
be designed with respect to the fact that any of the schemes may turn out to be broken,
thus it is crucial that it can easily replaced with one of the remaining. This property is
called cryptographic agility or short crypto-agility. The protocol is responsible to support
cryptographic agility by providing facilities to cope with the specific constraints of the different
key agreement methods instead of the protocol relying on the properties of a single method.
Consequently a second requirement is the Support for big keys as they are needed for the
McEliece scheme.

4.2 The IKEv2 security model

The IKEv2 standard does not provide a detailed description of the desired security properties
of the IKEv2 protocol. Only few properties are explicitly mentioned, including: secure key
exchange, forward secrecy [p. 44], identity protection [p. 9], message authentication [p. 9].
For a more de
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4.2.1 The IPsec Key Exchange Protocols

The IKEv2 protocol is not the first IPsec key exchange protocol. Many protocols before have
tried to solve the same problems and some of them have been the subject of comprehensive
security research and analysis. Early IPsec key exchange protocols like the Firefly and
the Photuris protocol have relied on the STS key exchange protocol for authenticated key
exchange which combines public key encryption with a Diffie-Hellman key exchange.

Other protocols that have emerged in the IETF standardization process for a IPsec key
exchange protocol have been SKEME which is similar to Photuris but makes Diffie-Hellman
optional and adds fast rekeying without adding much complexity and the Oakley protocol.
The STS key exchange that most of those protocols were based on was later shown to have
several drastic security flaws. The result was the original IKE protocol which used a signature
authentication mode later called the SIGMA protocol [Kra03]. One of the major design
decisions with SIGMA was that it provides built-in identity protection, a feature that many of
the previous protocols failed to provide. The protocol as it is used in IKE has been analyzed
in detail by Krawczyk et al in [CK02].

The history of IPsec key exchange protocols shows that the design of a protocol is not trivial
and previous protocols like the original IKE turned out to have major design flaws that were
only discovered after publication and adoption as an IETF RFC. The goal of this work is
to find a way to make IPsec and especially the IPsec key exchange secure against a future
quantum computer attack, which also implies security against today’s non-quantum attacks.
Because of this, the presented work limits its scope to the IKEv2 protocol and does not
consider the design of an entirely new replacement. The IKEv2 protocol has withstood
previous cryptographic analysis without major protocol flaws or attacks.

4.2.2 Security Properties

Based on what was learnt from previous protocol’s failures, a number of desired security
properties for authenticated key exchange protocols can be derived which were used in the
design of the IKEv2 protocol. The IKEv2 RFC [KHN+14] itself does not go into detail about
what security properties are to be guaranteed by the protocol. In a previous formal analysis of
the IKE and IKEv2 protocols [Cre11] came up with the following list of explicitly mentioned
security properties: Obtain authenticated keying material, Diffie-Hellman security properties
as described in Oakley, mutual authentication and perfect forward secrecy. Authentication is
defined informally as two parties agreeing on a their peer identities. The different “strengths”
of authentication properties have been explored in detail in the work by Lowe in [Low97].
The description given in [KHN+14] corresponds to Lowe’s weak authentication property.
The original design rationale for the IKEv2 protocol in [Har02] further discusses identity
hiding against active and passive attackers as one of the original design goals of the protocol.
Further information on IKE’s security properties can be found in the SIGMA paper by
Krawczyk in [Kra03] which formalizes the authenticated key exchange method which was the
basis for the IKEv2 public-key authentication. It provides a more precise definition of the
authentication and secrecy properties and adds consistency to the list of desired properties.

For this work, the desired security properties (compiled from the before mentioned sources)
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that the IKEv2 protocol and consequently also the quantum-resistant IKEv2 protocol must
fulfill in order to provide a secure authenticated key exchange are defined as follows:

Authentication Both parties are able to uniquely identify the other party with which a
handshake was performed. The notion from [KHN+14] corresponds to weak agreement
as defined in [Low97]. Authentication properties can be subdivided into aliveness and
agreement. The weak agreement property as it is described in [KHN+14] by definition
implies the weaker aliveness, meaning every time one party completes a run of the
protocol, it implies that the other party has previously been running the protocol. When
in addition as a result of the sucessful handshake, the initiator and responder agree on
a number of session properties such as session keys, lifetime, and used algorithm, the
protocol satisfies non-injective agreement or simply agreement.

Consistency When two uncorrupted parties have agreed on a matching session, they also
have a consistent view of the session keys. When the initiator I establishes a session
with the responder R, then if R establishes the same session with initiator I then both
parties must output the same key K.

Key Secrecy When two honest peers successfully derive a shared session secret, an attacker
or passive attacker cannot distinguish the secret from a random string of the same length.
In simple terms: no third party can learn any information about the derived secret.
Former session secrets should additionally be protected in spite of the compromise of
long-term secrets. This property is known as “perfect forward secrecy”.

Identity Hiding As a requirement for the strong authentication property the peers identity
has to be communicated some time during the handshake. This identity value should
be protected. As the identity is required for authentication, it is not possible to protect
both identities against an active attacker as explained in [Kra03]. The KE should
protect both identities from a passive attacker and the responder identity from an
active attacker.

4.3 Formally Verified Security

Now that it is clear what security properties a quantum-resistant IKEv2 must satisfy, an
open problem is how to make sure the protocol actually does so. In the original design of the
IPsec and IKE protocols, the design process of the protocols followed a very informal process.
Whether a protocol was thought to provide a certain security property was based mostly on
the consensus of the IETF participants. Even though they certainly were experts in their
respective fields, this design process lead to various major design flaws and security weaknesses
in earlier protocol designs which were only discovered in later formal analysis [Cre11] [Mea99].

Over the last decades there have been considerable research achievements in the area of
symbolic analysis of security protocols. Formal verification tools have been successfully
employed in the development of new protocols to find attacks early or show their absence.
Multiple flaws and attacks in established network protocol standards have lead to a rethinking
of the classical development process. IETF working groups like TLS have shifted to a “analysis-
prior-to-standardization” approach for their recent protocol version 1.3 and were, with the
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help of academic verification contributions, able to successfully find and eliminate flaws in
early design before they could do any harm [CHH+17].

The IKEv2 protocol handles the secure key exchange and the authentication which makes
it a single point of failure for the IPsec architecture. While there has been a substantial
amount of formal analysis for the IKE (Version 1) protocol, the current IKEv2 protocol has
only received limited attention in terms of verification and analysis. The most comprehensive
work was done in [Cre11] which found several non-critical violations of strong authentication
properties in the IKEv2 protocol.

The modification of the IKEv2 key exchange messages is a drastic change to the protocol design
and could have severe consequences for the protocols security properties. A requirement for
this work thus must be to formally analyze the new protocol to ensure the required
security properties. Because no existing IKEv2 analysis has been done with modern
verification tooling a second requirement arises: Before the modified protocol can
be verified, a formal model of the original IKEv2 protocol must be built and
analyzed for its security properties. Because the goal is to find a way to integrate
post-quantum security into the IKEv2 protocol, the IKEv2 model can then be extended to a
post-quantum IKEv2 model while the definition of security properties and basic functionality
will not need additional changes, making it easier to compare the two protocols. Previous
analysis of IKEv2 as seen in [Cre11] or [CHH+17] can serve as a “ground truth” for the
validity of the new model. If the formal model correctly represents the protocol, the analysis
should come to a similar result as the previous works.

4.4 Requirements and Methodology

The previous sections have derived various very different requirements for a quantum-resistant
IKEv2 protocol. Some of the requirements are very specific, others are more conceptual and
can not easily be measured. Before the work on the protocol itself can start, the requirements
will be structured and sorted in a way that results in a clear methodology for the design and
following evaluation of the new protocol.

As a first requirement stands of course the Quantum-Resistance. The obvious way to
achieve it is the integration of the known post-quantum key exchange schemes into the
protocol. Section 4.1.1 explained that the security of those schemes is uncertain, which is
why the favored approach to integrate post-quantum key exchanges is with a hybrid solution
which relies on a combination of classical and post quantum exchanges.

It has also become clear that no single new key exchange method should be chosen, instead
the protocol should provide Crypto-Agility and support a choice of key exchange method.
This comes with the caveat of having to deal with the various constraints of the proposed
schemes, such as keys that require IP fragmentation and thus break the protocol in certain
settings, keys that do not fit into single UDP datagrams and computational complex and
slow key exchange schemes.

Because of modifications to the protocols most fundamental structure, the key exchange, it
must be made clear that the new protocol does not break the existing Security Properties of
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the IKEv2 protocol. For this requirement to be met, the protocol must provide authentication,
consistency, key secrecy and identity hiding, just like the original IKEv2 protocol does.

The actual security of a protocol is not trivial to determine. One method that is gaining
popularity is computer aided Formal Verification, which allows to proof or disproof certain
properties of an analyzed protocol in the formal model. The design of a quantum-resistant
IKEv2 protocol should consider “verifiability” of the protocol by keeping the complexity
of the protocol state machine as low as possible. Before the quantum-resistant protocol
can be verified, the original IKEv2 protocol must be modeled and analyzed for the security
properties, to act as a basis for comparison with the modified post-quantum IKEv2 protocol.

One last requirement that has not been named before is the Practicability of the presented
protocol. After all it is unclear whether a protocol doing more than one key exchange,
eventually using kilobyte sized keys or slow key exchange methods can realistically be used
in real-world settings. This requirement can be evaluated in the form of a proof of concept
implementation of the protocol performing several test runs of a key exchange benchmark
comparing the latency of the post-quantum protocol against the original IKEv2 protocol.

An overview of the collected requirements is given in Table 4.2.

Requirement Subgoals

Quantum-Resistance Integration of post-quantum schemes
Hybrid key exchange

Crypto Agility Support keys problematic because of fragmentation
Support keys problematic because of UDP size limit
Support computational complex schemes

Security Properties Authentication
Consistency
Key Secrecy
Identity Hiding

Formal Verification Verification friendly protocol design
Security proof for IKEv2
Proof to quantum-resistant IKEv2

Practicability Proof of work
Benchmarking

Table 4.2: Summary of the requirements analysis
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Protocol

The previous Chapter 3 has shown that there have been various attempts to modify ex-
isting network protocols - and even the IKEv2 protocol specifically - to support the use
of post-quantum key exchange schemes. Most implementation specific proof-of-concept
implementations of PQKE in IKEv2 presented solutions that are limited to only one or a
selected subset of the considered PQKE schemes. The standardization work in the IETF
IPsecme working group on the other hand has evolved to search for a generalized solution
to use any not further specified key agreement schemes combined in a so called hybrid key
exchange. The proposed solution allows most of the PQKE schemes considered in this work
to be used in IKEv2 but fails to address some of the constraints presented by the others.

To design a protocol that can satisfy all the requirements extracted in Chapter 4 some major
modifications have to be made to the IKEv2 protocol. Some of the presented requirements
have already been solved by related work, in which case their solutions have to be analyzed
and then compared. Some of the related work also contains explanations for alternative
designs that have been discarded, which will also be considered in the comparison. Other
constraints have not been considered in previous work. In this case the presented solutions
may be novel and thus have not received any previous discussion or review. Factors that
go into the comparison include how well a particular solution resolves the before mentioned
constraints and also how intrusive the change is to the original IKEv2 protocol design.
Note: less changes to the protocol mean lower probability that a new protocol vulnerability is
introduced and thus resulting in a higher confidence in the security of the presented protocol.

This section goes on to present a detailed description of all modifications to the IKEv2
protocol that solve any of the requirements from Chapter 4. A comprehensive analysis of
possible solutions to each of the before mentioned constraints will be presented which results
in a well defined quantum-resistant PQ-IKEv2 protocol utilizing the modifications that
performed best in each of the compared categories. The following chapters will then evaluate
the protocol in regards to the requirements, either using formal methods or experimental
proof of concepts and measurements.

5.1 Exchanging Multiple Keys

One of the most notable changes required in the IKEv2 protocol is the introduction of
additional key shares that have to be exchanged during IPsec connection establishment. The
challenge lies in preserving the security of the protocol as well as satisfying the goals and
requirements defined in Chapter 4. Especially the downwards compatibility goal makes this
task tricky, as the allowed modifications to the IKE_SA_INIT exchange are limited.
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1 2 3
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Payload |C| RESERVED | Payload Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Diffie-Hellman Group Num | RESERVED |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Key Exchange Data ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.1: Key Exchange payload

In a setting where the initiator supports the new hybrid key exchange extension and the
responder does not, the IKE_SA_INIT message sent by the initiator should still be understood
as a valid IKE_SA_INIT request in order to get meaningful errors and exception handling.
Moreover, the initiator might want to opportunistically offer a hybrid key exchange and
downgrade in case it is not supported with the peer. For this to work the peer at the very
minimum has to not throw an error on parsing the initiator’s request.

5.1.1 Combined Hybrid Exchange

The least intrusive approach for the protocol would be to handle the hybrid exchange outside
of the protocol itself, by combining two key exchanges into a single hybrid key exchange
which the IKEv2 protocol sees as just another new KE. Given two distinct key exchange
mechanism, which both follow the model of exchanging a pair of messages to derive a shared
secret, this can be achieved by simply concatenating the exchanged public key shares. Figure
X shows the structure of the key exchange payload used in IKEv2.

The hybrid key exchange can be carried out transparently to the transport protocol by
encoding it completely in the “Key Exchange Data” field. With two schemes A and B and
their public keys PKA and PKB , the “Key Exchange Data” would be PKA|PKB. The data
block is treated as a blob in the protocol, the splitting and cryptographic logic can be done
in the cryptographic code outside the protocol implementation. The two resulting shared
secrets can be combined in a single hash to produce a new single shared secret that can
not be found without having the result of both key exchange methods, and consequently
fulfills the requirement of a hybrid key exchange. Rekeying can naturally use the exact same
procedure, the KE payload data in the CREATE_CHILD_SA exchange works just the same
as in the IKE_SA_INIT. Moreover this method does not add any more overhead than the
added key material, no extra round trip is required.

One unresolved problem is that the KE payload is matched to the D-H ID in the proposal
with the “Diffie-Hellman Group Num” field in the KE header. Unless the combination of KEs
can be addressed with a single Transform ID (more on those in Section &negoti), additional
reserved space will have to be used. Even then there is only one RESERVED header field
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5.1 Exchanging Multiple Keys

Initiator Responder

HDR(SPI), SK {IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, SAi2,
TSi, TSr, KEi2, Ni2 } -->

<-- HDR(SPI), SK {IDr, [CERT,] AUTH,
SAr2, TSi, TSr, KEi2, Nr2 }

Figure 5.2: Additional KE in the IKE_AUTH exchange

left which would allow only one additional ID to be added. If this is not enough, the IDs
could be included in the binary blob which would lead to a drastically more complex parser
logic in the IKEv2 client and break the assumption that the protocol implementation can
treat the data field as a blob. Other notable problems that might arise is that the key shares
share a single 16 bit size field in the header which may be a problem for big keys. Even worse
size constraints arise in settings where IP fragmentation is not an option. In the case of
the initial IKE SA negotiation the first KE payload is sent in the IKE_SA_INIT exchange.
IKEv2 Message Fragmentation can only be used on the SK payload which is first used in the
IKE_AUTH exchange, and thus does not help in this case. In the IKEv2 specification it
says:

“All IKEv2 implementations MUST be able to send, receive, and process IKE messages that
are up to 1280 octets long, and they SHOULD be able to send, receive, and process messages
that are up to 3000 octets long.” - [KHN+14, p. 24]

Considering we are dealing with keys of a minimum size of 600 Byte and sizes of more than
one Megabyte, this solution can not be used with many of the known quantum-resistant key
exchange schemes known today. As a final remark, the solution can not sufficiently satisfy
the requirements derived above and is only good for few hand-picked combinations of KE
schemes in which we can have only a low confidence today.

5.1.2 Using the IKE_AUTH exchange

To be able to use the IKEv2 Message Fragmentation to transmit keys bigger than the 1280
Byte minimal IPv6 MTU that IKEv2 requires implementations to support, only exchanges
after IKE_SA_INIT are eligible. A seemingly trivial solution would be to put the additional
key share in its own payload in the IKE_AUTH exchange (together with fresh nonces) that
is encrypted with only the initial key exchange. Once the additional shared secret gˆir is
derived the SA key gets updated with the following formula:

SKEYSEED = prf(SK_d (old), g^ir (new) | Ni2 | Nr2)

The initial key goes into the prf function via the SK_d value. This updated key computation is
the same as is used in the IKE SA rekeying with a CREATE_CHILD_SA exchange. Advan-
tages of this approach are that it uses operations that have been used and cryptographically
analyzed before and it allows implementations to reuse their working code. A visualization
of the full IKE_AUTH exchange with additional payloads can be seen in Figure 5.2.
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A downside of this approach is that it breaks IKEs identity protection under the assumption
that an attacker can break the first key exchange. The IKE_AUTH exchange was meant to
be confidentiality protected, using this approach this could no longer be guaranteed. This
also makes the order of the used key exchange algorithms way more important. Given a
setting with a quantum-resistant algorithm which is new and therefore not well researched,
and a classical key exchange that is well established but known to be vulnerable to a quantum
computer attack, which should go into the IKE_SA_INIT and which into IKE_AUTH? On
the other side the post-quantum pre-shared key proposal for IKEv2 also does not allow the
IKE SA to be quantum-resistant but only Child SAs which leaves even more communication
unprotected to the quantum computer attacker. The reasoning behind this decision was
that once quantum computers that are able to break encryption are reality, they will still be
expensive to operate and thus no one will use a quantum computer to only reveal meta data
like IKE identities.

5.1.3 After Authentication

When performing the additional key exchange after IKE_SA_INIT, the only way to integrate
a second key exchange is to rekey the SA with the new derived shared secret. Another design
idea that fully abstains from introducing new logic would be to do exactly this, but using the
means that are already there. Initiator and responder initiate the IKE SA using the first key
exchange. The IKE_AUTH exchange does not negotiate the first Child SA. Instead as soon
as the SA is complete, the initiator starts a rekey of the SA with the CREATE_CHILD_SA
exchange, only this time it uses the additional key exchange method. One big advantage of
this method is that it is the only one that is not suspicable to DOS attacks because the big
public keys are only exchanged when the peers are authenticated.

On the downside this approach needs not 4 but 8 messages exchanged until the first Child
SA is initiated. This adds notable latency to each connection initialization. Moreover just as
exchanging the key in the IKE_AUTH, this solution does not preserve the identity hiding
property and a quantum attacker can unveil all data exchanged until the SA gets rekeyed.

5.1.4 Intermediate Exchange

The only solution allowing the exchange of additional key shares after IKE_SA_INIT
without leaking identities and other critical data in the encrypted IKE_AUTH exchange
would be to introduce a new exchange in between the two. In order to utilize message
fragmentation it would need to at least have an encrypted SK payload which requires some
key material to be present. Another current draft document in the IPsec working group,
called the IKE_INTERMEDIATE exchange is exactly this. A new exchange in between
IKE_AUTH and IKE_SA_INIT designed to transport big data payloads that do not fit
into the initial exchange but need to be exchanged before the authentication (like big public
keys of quantum-resistant key exchange schemes).

Adding a new exchange, especially this early in the connection handshake is not a small
intrusion into the trusted IKEv2 state machine as it runs at the risk of introducing major
new attack vectors and security flaws. One thing that is severely affected is the calculation

34



5.1 Exchanging Multiple Keys

Initiator Responder

HDR, SAi, KEi, Ni, [N] -->

<-- HDR, SAr, KEr, Nr,
[CERTREQ], [N]

HDR, SK {IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, SAi2,
TSi, TSr} -->

<-- HDR, SK {IDr, [CERT,]
AUTH, SAr2, TSi, TSr}

== IKE SA established ==

HDR, SK {SA, Ni, KEi} -->
<-- HDR, SK {SA, Nr, KEr}

== IKE SA rekeyed ==

HDR, SK {SA, Ni, [KEi,]
TSi, TSr} -->

<-- HDR, SK {SA, Nr, [KEr,]
TSi, TSr}

== Child SA established ==

Figure 5.3: Rekeying after the IKE_AUTH exchange
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of the authentication hash in IKE_AUTH. In standard IKEv2 the IKE_AUTH exchange
retroactively authenticates the IKE_SA_INIT exchange because there is no way doing it at
the time of the exchange. The same counts for an IKE_INTERMEDIATE exchange. The
draft [Smy19] modifies the authentication value in IKE_AUTH to:

RealMsg1 | NonceRData | MACedIDForI [| IntAuth]

for the initiator, and

RealMsg1 | NonceIData | MACedIDForR [| IntAuth]

for the responder. IntAuth is an authentication hash over both peers’ messages in all
intermediate exchanges that have taken place, so both authenticate not only their own but
also the others’ intermediate messages. Another difficulty with introducing a new exchange
before IKE_AUTH is the error handling which could introduce a DOS attack vector. The
solution is to stick to the same rules as the IKE_SA_INIT, which means that receiving an
error should not result in an immediate stop of communication, but as a hint to what might
be wrong if the handshake fails even after retries.

With this new exchange a straightforward way to do the hybrid key agreement would be to just
add the additional KE and eventual nonces to the new messages and after a successful exchange
update the SA keys as described in subsection 5.1.2. The design gets more complicated with
more than one additional key exchange. Because the IKE_INTERMEDIATE message can
be fragmented, it is possible to send more than one KE payload in a single message (as long
as the combined keys are smaller than 65 kb). The way message fragmentation works it is
not able to resend lost fragments. Instead, the full message and thus all fragments have
to be resent when the peer does not respond within a timeout interval. Consequently even
with fragmentation active, for a robust connection it is preferred to keep individual IKE
messages smaller than the size limit. The full handshake with the additional exchanges in
IKE_INTERMEDIATE messages looks as follows:

Advantages of this approach are the reuse of the already existing rekeying logic and is thought
to preserve all of the security goals, including identity hiding. On the downside this approach
increases the minimum number of messages exchanged with each key exchange. Moreover as
the big shares are exchanged before the authentication, this may introduce a DOS attack
where an unauthenticated peer can flood another client with big keys.

5.1.5 Rekeying

The design choices for rekeying are similar to the initial key exchange, only here the initial
CREATE_CHILD_SA message can use message fragmentation. Moreover the rekeying does
not reauthenticate the peers, the question whether the additional KE should be done before
or after authentication is no longer relevant. To keep the protocol simple and coherent, the
rekeying will use the same mechanism used in the initial exchange.

The Combined Hybrid Exchange solution works transparently with all uses of the KE
payload. The protocol is not changed, only the content of the KE payload holds multiple
keys.
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Initiator Responder
HDR, SAi, KEi1, Ni1, [N] -->

<-- HDR, SAr, KEr1, Nr1,
[CERTREQ], [N]

= Derive Keys =

HDR, SK {KEi2, Ni2} -->
<-- HDR, SK {KEr2, Nr2}

= Rekey 1 =

...

= Rekey n - 1 =

HDR, SK {KEin, Nin} -->
<-- HDR, SK {KErn, Nrn}

= Rekey n =

HDR, SK {IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, SAi2,
TSi, TSr} -->

<-- HDR, SK {IDr, [CERT,] AUTH,
SAr2, TSi, TSr}

Figure 5.4: The IKE_INTERMEDIATE exchanges
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Initiator Responder

HDR(CREATE_CHILD_SA), SK {SA, Ni, KEi} -->
<-- HDR(CREATE_CHILD_SA), SK {SA, Nr, KEr,

N(ADDITIONAL_KEY_EXCHANGE)(link1)}

HDR(INFORMATIONAL), SK {Ni2, KEi2,
N(ADDITIONAL_KEY_EXCHANGE)(link1)} -->

<-- HDR(INFORMATIONAL), SK {Nr2, KEr2,
N(ADDITIONAL_KEY_EXCHANGE)(link2)}

Figure 5.5: The quantum-resistant rekeying exchange

The IKE_AUTH, After Authentication and IKE_INTERMEDIATE solution are
equivalent in the case of rekeying, as there is no reauthentication and thus the only distinction
to be made is whether to include the news keys in the CREATE_CHILD_SA exchange or
send them in a new message after. Even though message fragmentation is used, there is still
no way to resend single message fragments. On the downside a solution that sends each new
KE in a new message is not as trivial as it was in the initial exchange, as the IKEv2 window
size can now be bigger than 1. Sequential order of messages can no longer be assumed, thus a
trick is required to link consecutive rekeying exchanges together. Tjhai et al. propose the use
of a new Notify payload called ADDITIONAL_KEY_EXCHANGE which carries an arbitrary link
value. The responder includes this payload with a new link value in every response sent, the
initiator includes the same Notify with the same value in the following request. An example
from draft [TTg+19] is shown in Figure 5.5

Different to the initial exchange which uses the IKE_INTERMEDIATE exchange ID, the
additional rekeying messages have exchange ID INFORMATIONAL as proposed in [TTg+19].
This introduces ambiguity for the parser, which now has to decide whether a received
INFORMATIONAL message is a DELETE, an ADDITIONAL_KEY_EXCHANGE or
something completely different. A better solution would use a new ID called for example
CHILD_INTERMEDIATE which is used in the case of additional material exchanged
with a CREATE_CHILD_SA exchange (just like IKE_INTERMEDIATE does for the
IKE_SA_INIT exchange).

5.2 Negotiation of Additional KE

The IKEv2 protocol allows peers to negotiate a common set of cryptographic algorithms
to be used in their mutual communication. The reasoning behind this design decision
is that the IKEv2 protocol is designed to be able to outlast cryptographic algorithms
and best practices. By making algorithms a matter of negotiation, the addition of new
algorithms to an implementation is made easy without breaking compatibility with non-
updated implementations unless intended. Other than for example TLS, the IKE protocol
can negotiate arbitrary combinations of supported integrity, pseudorandom, encryption and
key exchange algorithms. The alternative design of pre-configured static “cipher suites” of
compatible algorithms was rejected in the initial design. In the normal case this design makes
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it easier to integrate new algorithms into the protocol, as the only thing needed for the new
method to be used is an unique ID that both peers understand (instead of new predefined
combinations of algorithms or further configuration).

A detailed description of the employed negotiation method was given in Chapter 2. The main
problem with the addition of new key exchanges is that the way the structure works there is
no way to specify an AND relation between transforms of the same type. Another factor that
limits possible solutions is that a solution is desired to be downwards compatible with the
existing protocol. Because the negotiation happens in the first exchange of the SA, there is
no way to negotiate support for an advanced protocol before this point is reached. Several
possible solutions manage to provide this additional functionality while staying compatible
with non-extended IKEv2 implementations.

5.2.1 Notify encoding

In order to stay downwards compatible it is important to pay attention to what changes
from the standard lead to a termination of the IKE exchange and what are actively accepted.
When the protocol was designed it was clear that there will be extensions providing new
IKEv2 features, as was in IKE (version 1). To allow the addition of new algorithms or other
features several payloads and fields are defined to be ignored by implementations in the
original standard. An example of such payloads is the Notify payload:

“Notify payloads with status types MAY be added to any message and MUST be ignored if not
recognized.” - [KHN+14, p. 101]

As a result, status types can be used to negotiate the support for IKEv2 extensions, as is
done in the IKEv2 Message Fragmentation. The initiator includes a Notify with the new
status type IKEV2_FRAGMENTATION_SUPPORTED in the IKE_SA_INIT request. If the sender
also supports the extension, it will reply with the same Notify in the IKE_SA_INIT response.
If it does not, it will simply ignore the notify and the initiator when receiving the reply, will
know that it can not use message fragmentation with this peer.

The same mechanism can be used to negotiate new key exchanges. For every supported addi-
tional KE method a Notify payload of the new notify status type IKEV2_ADDITONAL_KE
with the desired KE scheme encoded in its value could be added to the IKE_SA_INIT
request. The responder could then, if it has support for the new methods and thus knows the
status type, reply with the one it prefers. The new protocol would be downwards compatible
because an unknowing peer would ignore the notify messages and would not return any which
is equal to selecting none of the new KEs for the initiator, who could then decide to drop the
connection or to proceed with only a classical key exchange.

A similar method was proposed in an early revision of the Hybrid PQKE draft [TTg+19]. In
their proposal the negotiation of extra key exchanges took place in a N(EXTRA_KEY_EXCHANGE_POLICY)
notify. The notify payload contained a new binary structure that encodes the full list of
proposed additional key exchanges.

The downside of this approach is that it uses a side-channel in the actual protocol and thus
makes the protocol state machine unnecessarily complicated. Using side channels like the
Notify for anything other than simple yes or no negotiation has, other than the SA payload,
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not been tested in any way which allows no confidence in the security of doing so. Moreover
it makes the formal analysis of the protocol unnecessarily hard. The same of course counts
for the final implementation which would in this case require to provide a second parser for
the new proposal format.

5.2.2 Extending the Proposal Substructure

In order to be coherent in the design of the protocol, it is desirable to have all negotiation
in one place. To achieve this, the new key exchanges have to be added to the existing SA
payload proposal structure, preferably in a way that does not require changes in the structure
itself as it is already quite complex. Another thing to note is that by introducing complexity
to the structure, the actual size of the payload can grow immensely (Especially when more
than one proposal is required). A efficient solution thus should use the existing structures.

The new post-quantum key exchange algorithms are not the first set of new key exchange
schemes to be added to IKEv2. The Internet Assigned Numbers Authority (IANA) is
responsible to maintain a list of standardized key exchange methods for the IKEv2 protocol.
When a new KE scheme is introduced, this scheme is assigned a unique transform ID in
the Diffie-Hellman Group category that can then be used in the IKEv2 SA payload with
compliant implementations. In order to preserve downwards compatibility, unknown IDs
are simply ignored by the responder. The most recent example for such an extension are
the Curve25519 and Curve448 elliptic Diffie-Hellman curves which have been introduced in
[NJ16].

Adding a new quantum-resistant key exchange can be as easy as adding a single new transform
ID. The problem with this approach is that it does not yet satisfy the desire for a hybrid key
exchange where a classical scheme is combined with the quantum-resistant scheme to have
the security of the classical algorithm as a fallback.

An easy approach to negotiating hybrid combinations without touching anything but the
Transform ID field would be to specify combined transforms. This method is somewhat similar
to the Chrome experiments mentioned in Chapter 3 where they introduced the CECPQ1
scheme which is effectively a combination of newhope and x25519. This approach has been
used and tested extensively in previous work and implementations, see Chapter 3.

The possible downside of this approach is that the number of required IDs grows logarithmically
with the number of schemes that should be combined. If instead only a limited number of
combinations are defined, there is the risk of those combinations getting cryptographically
broken without having suitable replacements at hand. Another more historical reason
speaking against this is that it introduces what is basically key exchange cipher suites which
is something the IPsec working group actively avoided in the design of the original IKEv2
protocol

If combined mode transfers can not be used, the only other option is that each new KE is
added with its own unique transform ID. An unresolved problem that remains is that the
proposal substructure only allows a logical “OR” relation between transforms of the same
type. An “AND” relation can in the current form only exist between transforms of different
types. Further there can only be one chosen transform for each type.
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SA Payload
|
Proposal #1 ( Proto ID = IKE(1),
| 4 transforms )
|
+-- Transform D-H ( Name = CECPQ1 )
|
+-- Transform ENCR ( Name = ENCR_AES_CBC )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform INTEG ( Name = AUTH_HMAC_SHA1_96 )
+-- Transform PRF ( Name = PRF_HMAC_SHA1 )

Figure 5.6: Example Initiator SA Payload for IKE SA using a combined transform ID

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Last Substruc | RESERVED | Transform Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Transform Type | Slot | Transform ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Transform Attributes ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.7: Modified Transform substructure header

One solution to this problem which has not been discussed in the IETF draft because it is
an original idea of this work is the introduction of a new field that is called a “slot”. Each
transform type can then have multiple slots, which are addressed by their indices. The rules
of the proposal substructure are modified so that the responder accepts one transform of
each proposed Transform Type ∧ Slot combination. A logical “AND” relationship between
different transforms of the same type can then easily be expressed by assigning different slots.
The slot indices can also be used to denote the desired order of the KE algorithms.

Technically, the slot would be an additional field in the Transform substructure header. The
original design luckily has two RESERVED fields in the header, a one octet field after the
Last Substruc field and another one octet field after the transform type field. Because it
makes sense to have the two related fields physically closer in memory, the second of the
RESERVED fields makes a good fit for the new slot. The resulting structure can be seen in
Figure 5.7. The main advantage of this approach is that it treats all KE methods equally.
As a result all Transforms of type D-H can be combined in arbitrary order which also allows
the hybrid use of two classical algorithms. From an architectural point of view this solution
seems elegant as it separates the two problem domains of post-quantum key exchanges and
hybrid key exchanges. It provides a solution to the hybrid key exchange problem which
reduces the post-quantum problem to simply introducing new D-H Transform IDs as it would
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SA Payload
|
Proposal #1 ( Proto ID = IKE(1),
| 4 transforms )
|
+-- Transform D-H ( Name = Curve25519, slot = 0 )
|
+-- Transform D-H ( Name = sntrup4591761, slot = 1 )
|
+-- Transform ENCR ( Name = ENCR_AES_CBC )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform INTEG ( Name = AUTH_HMAC_SHA1_96 )
+-- Transform PRF ( Name = PRF_HMAC_SHA1 )

Figure 5.8: Example Initiator SA Payload for IKE SA using slots

be for any other key exchange.

One possible downside of this design is the ambiguity of the new proposed logic with a non-
compatible implementation. As for other cases of unknown values that have been explained
previously, the RESERVED field has to be ignored by standard compliant implementations. A
problem arises when the post-quantum aware initiator sends the above proposal and the
non-updated responder sees multiple entries with the same transform type and interprets them
as “OR”ed, which is not what the initiator intended if he only wanted to use sntrup4591761
in a hybrid combination and not by itself. The problem could be solved naively by including
a notify payload in IKE_SA_INIT that if not returned by the responder lets the initiator know
the responder was not able to correctly parse the proposal.

A better solution would be to introduce a new Transform Type called “Key Exchange” or KE
in short. This new Transform Type would deprecate the old D-H Type. As a convenient side
effect the obsolete name Diffie-Hellman Group which was only true when Diffie-Hellman was
the only supported key exchange in IKEv2 and the flat hierarchy of the D-H transform type
could also be replaced. The new type would not be allowed to be used in combination with
the old D-H type. Legacy implementations, if they stick to the standard, would simply ignore
proposals containing the new Transform Type. The relevant section in [KHN+14] reads:

“If the responder receives a proposal that contains a Transform Type it does not understand,
or a proposal that is missing a mandatory Transform Type, it MUST consider this proposal
unacceptable; however, other proposals in the same SA payload are processed as usual.” -
[p. 88]

The solution also preserves downwards compatibility as it allows the initiator to include a
proposal using the new KE type to specify key exchange schemes and a second proposal
containing the classical D-H type. A non-compatible responder will ignore the proposal with
the unknown KE type and eventually accept the one using D-H if the algorithms match.

Downsides of this approach are the administrative overhead of introducing a new transform

42



5.2 Negotiation of Additional KE

SA Payload
|
Proposal #1 ( Proto ID = IKE(1),
| 4 transforms )
|
+-- Transform D-H ( Name = Curve25519 )
|
+-- Transform AKE1 ( Name = sntrup4591761 )
|
+-- Transform ENCR ( Name = ENCR_AES_CBC )
| +-- Attribute ( Key Length = 256 )
|
+-- Transform INTEG ( Name = AUTH_HMAC_SHA1_96 )
+-- Transform PRF ( Name = PRF_HMAC_SHA1 )

Figure 5.9: Example Initiator SA Payload for IKE SA using new AKE transform type

type and the necessity to move the existing Diffie-Hellman Group Transform IDs to this
new type. Another reason to not prefer this approach is that the additional header field is
required and the proposal substructure parsing logic would require drastic changes in existing
implementations.

Another solution providing almost the same advantages as the slot solution is the introduction
of multiple new transform types for additional key exchanges. The hybrid PQKE draft
[TTg+19] proposes the addition of 7 new Transform Types named “Additional Key Exchange
1-7”. Those new Transform types are defined to use the same ID table as the D-H type.

A major advantage over the “slot” proposal is that this design leaves the logic of the structure
intact, while it allows to combine KE methods with “AND” by putting them in different
transform types. The new Transform Types are all optional. If the initiator wants to do only
a single KE only the D-H transform is used and Additional KEs are omitted. If an additional
KE is meant to be optional, the initiator simply includes a transform of ID none for the
transform type. The order of key exchanges is also well defined: the first key exchange in the
IKE_SA_INIT exchange is the original D-H exchange, next are the Additional KE types
ordered by number where less means earlier. As in the slots design, this allows arbitrary
combinations of key exchanges. In a hybrid post-quantum setting the first will almost always
be a classical DH or ECDH and the additional KEs can be quantum-resistant key exchanges,
but pure classical or post-quantum settings are imaginable. The only restriction imposed is
that no two Additional Key Exchanges or the Diffie-Hellman Group must contain equal KEs
(because it does not make sense and the KE payload is matched by type).

Downsides to this approach are that the number of Additional Key Exchange Types is
predefined and very limited. In the described configuration 8 consecutive key exchanges
could be performed for a single connection. This number seems small in comparison to the
8 bit slots field that would allow the negotiation of 256 additional key exchanges. As each
additional key exchange adds data and eventually additional round trips to the connection
initiation, the real world usability is not only limited by the negotiation but also by the
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added latency.

5.3 Support For Big Keys

A problem that has not yet been discussed is support for key exchange schemes with public
key sizes too big to fit into the IKEv2 message structure. As the size field in IKEv2 payload
headers is only 16 Bit it can at max reach 65536 Byte or 65 KB. Especially with code-based
key exchange schemes like McEliece or NTS-KEM the public key size can go up to 1 megabyte
and higher. IKEv2 message fragmentation is of no help here, because it keeps the structure
of payloads intact and fragments and reassembles the message as a blob, so the receiver still
has to parse the payload as one.

A solution proposed by many is the use of the “Hash and URL” method. The technique was
originally introduced in IKEv2 to transmit oversized certificates in the IKE_AUTH exchange.
Instead of including the actual certificate in the CERT payload, the data field contains only
a hash of the certificate and a remote URL pointing to the actual certificate. The client can
then use another network transfer protocol like HTTP or FTP to fetch the certificate from
the URL and verify its integrity by comparing hashes.

The method however has a number of flaws that make it not a good option for exchanging
keys. First it requires additional infrastructure in the form of an additional server to host
the certificate as well as the client protocol support to fetch the certificate. To make matters
worse, the IPsec protocol suite and with it the IKEv2 protocols common use cases include
being at the border of a secure firewalled network bridging to other secure networks. The
requirement for HTTP or FTP complicates the network setup because it requires additional
firewall rules and exceptions. Another problem is that unauthenticated peers can trick clients
to pull large amounts of data from remote servers which is a potential DOS attack vector.

A better solution would be to send the big keys in the actual IKEv2 messages. Looking at
the structure of an IKEv2 message including UDP header, it is clear that there are several
limiting factors. First, the UDP header has a size field of 16 bit. The solution is simple:
message fragmentation can be used to fragment the message over several UDP datagrams.
The IKEv2 header, even though it is hierarchically higher than the UDP header has a size
field of 32 Bit which allows up to 4 Gigabyte of data in a single message. The IKEv2 message
hence is not a limiter. The IKEv2 payload header as mentioned above again has a maximum
capacity of 65 KB. The proposed solution is called key fragmentation, or in simple terms: to
fragment a single key over several consecutive KE payloads in a single IKEv2 message that is
subject to IKEv2 message fragmentation. As no two keys can have the same type, consecutive
KE payloads with the same transform ID field are clearly identifiable as smaller parts of a
single big key. The only addition is a new requirement for the order of payloads in IKEv2.
Those KE payloads belonging to a single key have to be sent in row and in order from first
byte to last byte of the key. Figure 5.10 shows an example of the IKE_INTERMEDIATE
solution using key fragmentation to send a key of up to 325 KB without using the “Hash and
URL” method.

Of course this method is still subject to weaknesses in the IKEv2 message fragmentation,
especially the loss of single fragments leads to a full retransmit of all fragments. On the same
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Initiator Responder

HDR, SAi, KEi1, Ni1, [N] -->

<-- HDR, SAr, KEr1, Nr1,
[CERTREQ], [N]

HDR, SK {KEi2.2, KEi2.3 ,KEi2.4 ,KEi2.5 , Ni2} -->

<-- HDR, SK {KEr2.2, KEr2.3 ,KEr2.4 ,KEr2.5 Nr2}

Figure 5.10: The IKE_INTERMEDIATE exchange with a fragmented KE payload

note, message fragmentation should probably not be used with the same configuration it
is used for evading IP fragmentation. Considering an IKEv2 message containing a public
key share of 1 MB size. This share could be fragmented over roughly 1MB/64KB ≈ 16
KE payloads. Trivial implementations of message fragmentation are recommended by the
RFC to fragment to a threshold of 1280 B in the case of IPv6 or 576 B in the case of
IPv4. This would mean in the case of IPv6 1MB/1280B ≈ 781 message fragments or for
IPv4 1MB/576B ≈ 1736 fragments being sent, in both directions. And in case of a single
fragment getting lost, all of those need to be retransmitted. A better solution would be to
use message fragmentation with a threshold of 65 KB, amounting to 16 fragment messages in
each direction which is a more realistic amount for real world settings.

5.4 Final Design

The previous sections have shown that there are many ways to deal with the problems arising
with the integration of post-quantum keys into the IKEv2 protocol, nevertheless for the sake
of simplicity and compatibility there will only be a single protocol standard. For problems
that have more than one solution a choice will have to be made based on the requirements
described in Chapter 4 as well as on the previous work of the IETF ipsecme working group
and the consensus of experts in the field of the IPsec protocols.

The first problem arising was the integration of additional key exchanges into the protocol.
As the original IKEv2 protocol was designed to only use a single Diffie-Hellman key exchange,
most solutions to this problem require major modifications to the IKEv2 handshake.

The least intrusive of the presented methods is the combined key method which concatenates
two public key shares and treats them like a single key inside the original KE payload of the
IKE_SA_INIT exchange. Whilst this method solves the problem with only minimal changes
to the handshake and thus the security model, it is not the preferred solution for several
reasons: First, it forces the use of combined Group-IDs, which define a static combination
of two key exchange methods in a pre-defined constant which must be included in the KE
payload for sender and receiver to know how to interpret the received key material. This
goes fundamentally against the IKEv2 design which favors free combination of cryptographic
algorithms instead of ciphersuites. Second, this method blows up the initial IKE_SA_INIT
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message, which does not support IKE fragmentation, and thus reintroduces the formerly
solved problem of incompatibility with blocked or impossible IP fragmentation.

Exchanging the additional keys in or after the IKE_AUTH exchange both lead to an exposure
of the responder’s identity and eventual other sensitive data transmitted in the IKE_AUTH
exchange. Whilst they also solve problems that other proposed solutions could not, such
as the possibility of a DOS attack with big McEliece keys, the information leak directly
violates one of the security requirements found in Section 4.2.2 and thus can not guarantee
the desired security properties of the IKEv2 protocol.

The proposed solution is the use of the IKE_INTERMEDIATE exchange and specifically to
use one IKE_INTERMEDIATE exchange containing a single Nonce and KE payload per
additional key exchange, which allows to use IKEv2 fragmentation for the public keys and
leaves only the UDP size constraint. Another advantage of this solution is that the payloads
and the DH-Group format need no additional changes. The biggest uncertainty with this
approach is whether the additional roundtrips will have a too drastic latency impact limiting
the usability of the protocol, which is to be evaluated in a proof of concept test setup later
on.

For rekeying, it only makes sense to use a similar mechanism as for the initial handshake.
The proposed PQ-IKEv2 protocol uses a new CHILD_INTERMEDIATE exchange type to
handle additional KEs after the initial CREATE_CHILD_SA exchange, every additional
exchange is sent in an additional pair of CHILD_INTERMEDIATE messages.

For the negotiation of the additional key exchange methods, the preferred solution is to reuse
existing data structures instead of hacking a new negotiation mechanism into a special notify
payload. The two considered approaches are the statically defined “AKE” transform types on
the one hand, and the use of a formerly reserved header field as “slot”, in the specific case of
key exchanges a slot value of n marking the n-th key exchange. The downsides of the static
types are a pre-defined limitation for the number of key exchanges and more importantly the
fact that it breaks the semantics of transform types, introducing n-different types representing
the same concept and allowing the same IDs as the already existing group type. Because
consistency in the design of the protocol helps implementers and prevents implementation
mistakes which could have security impact, the PQ-IKEv2 will instead use the “slotting”
mechanism, which in theory could be extended to the other transform types to allow the
negotiation of multiple algorithms of the same type. Naturally once the post-quantum key
exchange schemes are added to the transform ID registry, they will be treated just like
the existing key exchange mechanisms. The concepts of “post-quantum key exchange” and
“hybrid key exchange” are actually implemented completely separately when it comes to the
protocol.. New cryptographic schemes added to the protocol can naturally be used with the
proposed hybrid construction, making it an ideal protocol design in terms of cryptographic
agility.

The last obstacle is the requirement to support keys bigger than the maximum UDP datagram
size of 64 kilobyte. Of the two presented methods, one is to include only a key hash and a
URL in the KE payload and delegate the download of the key to another protocol such as
HTTP or FTP, which is more a workaround than a solution. The proposed solution is the
use of a special kind of key fragmentation. Big keys are split up over several KE payloads sent
in the same IKE message, which again can be subject to message fragmentation. Using this
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method a McEliece key could be sent in 16 KE fragments in a single IKE_INTERMEDIATE
exchange.

To summarize, the presented PQ-IKEv2 protocol design allows the integration of post-
quantum key exchange schemes in a hybrid key exchange, thus fulfilling the first requirement
Quantum-Resistance. It also provides crypto agility by making it easy to switch and freely
combine any of the post-quantum key exchange schemes and eliminates the limitation of keys
bigger than the IP fragmentation limit by not sending them in the IKE_SA_INIT exchange
and using message fragmentation, as well as the limitation of the maximum UDP size using
fragmentation over several KE payloads. The design choices have respected complexity of
the protocol in order to make the following security analysis not unnecessarily complex.
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6 Formal Verification

The security implications of the different designs have only been informal guesses based on
previous experience with key exchange protocols, but whether the protocol can actually
provide the promised post-quantum security is uncertain. The requirements analysis presented
in Chapter 4 lead to a clear definition of security properties a secure key exchange protocol
must provide, namely Authentication, Consistency, Key Secrecy and Identity Hiding.

A thorough analysis of the proposed PQ-IKEv2 protocol, which is only a modification of
IKEv2, is not possible without first analyzing the security properties for the adopted IKEv2
protocol. An easy solution would have been to reuse previous work, but this approach would
have limited the choice of weapon to the ones that have been used before. Instead this work
includes a whole new analysis of the IKEv2 handshake, using previous results as reference for
the correctness of the found results. The validated IKEv2 model can then be adopted to the
PQ-IKEv2 protocol.

The analysis is performed using the “Tamarin” tool which has been successfully used in the
development process of the new TLS 1.3 standard. It follows the contributions of Cremers
in [Cre11] applying a Dolev-Yao attacker model in a try to find logical vulnerabilities in the
protocol under the assumption that cryptography cannot fail. Because the Tamarin prover
comes with a specific language and syntax for protocol modeling, the chapter first provides a
short introduction for the basics of the Tamarin prover, its model specification language and
its automated proving capabilities. After this introduction to the prover the IKEv2 model
is introduced and explained in detail before the results of the automated verification are
presented. The model is then modified with the protocol changes worked out in Chapter 5
and again tested against the same lemmata as the original protocol (eventually adopted to
the new model). Finally the results are presented, which show that the quantum-resistant
IKEv2 protocol succeeds to provide the same security properties as the original IKEv2.

Used Hardware. While over the last decade automated analysis has become more efficient than
ever, the verification of complex models still can be quite hardware expensive. The analysis
of the provided IKEv2 model was enabled by the use of the high performance compute cloud
hosted at the Leibniz super-computing center in Garching near Munich. The analysis ran on
a virtual Ubuntu Linux machine leveraging 40 CPU cores and 180 GB of RAM, which proved
invaluable for some of the computationally harder lemmata and especially in the PQ-IKEv2
model.
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6.1 The Tamarin Prover

Tamarin1 is a formal verification tool designed for security protocols which supports automated
unbounded symbolic model checking. It supports a specific modeling language that can be
used to specify comprehensive models of complex network protocols and adversaries based on
the Dolev-Yao attacker model. Tamarin has built-in support for cryptographic functions used
in key exchange and authentication protocols. It comes with Diffie-Hellman key exchange,
hash functions as well as symmetric and asymmetric encryption and public key signatures
included which saves a lot of work in the specification of network security models. The
automatic solver uses constraints solving and multiset rewriting techniques to perform a
comprehensive symbolic search for execution paths that satisfy the provided constraints and
rules. Found traces and proofs can be visualized in auto-generated graphs via Tamarin’s web
interface.

Tamarin has been used for the verification of other popular key exchange protocols. An early
work used Tamarin to verify the Noise key exchange protocol framework which later provided
the basis for a formal analysis of the Wireguard key exchange. It was also used heavily
during the development of the TLS 1.3 [CHH+17] standard to model and verify individual
revisions of the draft and helped finding several unintended states in the protocol that might
have been used in eventual exploits. Other protocols modeled in Tamarin include the 5G
Authentication [BDH+18] or the PKCS#11 standard [KK16].

6.1.1 Example: Modeling an Encrypted Message

The following paragraph illustrates Tamarin’s description language based on a simple example:

1 rule Example:
2 [Fr(~sk), !Message(m)]
3 -->
4 [Out(senc(m, ~sk))]

The rule “Example” models the encryption of a message m with the symmetric secret key sk.
Each rule consists of a premise and conclusion, marked with [ .. ] that are separated by an
arrow -->. As mentioned above Tamarin is based on multiset rewriting. The global state, or
multiset is modeled with so-called facts. The rule “Example” requires two facts to be present
in order to be executed: Fr(~sk) and !Message(m). Fr() is a built-in fact that introduces
a fresh name, in this case ~sk, ~ additionally denotes a fresh name. In this case the fact
models a newly generated random secret key sk. !Message(m) is a user provided fact named
“Message” that is the result of a previously traversed rule. The “!” in !Message() denotes a
persistent fact. Normally facts in the premise are consumed by the rule and thus removed
from the global state, persistent facts can be consumed arbitrarily often.

The result of the rule is a single fact Out(). Out() is another special built-in fact which
denotes that something is sent over the public channel which the Dolev-Yao attacker can
observe. The content of the message is the result of a function senc(m, ~sk) which is a
good example of Tamarin’s support for cryptographic functions. It models the result of

1https://tamarin-prover.github.io/
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symmetrically encrypting the variable m with the newly generated secret key ~sk. The
resulting cipher is then sent over the unsecure channel and available to both attacker and
recipient

The receiving side could be modeled with the following rule:

1 rule ExampleRecv:
2 [In(cipher), !PSK(sk)]
3 --[ Received(sdec(cipher , sk)) ]->
4 [Recv(sdec(cipher , sk))]

or using a helper variable plain for the received plain text:

1 rule ExampleRecv:
2 let plain = sdec(cipher , sk)
3 in
4 [In(cipher), !PSK(sk)]
5 --[ Received(plain) ]->
6 [Recv(plain)]

Variables in let blocks are resolved with literal replacement, which makes the two examples
above equivalent. The premise of the new rule ExampleRecv contains two facts. In() is a
built-in fact and the receiving counterpart to Out(). It denotes that a value is received over
the insecure channel. !PSK(sk) is the pre-shared secret key that was also used by the sender.
The result of the rule is the new fact Recv(plain), which resolves to Recv(sdec(cipher,
sk)). New in this rule is that in addition to premise and conclusion there is also a so called
action fact within the arrow called Received(plain). Action facts are observable in lemmas,
and can be used to determine if certain actions have happened in a trace. Other than premise
and conclusion, they do not change the global set of facts. Received(plain) is the action of
the peer successfully receiving the plain text message.

Security properties of the protocol are defined in lemmas in the form of trace properties.
They can be automatically proven or disproven by Tamarin’s automatic solver. In order
to be able to define the desired properties, the right action facts will have to be defined in
corresponding rules. An example of such lemma could be:

1 lemma plain_secrecy:
2 not (
3 Ex plain #i #j .
4 Received(plain) @ #i
5 & K(plain) @ #j

The special fact K(plain) denotes plain is known to the attacker, # marks temporal names.
It reads: There does not exist a value plain, and points in time #i and #j with plain being
received by the peer in #i and the adversary knowing the plain text in #j.

51



6 Formal Verification

6.2 IKEv2 Symbolic Model

The first step in the Tamarin aided analysis of a protocol is the specification of an abstract
model of the investigated protocol which can be analyzed with the helper tool. The protocol
is modeled in the form of an equational theory, the corresponding multiset rewriting system
and guarded formulas which can be checked for validity or satisfiability for the traces in the
system.

For the protocol analysis’ validity it is crucial that the model is as close to the actual protocol
definition as possible and models all security-relevant information and events correctly. On the
other hand, the resource requirements of the Tamarin verification grow with the complexity
of the model, thus a trade-off has to be found between the preciseness of the model and
abstraction for the sake of successful analysis. To keep complexity at a minimum, a subset of
the IKEv2 protocol was selected and then modeled for this work. The chosen IKEv2 subset
corresponds to the minimal IKEv2 specification from [Kiv16] with either shared-secret or
simple public key authentication. Advanced authentication modes like EAP or certificate
validation are not part of the model.

6.2.1 Adversary Model

In order to argue about the security of a network protocol, it is vital to have a well defined
adversary model.

In [CK01] Canetti and Krawczyk introduced a formal framework for the analysis of key-
exchange protocols arising from a collection of previous work on specific protocols and
generalize the results for all key exchange protocols. A key exchange protocol is ned as “[. . . ]
a mechanism by which two parties that communicate over an adversarially-controlled network
can generate a common secret key.” In their work, they describe the so called Unauthenticated
Links adversarial model (UM), which uses a probabilistic polynomial attacker (PPT) who
can exercise full control over the communication link. This includes eavesdropping the link,
holding back packets or repeatedly sending packets and changing a packets contents. It also
controls when protocol events like initiation take place. Additionally it is given a number of
oracles allowing the attacker to obtain secret information stored in the clients. This is to
ensure that leaked information from clients leads to the least possible effect on the security
of the protocol, even over session boundaries. An example is that leakage of long term keys
should have no effects on past sessions (perfect forward secrecy). The attacker can use three
kinds of oracles: a session-state reveal, a session-key query and party corruption. Last, the
model allows sessions to expire. Expired sessions cannot leak state or keys as they are deleted
from the clients memory. No oracle can leak data from an expired session. [CK02] made
several changes to the model to specifically adopt it to the IKEv2 protocol, the biggest one
being that the original model required the identity of the peer to be clear from the beginning,
while in IKEv2 identities are only exchanged in the authentication exchange of the protocol.

While the UM model approach provided promising results, more recent approaches, especially
when relying on automated tooling to in the analysis, often apply the more commonly used
Dolev-Yao attacker model [DY83]. It introduces an attacker that can intercept, eavesdrop,
modify and sythesize any network message, the attacker can be seen as the message carrier.
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In addition to those, the attacker is often given additional capabilities similar to the attacker
in the UM from Canetti and Krawczyk, to analyze the impact of the attacker gaining access
to several critical variables in the protocols such as private keys or identities. Reasons to
apply the Dolev-Yao model over the UM model are a generally wide acceptance in related
work as well as the fact that most automated tools have been designed with to model a
Dolev-Yao attacker. An example for a work applying this model to the IKEv2 protocol can
be found in [Cre11].

For the analysis of the quantum-resistant IKEv2 protocol, the attacker will have additional
capabilities to those it possesses in the classical model. It is assumed that the attacker is
able to break the classical key exchange at any time, even after the session has expired, as
the private Diffie-Hellman secret can be derived from the public share sent over the attacker
controlled channel. Even if the peer deletes the secret key from memory that attacker himself
can hold back and decrypt the message. To properly model this with an augmented Dolve-Yao
attacker, it is provided with a session-key query oracle allowing it access to the otherwise
secret non-quantum-resistant ephemeral key.

6.2.2 Model Specification

The specified Tamarin model draws from previous models of key exchange protocols as
described in [DM17] and [CHH+17]. In addition, the model uses of a number of built-
in cryptographic features such as the Diffie-Hellman equational theory from [SMCB12],
Tamarin’s symmetric and asymmetric cryptography modules, as well as signatures and hashes.
In addition to those, the model defines a new hmac/2 function to model HMAC as described
in [KCB97], which is needed for IKEv2 key derivation and authentication.

The protocol is modeled as a state machine. Tamarin rules define allowed state transitions
in the model. A comprehensive graph of the IKEv2 handshake’s state machine is shown
in Figure 6.1. Because the full handshake including all optional exchanges is incredibly
complex and features multiple loops, the Tamarin model of this work implements only the
non-optional parts of the IKEv2 handshake (corresponding to the non-dashed lines in the
graph).

The state at any point in time is defined as the internal state of the initiator and the responder,
the last message sent over the public channel and any persistent public knowledge such as
public keys. The communication peer’s state is further divided in the model in a variant
and an invariant portion. The invariant is called the peers Identity and it contains all state
that the specific peer holds persistently even over the scope of a single session, such as its ID
value or its long term authentication key or the keys it trusts. The variant state contains
values relevant for a single session, such as SPIs, ephemeral keys, or nonces. They are stored
in consumable facts and represent knowledge the peer keeps to its next state. The reason to
split the state is that having the invariant state in a persistent fact allows the Tamarin prover
to apply more aggressive optimizations to the defined constraint model, and thus solve it
more efficiently. An example state transition for the IKE_SA_INIT message of the initiator
modeled as a Tamarin rule can be seen in Listing 6.1.

As seen in Listing 6.1 the initiation of the protocol handshake IKE_SA_INIT_I requires the
state invariant !Identity() to be defined for the executing peer. As a result, before any
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Figure 6.1: The IKEv2 handshake state machine. Dashed lines mark optional paths, extension
RFCs and proposed RFC drafts are marked in color. Sources: [KHN+14], [KE06],
[EST10]

1 // IKE_SA_INIT Initiator
2 rule IKE_SA_INIT_I:
3 let
4 epI = 'g'^~eI // < Initiator DH public share
5 msg1 = <~spiI , '1', epI , ~nI >
6 in
7 [ Fr(~nI) // < Initiator Nonce
8 , Fr(~spiI) // < Initiator SPI
9 , Fr(~eI) // < Initiator DH private share

10 , !Identity(idI , pkI , skI , pkR)
11 ]
12 -->
13 [ Out(msg1)
14 , StateInitI(idI , ~spiI , ~eI , ~nI , msg1)
15 , !DHtoReveal (~eI)
16 ]

Listing 6.1: IKE_SA_INIT state transition for the IKEv2 initiator role
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of the actual IKEv2 protocol communication can take place, the peer identity and keys
have to be generated. The identity also models the trust relation with the desired peer, as
each identity includes a trusted public key. Key generation and sharing is modeled with
the generate_static and add_pk rules. Generate static is the only rule that takes only
fresh Fr() facts as an input, and thus has no prerequisites. It generates a new private static
key and exposes the corresponding public key over the insecure channel via the built-in
Out() fact. The add_pk fact consumes two persistent static keys, and introduces a new ID
value from which it generates a new identity. An IKEv2 session requires at least two unique
identities to be defined, one for the initiator and one for the responder.

1 rule generate_static:
2 [ Fr(~ltk)]
3 --[GenStatic(pk(~ltk))]->
4 [ !PrivKey (~ltk)
5 , Out(pk(~ltk))
6 ]
7
8 rule add_pk:
9 [ !PrivKey (~ltkA)

10 , !PrivKey (~ltkB)
11 , Fr(~idA)
12 ]
13 -->
14 [ !Identity (~idA , pk(~ltkA), ~ltkA , pk(~ltkB))
15 ]

Listing 6.2: Pre-protocol setup rules

Attacker capabilities to reveal certain session state and keying material at different states of
the protocol are, like the protocol handshake, realized by transition rules. The attacker is given
two different kinds of reveal oracles. They are shown in Listing 6.3. The reveal_static rule
allows the attacker to compromise a peer’s long term key ltk by consuming the persistent fact
!PrivKey(ltk) and exposing the contained key variable over the insecure channel. Similarly
a second oracle called reveal_dh allows to reveal a peer’s ephemeral Diffie-Hellman key share.
The preconditioned persistent facts are the result of the generator rules of the exposed values
(see Listing 6.2).

1 rule reveal_static:
2 [ !PrivKey(ltk) ]
3 --[RevLtk(pk(ltk))]->
4 [ Out(ltk) ]
5
6 rule reveal_dh:
7 [ !DHtoReveal(k) ]
8 --[RevDH('g'^k)]->
9 [ Out(k) ]

Listing 6.3: Attacker capabilities as reveal oracles
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The validity of the Tamarin model of the IKEv2 protocol, can be verified with trace properties.
The exists-trace keyword instructs the automated solver to solve for a trace that satisfies
a provided property instead of falsifying it. In the case of IKEv2, these traces show that the
derivation and confirmation of an IPsec SA are valid in the provided model. In addition it
shows that two peers can negotiate an arbitrary number of IKE and IPsec SAs using the
same identities, to show that identities and thus ID values as well as static keys can be
reused over more than one session. The corresponding lemmas are discussed in more detail
in Section 6.2.3.2.

6.2.3 Verified Properties

Section 4.2.2 discussed the claimed security properties of the IKEv2 protocol as well as the
results of previous analysis of the protocol. Before the model can be used to analyze security
properties of the PQ-IKEv2 protocol it must be able to prove the security properties of an
unmodified non-post-quantum IKEv2 protocol. Comparison of the results with previous
publications allows assumptions about the correctness of the provided Tamarin model. If
the automated proof of the model leads to the same result as previous proofs the model is
considered a valid representation of the standard and can further be extended to proof the
same properties for the PQ-IKEv2 protocol.

The security properties derived in Section 4.2.2 were modeled as Tamarin lemmas over the
IKEv2 model. This section introduces the defined lemmas, explain how they verify the
security property definitions shown before and presents the results of the analysis of each
property for an attacker utilizing the different reveal capabilities.

6.2.3.1 Validity of the Model

To show the validity of the IKEv2 model described in the previous Section, two lemmas are
defined that prove that it is possible to successfully complete IKEv2 handshakes between two
peers. This property is necessary for the analysis because if this was not fulfilled, all further
proofs would falsely succeed simply because their conditions could never be reached by the
automated solver.

The first lemma is called exists_session and it verifies that the two peers can complete
a session that results in an identical shared session key at both peers. The corresponding
Tamarin definition is given in Listing 6.4.

1 lemma exists_session: exists-trace
2 "Ex I R spi ck #i #j .
3 IKeys(I, R, spi , ck) @ i
4 & RConfirm(I, R, spi , ck) @ j
5 & i < j"

Listing 6.4: Session exists, IKEv2

The lemma uses the exists-trace keyword to instruct the automatic solver to find a trace that
fulfills the defined property instead of falsifying it.
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The second lemma called exists_two_sessions goes even further to show that two peers
can perform multiple successive handshakes. This property is crucial as some vulnerabilities
might require to leak information in one session and reuse it in a second. The corresponding
lemma can be found in Listing 6.5

1 lemma exists_two_sessions: exists-trace
2 "Ex I R spi spi2 ck ck2 #i #j #i2 #j2 .
3 IKeys(I, R, spi , ck) @ i
4 & RConfirm(I, R, spi , ck) @ j
5 & i < j
6 & IKeys(I, R, spi2 , ck2) @ i2
7 & RConfirm(I, R, spi2 , ck2) @ j2
8 & i2 < j2
9 & not (ck=ck2)"

Listing 6.5: Two sessions exist, IKEv2

The provided IKEv2 model succeeds to fulfill both lemmas and is consequently ready to be
further analyzed for its security properties.

6.2.3.2 Authentication

As described in Chapter 4 the authentication property follows the definitions in [Low97], more
specifically it is split up into the three properties aliveness, weak agreement and agreement.
For the verification each of those three properties was modeled as a Tamarin lemma.

The weakest of the authentication properties, namely the aliveness is formally defined in Aliveness
Definition 2.1 from [Low97]:

We say that a protocol guarantees to an initiator A aliveness of another agent B
if, whenever A (acting as initiator) completes a run of the protocol, apparently
with responder B, then B has previously been running the protocol.

The corresponding Tamarin lemma is given in Listing 6.6. Due to Tamarin’s language being
close to the mathematical logical notation, the lemma is almost a literal translation of the
definition.

1 lemma aliveness[use_induction]:
2 "All spi A B keymat #i .
3 Completed(spi , A, 'initiator ', B, keymat) @ #i
4 & not (Ex #k . RevLtk(B) @ k)
5 ==> (Ex spi2 peer role keymat2 #j .
6 Completed(spi2 , B, role , peer , keymat2) @ #j
7 & #j < #i)"

Listing 6.6: Aliveness, IKEv2

No compromised keys When no keys are compromised the IKEv2 protocol achieves alive-
ness.
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Compromised ephemeral keys When only ephemeral keys are compromised, the protocol
achieves aliveness

Compromised static keys When only the initiator’s static key is compromised, the protocol
achieves aliveness. When the responder’s static key is compromised, the attacker can
“impersonate” the role of the responder and aliveness is no longer achieved by the
protocol.

Compromised ephemeral & static keys When the ephemeral keys and the initiator’s static
key are compromised, the protocol still achieves aliveness. Same as with compromised
static keys, when the responder’s static key is compromised aliveness is no longer
guaranteed as the attacker may take over the role of the responder.

A stronger definition in the hierarchy of authentication specifications is the weak agreementWeak Agree-
ment specified in Definition 2.2 of [Low97]:

We say that a protocol guarantees to an initiator A weak agreement with another
agent B if, whenever A (acting as initiator) completes a run of the protocol,
apparently with responder B, then B has previously been running the protocol,
apparently with A.

The corresponding lemma is given in Listing 6.7

1 lemma weak_agreement[use_induction]:
2 "All spi A B keymat #i .
3 Completed(spi , A, 'initiator ', B, keymat) @ #i
4 & not (Ex #k . RevLtk(B) @ k)
5 & not (Ex #k . RevDH(A) @ k)
6 & not (Ex #k . RevDH(B) @ k)
7 ==> (Ex spi2 role keymat2 #j . Completed(spi2 , B, role , A,

keymat2) @ #j
8 & #j < #i)"

Listing 6.7: Weak Agreement, IKEv2

Different than in the aliveness, not only does A complete a protocol run with B, but B now
also believes to have completed the protocol run with A. The definition of the properties look
similar, but the results are different.

No compromised keys When no keys are compromised the IKEv2 protocol achieves weak
agreement. When a party A believes to have completed a protocol run with B, then B
also believes to have completed a run with A before.

Compromised ephemeral keys When the ephemeral key of a single party is compromised,
IKEv2 fails to achieve weak agreement. A weakness in the digital signature authen-
tication mode due to IDs being optional can result in a situation where one agent
successfully completes the handshake while its peer believes to be communicating with
someone else. The same weakness was first documented as the result of a previous
analysis in [MD+97] and later confirmed in [Cre11]. It has been shown that later
communication over the resulting IPsec tunnel provides the even stronger agreement
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property, thus making the weakness a non-exploitable one. It is however notable that
the compromise of ephemeral keys can result in a broken authentication.

Compromised static keys When only the initiator’s static key is compromised, the protocol
achieves weak agreement. With the responder’s static key compromised an attacker can
successfully “impersonate” the other agent, resulting in a session for A while B has not
run the protocol with A. Consequently when both keys are compromised, agreement is
not guaranteed.

Compromised ephemeral & static keys When the ephemeral and static keys are compro-
mised, the protocol fails to provide weak agreement for reasons explained above.

The strongest authentication property in the hierarchy is the injective agreement or simply Agreement
agreement as defined in Definition 2.3 of [Low97]:

We say that a protocol guarantees to an initiator agreement with a responder on
a set of data items ds if,whenever A (acting as initiator) completes a run of the
protocol, apparently with responder B, then B has previously been running the
protocol, apparently with A, and B was acting as responder in his run, and the
two agents agreed on the data values corresponding to all the variables in ds, and
each such run of corresponds to a unique run of B.

Which translates to the following lemma in Listing 6.8.

1 lemma agreement[use_induction]:
2 "All spi A B nonces keymat #j .
3 Completed(spi , A, 'initiator ', B, keymat) @ #j
4 & not (Ex #k . RevLtk(B) @ k)
5 & not (Ex #k . RevDH(A) @ k)
6 & not (Ex #k . RevDH(B) @ k)
7 ==> (Ex spi2 #k .
8 Completed(spi2 , B, 'responder ', A, keymat) @ #k)"

Listing 6.8: Agreement, IKEv2

The differences to the weak agreement lemma are that B now acts as a responder. Additionally
shared variable keymat models the agreement on the set of data items ds. In the case of the
IKEv2 model upon a successful run of the protocol the two peers agree on the keymat which
is derived from the key exchange and the unique nonces .

No compromised keys When no keys are compromised the IKEv2 protocol achieves agree-
ment.

Compromised ephemeral keys When the ephemeral key of a single party is compromised,
IKEv2 fails to achieve agreement. The reason is the same as explained above for
the weak agreement property. The found weakness is known and is not known to be
exploitable in real world settings, see [Cre11] and [MD+97].

Compromised static keys When only the initiator’s static key is compromised, the protocol
achieves agreement. With the responder’s static key compromised an attacker can
“impersonate” the peer, resulting in a mismatched session between the two.
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Compromised ephemeral & static keys When the ephemeral and static keys are compro-
mised, the protocol fails to provide agreement for the reasons explained in Compro-
mised static keys.

The definition of the agreement requires that each of the runs of A corresponds to a unique
run of B, which has not been explicitly shown yet. A new lemma called session uniqueness is
defined to show that each identical set of key material derived from a successful run of the
protocol corresponds to a unique session. The Tamarin definition can be found in Listing 6.9.

1 lemma session_uniqueness:
2 "All A B spi spi2 keymat role #j #l.
3 Completed(spi , A, role , B, keymat) @ #j
4 & Completed(spi2 , A, role , B, keymat) @ #l
5 ==> (#j = #l)"

Listing 6.9: Session Uniqueness, IKEv2

What the lemma specifies is that for two protocol runs to be completed and result in the
same keymat, they must happen at the same time and thus be identical. Consequently every
other successful protocol run must result in a different set of nonces and keys, making each
session with the same variable a unique session.

6.2.3.3 Consistency

This property corresponds to the first property from Definition 1. in [CK01] which reads:Consistency

“1. Protocol π satisfies the property that if two uncorrupted parties complete
matching sessions then they both output the same key;”

The same property was used in [CHH+17] where the corresponding lemma was named
session_key_agreement. The difficulty in defining this property as a Tamarin lemma lies
in finding a suitable definition for the matching session. In the case of IKEv2 a session is by
definition uniquely identified by its SPI combination, thus a matching session is one where
both peers see the same SPI pair. The corresponding Tamarin lemma is shown in Listing 6.10

1 lemma consistency:
2 "All spi A B keymat keymat2 #i #j .
3 Completed(spi , A, 'initiator ', B, keymat) @ #i
4 & Completed(spi , B, 'responder ', A, keymat2) @ #j
5 & not (Ex #k . RevLtk(B) @ k)
6 ==> (keymat=keymat2)"

Listing 6.10: Consistency, IKEv2

When two agents I and R each complete a run of the protocol, and I acts as the initiator and
thinks it talks to R and R acts as responder and thinks it talks to I, then they both agree on
a identical set of session variables keymat.

No compromised keys When no keys are compromised the IKEv2 protocol achieves consis-
tency.
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Compromised ephemeral keys When one or both ephemeral keys are compromised, IKEv2
still achieves consistency. A compromise of only the ephemeral keys can not change
the resulting key and nonces, as they are protected by the authentication signature.

Compromised static keys When only the initiator’s static key is compromised, the protocol
achieves consistency. When the responder static key has been compromised, an attacker
can “impersonate” the other party and mount a man-in-the middle attack resulting in
the peers having different session keys.

Compromised ephemeral & static keys When both ephemeral keys and the initiator static
key are compromised, the protocol achieves consistency. When the responder’s static
key is compromised, the same weakness as in the “compromised static keys” case
applies.

6.2.3.4 Key Secrecy

As a result of a successful run of the protocol, keys are only known to the initiator and Key Secrecy
responder. The corresponding lemma states that when a party I has completed the protocol
with another party, and it thinks it has during the same unique session agreed on a shared
session secret, then the attacker can not also know the secret.

1 lemma key_secrecy[reuse]:
2 "All spi A B role keymat #j .
3 & Completed(spi , A, role , B, keymat) @ #j
4 & not (Ex #m . RevLtk(B) @ #m)
5 & not (Ex #m . RevDH(A) @ #m)
6 & not (Ex #m . RevDH(B) @ #m)
7 ==> not (Ex #m . K(keymat) @ #m)"

Listing 6.11: Key Secrecy, IKEv2

No compromised keys When no keys are compromised, the IKEv2 protocol achieves key
secrecy. A success completion of the handshake guarantees that only the two agents
performing the handshake have knowledge of the shared session key.

Compromised ephemeral keys When either ephemeral key is compromised, a passive at-
tacker can learn the shared session secret as it is derived from the Diffie-Hellman result,
which requires the public DH share which is sent in clear and both nonces which are
also sent in clear over the insecure channel.

Compromised static keys When the active agent’s static key is leaked, the protocol still
achieves key secrecy. When the peer’s static key is leaked, an attacker can mount an
impersonation attack and thus learn the shared session secret by performing the initial
handshake with the original agent.

Compromised ephemeral & static keys When any ephemeral key is leaked, the protocol
does not provide key secrecy.
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6.2.3.5 Identity Hiding

The Identity hiding (or identity protection differs from the other requirements as it is onlyIdentity Hid-
ing an additional security guarantee. As noted in [Kra03] the security of the IKEv2 protocol

does not directly depend on identity hiding. The protocol was designed to provide identity
protection for the responder against an active attacker by only including the identity value in
a reply to an authenticated initiator.

The Tamarin lemma can be translated as: "When an IKEv2 participant B sends out its
identity id at i to authenticated peer A, the attacker must not be able to learn id at any
point in time j.

1 lemma identity_hiding:
2 "All spi A B keymat id #i .
3 Completed(spi , B, 'responder ', A, keymat) @ #i
4 & IdentityLearnt(id) @ #i
5 & not (Ex #k . RevLtk(A) @ #k)
6 & not (Ex #k . RevDH(A) @ #k)
7 & not (Ex #k . RevDH(B) @ #k)
8 ==> not (Ex #j . K(id) @ #j)"

Listing 6.12: Identity Hiding, IKEv2

No compromised keys With no compromised keys the IKEv2 protocol achieves Identity
hiding for the responder.

Compromised ephemeral keys A single compromised ephemeral key leads to a loss of iden-
tity protection, the attacker can generate the symmetric encryption key, decrypt the
authentication response and learn the responder’s identity.

Compromised static keys With the responder’s static key compromised the attacker can not
learn the responder’s identity and the protocol achieves identity hiding. A compromised
initiator static key allows the attacker to perform an impersonation attack which leads
to a loss of identity hiding.

Compromised ephemeral & static keys As the compromise of a single ephemeral key leads
to a loss of identity protection, the compromise of both ephemeral and static keys also
breaks the property.

6.3 The PQ-IKEv2 Model

After the IKEv2 model has successfully passed the formal analysis confirming the results
of previous formal analysis of the protocol, the approach can be adopted to the augmented
model of the post-quantum hybrid IKEv2 protocol. Before the result of the post-quantum
analysis is presented, the changes made to the model are laid out in detail. It should be
noted that the PQ-IKEv2 model is more complex than the original, as it adds an additional
exchange and additional attack surface to leak secrets, which makes the automated analysis
even more computation-intensive.
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6.3.1 Changes to the IKEv2 Model

For the post-quantum hybrid exchange, the original IKEv2 model was extended with the
new IKE_INTERMEDIATE exchange. The intermediate exchange can be seen in Figure 6.1
outlined in blue. The additional exchange is implemented in the form of a new transition
rule between the IKE_SA_INIT and IKE_AUTH rules. In the formal model, the post-
quantum key exchange is also modeled with the built-in Diffie-Hellman module. As the
model assumes perfect cryptography, there is no difference between a quantum-resistant and
a non-post-quantum key exchange. Instead, the new secret key is leaked with a new fact
called !DHQtoReveal which can be distinguished from the !DHtoReveal fact used for the
first key exchange. A post-quantum attacker simply is given a revel transition for the non
post-quantum key. The Tamarin notion of the initiator’s new rule is presented in Listing 6.13.

1 // IKE_INTERMEDIATE Initiator
2 rule IKE_INTERMEDIATE_I:
3 let
4 msg2 = <spiI , spiR , 'IKE_SA_INIT ', '1', 'r', epR , nR >
5
6 k = epR^eI
7 keymat = h(<nI , nR >, k)
8
9 encr_pl_I = senc{<'g'^~peI , ~nI2 >} keymat

10 integ_I = hmac(<spiI , spiR , 'IKE_INTERMEDIATE ', '2',
11 'i', encr_pl_I >, keymat)
12 msgINT = <spiI , spiR , 'IKE_INTERMEDIATE ', '2',
13 'i', encr_pl_I , integ_I >
14 in
15 [ In(msg2)
16 , Fr(~peI)
17 , Fr(~nI2)
18 , StateInitI($I , spiI , eI , nI , msg1)
19 ]
20 --[ Agreed(<spiI , spiR >, $I , 'initiator ', <nI , nR >,
21 keymat)
22 , INTERMEDIATE_I($I , $R)
23 ]->
24 [ Out(msgINT)
25 , StateIntermI($I , $R , spiI , spiR , nI , nR , ~nI2 ,
26 keymat, msg1 , msg2 , msgINT , 'g'^eI, epR , ~peI)
27 , !DHQtoReveal($I , ~peI)
28 ]

Listing 6.13: Initiator IKE_INTERMEDIATE rule

As a result of the new exchange, the IKE_AUTH rules now consume the new StateIntermX
facts instead. After the successful exchange of the IKE_INTERMEDIATE a new key-
mat is derived and used to protect the following exchanges. Another addition with the
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IKE_INTERMEDIATE messages is the modification of the authentication values that now
includes hashes of the two new messages. Different than with the IKE_SA_INIT, both
agents sign the sent and the received message of the new exchange. The rest of the model
remains identical to the original IKEv2 model.

6.3.2 Adapted Properties

The properties and lemmata are modeled as closely to the regular IKEv2 model as possible in
order to not introduce mistakes in the model. For the augmented protocol the complexity of
the proofs increased with the additional state required to model the IKE_INTERMEDIATE
exchange. Nevertheless all proofs can be solved without manual interaction using only
Tamarin’s automatic solver.

For these new properties the attacker is allowed to circumvent the original Diffie-Hellman key
exchange at any given time, with the help of an oracle. Instead the effects of a compromise
of the second key exchange are observed, which models the post-quantum key exchange. The
new attacker model is equivalent to the old one but with an attacker leveraging a quantum
computer potent enough to apply Shor’s algorithm and break the classical key exchange.

6.3.2.1 Validity of the Model

In order to proof the final state, which is equivalent to the protocol performing a successful
authenticated key exchange with intermediate exchange, can actually be reached in the model,
the two exists_session lemmata are adapted to the new model.

exists_session verifies that a single coherent session can be negotiated between the two peers
using a two key exchanges, one in the IKE_SA_INIT and one in the IKE_INTERMEDIATE
exchange. The lemma itself is The Tamarin definition is given in Listing 6.14.

1 lemma exists_session: exists-trace
2 "Ex A B spi ck #i #j .
3 IKeys(A, B, spi , ck) @ i
4 & RConfirm(A, B, spi , ck) @ j
5 & i < j"

Listing 6.14: Session exists, PQ-IKEv2

The lemma itself is identical to the one used for the non-hybrid IKEv2 proof. It still applies
because the new model requires the IKE_INTERMEDIATE step to be taken in order to get
to the IKE_AUTH and consequently satisfy the IKeys and RConfirm properties.

The same is true for the second validity proof called exists_two_sessions. The lemma
shows that it is possible to complete more than one full run of the protocol in a single instance
of the model. The property is relevant because many network protocol attacks require leaking
some data in one session and applying the gained knowledge in a new session, e.G. replay
attacks. For Tamarin, to find these kinds of attacks, the attacker model must be able to
interact with more than one protocol run. The Tamarin definition is given in Listing 6.15.
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1 lemma exists_two_sessions: exists-trace
2 "Ex A B spi spi2 ck ck2 #i #j #i2 #j2 .
3 IKeys(A, B, spi , ck) @ i
4 & RConfirm(A, B, spi , ck) @ j
5 & i < j
6 & IKeys(A, B, spi2 , ck2) @ i2
7 & RConfirm(A, B, spi2 , ck2) @ j2
8 & i2 < j2
9 & not (ck=ck2)"

Listing 6.15: Two Sessions exists, PQ-IKEv2

The PQ-IKEv2 model satisfies both the exists_session and exists_two_sessions lem-
mata.

6.3.2.2 Authentication

For the three lemmas that verify the different levels of authentication minor changes were Aliveness
necessary to adapt them to the new model. The first property called aliveness shows that a
complete run of the protocol for A with B is only possible if B has been running the protocol
before. For this property the only modification required was to explicitly state that the values
of keymat may differ for the two peers.

1 lemma aliveness[use_induction]:
2 "All spi A B keymat #i .
3 Completed(spi , A, 'initiator ', B, keymat) @ #i
4 & not (Ex #k . RevLtk(B) @ k)
5 ==> (Ex spi2 peer role keymat2 #j .
6 Completed(spi2 , B, role , peer , keymat2) @ #j
7 & #j < #i)"

Listing 6.16: Aliveness, PQ-IKEv2

For the weak agreement property the attacker is now allowed to use the RevDH oracles Weak Agree-
mentthat were explicitly handled in the original lemma. Instead the new action fact RevDHQ()

is checked, which corresponds to the attacker leaking one of the new post-quantum keys
exchanged with IKE_INTERMEDIATE.
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1 lemma weak_agreement[use_induction]:
2 "All spi A B keymat #i .
3 Completed(spi , A, 'initiator ', B, keymat) @ #i
4 & not (Ex #k . RevLtk(B) @ #k)
5 & not (Ex #k . RevDHQ(A) @ #k)
6 & not (Ex #k . RevDHQ(B) @ #k)
7 ==> (Ex spi2 role keymat2 #j
8 . Completed(spi2 , B, role , A, keymat2) @ #j
9 & #j < #i)"

Listing 6.17: Weak Agreement, PQ-IKEv2

For the final authentication property, simply called agreement, the modification looks similar.Agreement
For this property both of the weaker notions of authentication must be true. Further, the
agreed upon set of data, in this case keymat must be the same for both parties and A must
act as the initiator and B as the responder.

1 lemma agreement[use_induction]:
2 "All spi A B keymat #i .
3 Completed(spi , A, 'initiator ', B, keymat) @ #i
4 & not (Ex #k . RevLtk(B) @ #k)
5 & not (Ex #k . RevDHQ(A) @ #k)
6 & not (Ex #k . RevDHQ(B) @ #k)
7 ==> (Ex #j .
8 Completed(spi , B, 'responder ', A, keymat) @ #j)"

Listing 6.18: Agreement, PQ-IKEv2

The results of the analysis for the different authentication properties are identical, which is
why they are summarized here. Note that the order of the notions is strictly hierarchical,
which means agreement implies weak agreement as well as aliveness.

No compromised keys When no keys are compromised the IKEv2 protocol achieves agree-
ment.

Compromised post-quantum ephemeral keys When only the post-quantum ephemeral keys
are compromised, the protocol achieves agreement

Compromised static keys When only the initiator’s static key is compromised, the protocol
achieves agreement. When the responder’s static key is compromised, the attacker can
“impersonate” the role of the responder and the protocol fails to achieve any of the
notions of authentication.

Compromised post-quantum ephemeral & static keys When the post-quantum ephemeral
keys and the initiator’s static key are compromised, the protocol provides agreement.
When the responder’s static key is compromised, no form of authentication is no longer
given.

The results are identical to those of the non-post-quantum IKEv2 protocol with the only
difference that the new additional key exchange has taken the place of the classical key
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exchange with the old attacker model. It can be concluded that the additional post-quantum
key exchange succeeds to provide authentication even against a quantum computer attack,
when only attacks on the key exchange are considered.

6.3.2.3 Consistency

Again, consistency is defined as follows: “When two agents A and B each complete a run of Consistency
the protocol, and I acts as the initiator and thinks it talks to R and R acts as responder and
thinks it talks to I, then they both agree on a identical set of session variables.”

The Tamarin definition, found in Listing 6.19 remains unchanged from the one used in the
IKEv2 analysis.

1 lemma consistency:
2 "All spi A B keymat keymat2 #i #j .
3 Completed(spi , A, 'initiator ', B) @ #i
4 & Completed(spi , B, 'responder ', A) @ #j
5 & not (Ex #k . RevLtk(B) @ k)
6 ==> (keymat = keymat2)

Listing 6.19: Consistency, PQ-IKEv2

No compromised keys When no keys are compromised the PQ-IKEv2 protocol always
achieves consistency.

Compromised post-quantum ephemeral keys When only the ephemeral keys of a single
party or of both parties are compromised, PQ-IKEv2 achieves consistency.

Compromised static keys When only the initiator’s static key is compromised, the protocol
achieves consistency. When the responder static key has been compromised, an attacker
can “impersonate” the other party resulting in a loss of consistency.

Compromised post-quantum ephemeral & static keys When both ephemeral keys and the
initiator static key are compromised, the protocol achieves consistency. When the
responder’s static key is compromised, the attacker can break consistency

The analysis of IKEv2 showed a lack of consistency in the case of a compromised responder
authentication key. The model shows that the same attack is possible with the post quantum
hybrid IKEv2 protocol. This result is expected as the post-quantum modification did not
change the protocols authentication mechanism.

6.3.2.4 Key Secrecy

Only initiator and responder know the keys of a successful run of the protocol, or inverted: Key Secrecy
After a successful run of the protocol the attacker must not know the secret session key
material. The Tamarin lemma’s definition is the same as for the IKEv2 protocol.
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1 lemma key_secrecy[reuse]:
2 "All spi A B role keymat #i .
3 Completed(spi , A, role , B, keymat) @ #i
4 & not (Ex #j . RevLtk(B) @ #j)
5 & not (Ex #j . RevDHQ(A) @ #j)
6 & not (Ex #j . RevDHQ(B) @ #j)
7 ==> not (Ex #j . K(keymat) @ #j)"

Listing 6.20: Key Secrecy, PQ-IKEv2

No compromised keys When no keys are compromised, the PQ-IKEv2 protocol achieves
key secrecy.

Compromised post-quantum ephemeral keys The compromise of a single one of the
ephemeral keys leads to a loss of key secrecy, the attacker can generate the shared key
material from the public nonces and the shared Diffie-Hellman secret.

Compromised static keys When a participants key is leaked, the same participant still
achieves key secrecy. When the key of a trusted peer is compromised, the attacker can
impersonate said peer and break key secrecy/

Compromised post-quantum ephemeral & static keys When any ephemeral key is leaked,
the protocol does not provide key secrecy.

6.3.2.5 Identity Hiding

The protocol parts concerning identity hiding have not changed in any meaningful way with
the integration of the IKE_INTERMEDIATE exchange. The expected result is that the
PQ-IKEv2 protocol achieves identity hiding against a quantum computer attacker, unless any
of the post-quantum ephemeral or the initiator’s long term static key have been compromised.

1 lemma identity_hiding:
2 "All spi A B id #i .
3 Completed(spi , B, 'responder ', A) @ #i
4 & IdentityLearnt(id) @ #i
5 & not (Ex #k . RevLtk(A) @ #k)
6 & not (Ex #k . RevDHQ(A) @ #k)
7 & not (Ex #k . RevDHQ(B) @ #k)
8 ==> not (Ex #j . K(id) @ #j)"

Listing 6.21: Identity Hiding, PQ-IKEv2

No compromised keys With no compromised keys the PQ-IKEv2 protocol achieves identity
hiding for the responder.

Compromised post-quantum ephemeral keys A compromised ephemeral key breaks iden-
tity protection.

Compromised static keys With the responder’s static key compromised the protocol achieves
identity hiding. With compromised initiator static key the attacker can learn the
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responder’s identity and break identity hiding.

Compromised post-quantum ephemeral & static keys The compromise of a single
ephemeral key leads to a loss of identity protection, the same goes for a compromise of
any ephemeral and any static key at the same time.

The analysis confirms the assumption that the hybrid PQ-IKEv2 exchange has no negative
impact on the identity protection property of IKEv2 but adds security against a quantum
attacker.

6.4 Summary

The formal analysis of the security of the IKEv2 and the modified hybrid PQ-IKEv2 protocol
allow two conclusions:

First, the security properties of the original IKEv2 handshake have been confirmed and have
passed the validity test against the results of former formal verification aided analysis of
the same protocol, such as [CHH+17] and [MD+97]. For each of the security properties, the
Tamarin verification comes to the same results as previous publications, ultimately confirming
once more that the IKEv2 protocol satisfies all desired security properties unless one or more
of the secret keys have been compromised. The analysis even independently found a minor
violation of the authentication property in the case of a compromised ephemeral key which
has also been known before. These identical results at the same time confirm the validity of
the presented IKEv2 model. The second, novel, result of the analysis is that, using the same
model as the analysis of the original IKEv2 protocol with only minor additions, the proposed
quantum-resistant PQ-IKEv2 protocol achieves exactly the same security properties that
IKEv2 has, but against the stronger quantum computer attacker model.

The proposed protocol fulfills all of the security requirements found in Section 4.2.2, which
leaves only the usability requirement open for evaluation.
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After the previous Chapter 6 has shown that the designed protocol succeeds to hold the security
properties of the original protocol and adds additional protection against an attacker leveraging
a quantum computer potent enough to calculate Shor’s algorithm for cryptographically used
numbers, some of the desired properties are best evaluated in practical experiments.

This Chapter introduces a proof of concept implementation of the quantum-resistant IKEv2
protocol presented in Chapter 5. The PQ-IKEv2 implementation is then experimentally
evaluated to show that quantum-resistant key exchange schemes are not only secure, but
also practical in common VPN use cases.

7.1 Implementation

The PQ-IKEv2 implementation is based on the OpenBSD operating system’s IKEv2 daemon,
simply named iked [Flo19a]. It provides an implementation of the basic IKEv2 protocol,
support for extensions is sparse but exists for some of the more useful extensions (IKE
fragmentation is supported). The daemons main advantage is its compact code base. As a
result, the daemon’s main loop is well-structured and has a low complexity which makes it
easily extendable and a perfect starting point for a proof of concept implementation of the
post-quantum key exchange.

7.1.1 OpenBSD iked

The iked daemon is running completely in user land. In order to still be able to initiate
ESP SAs which have to be enforced by the kernel, it uses the IETF standardized PFKEY2
interface which is described in [MMP98]. The daemon at first start saves the IPsec flows in
the kernel. IKE SAs are all negotiated and managed in user space, as they don’t require any
kernel interaction. Child SAs resulting from the IKEv2 negotiation again are transmitted
to the kernel via PFKEY. If the kernel finds incoming or outgoing traffic matches any of
the IPsec flows but no SA is available, it sends out a push notification called AQUIRE. The
notification instructs user-land daemons to negotiate a Child SA for the corresponding flow.
This way each implementations responsibilities and their interworkings are well defined.

When the daemon is first started it will, depending on its configuration, determine what
SAs have to be initiated and then send the initial IKE_SA_INIT messages as specified. An
example configuration is given in Listing 7.1.

The configuration reads as follows: Use IKEv2 to construct an ESP tunnel between the nets
10.0.0.0/24 and 10.0.1.0/24. The IKEv2 peer can be reached at 10.0.1.0. For the IKE SA,
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1 ikev2 esp active from 10.0.0.0/24 to 10.0.1.0/24 \
2 peer 10.0.1.0 \
3 ikesa group x25519

Listing 7.1: A simple iked configuration

use a Diffe-Hellman group value of x25519 (which corresponds to the ECDH group of the
same name). In this case the keyword active instructs the IKE daemon to actively start
the security association by sending out an IKE_SA_INIT request. While this configuration
only defines one IKE SA, it is possible to have multiple IKE SAs with different peers that
are managed by a single iked instance. A more detailed documentation of the configuration
language with multiple examples for common IKEv2 setups is documented in [Flo19b].

Once the initial messages have been sent, the daemon enters the main loop that processes
incoming IKEv2 messages asynchronously using the event library [Pro19]. Incoming messages
are handled by the ikev2_recv() function. A visualization of the functions inner workings
in the form of a systems diagram is given in Figure 7.1. An incoming message first gets
its header parsed and checked for correctness. The SPI found in the header is used to look
up a corresponding SA from the Security Association Database (SAD). The resulting SA is
used to check the further header information for correctness. This includes a comparison of
the messages EXCHANGE_ID with the SA’s internal state, to make sure no SA can get
authenticated twice, as well as the messages sequence number which should be higher than
the one in the SA, otherwise the message is a replay. If the header passes all checks, the rest
of the message containing only the payloads goes on to the daemons payload parsing facility.
The payloads are parsed into a temporary structure one after another. If the encrypted SK
payload is encountered, it is decrypted and integrity checked using the keys from the SA and
if everything is correct the contents go back into the payload parser. It should be noted that
up to this point, there has been no change to the SA or any other non-temporary internal
state. This is crucial to the security of the implementation as otherwise an attacker could
send broken or erroneously encrypted messages and use them to change internal state like the
SAs sequence number, which would hinder the daemon from receiving future valid messages
from the SA’s peer because their sequence number is lower than what the daemon expects
ext. After the message was parsed successfully and all checks have passed, the temporary
contents structure together with the SA go into the exchange handler, which applies all
changes resulting from the exchange to the SA. This may include an update of the keys, e.G.
after the CREATE_CHILD_SA exchange or simply a change of the internal state. After the
changes are applied the updated SA is stored back into the SAD and if needed a response
message is sent out.

The implementation of the post-quantum key exchange also requires the IKE_INTERMEDIATE
extension to be implemented. As the exchange cannot easily be implemented without a use
case, the following will treat them as a single addition to the protocol. In other words: the
implemented IKE_INTERMEDIATE can in this form solely be used for the hybrid key
exchange. The minor changes for the IKE_INTERMEDIATE are the addition of a new
notify payload that is sent in the IKE_SA_INIT to negotiate support for the extension, as
well as the addition of a new exchange ID. The actual exchange implementation is added
in the new ikev2_ike_intermediate() function. The function implements the Handle
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Figure 7.1: Design of iked’s message receive function

Exchange step as shown in Figure 7.1 and expects the message contents to contain a single key
and a new nonce (as defined in the PQ-IKEv2 protocol), for which the payload parser can be
reused. The handler then stores the new values in the SA, eventually sends out the response
in case it acts as the responder, and then updates the session keys for the used SA. As the
hybrid key update takes the same form as the IKE SA rekeying, the implementation can
reuse the ikev2_sa_keys() function with minor modifications. Another change introduced
in the IKE_INTERMEDIATE exchange is the modification of the authentication signature
that is sent in IKE_AUTH. For each IKE_INTERMEDIATE exchange, both messages are
added to the signed octets of both peers, so different than with the IKE_SA_INIT the
received and sent messages are signed. To enable the post-quantum key exchange, some new
configuration options for the seven additional key exchanges were introduced labeled ake1 to
ake7. Listing 7.2 shows a similar configuration as seen before, only this time the IKE SA
uses a hybrid key exchange with the x25519 ECDH curve in the IKE_SA_INIT and the
brainpool512 curve in an additional IKE_INTERMEDIATE exchange.

1 ikev2 esp active from 10.0.0.0/24 to 10.0.1.0/24 \
2 peer 10.0.1.0 \
3 ikesa group x25519 ake1 brainpool512

Listing 7.2: A simple hybrid iked configuration

7.1.2 Open Quantum Safe

Now that the implementation supports the hybrid key exchange as specified in Chapter 5,
the only thing missing for a real life evaluation of the post-quantum hybrid key exchange is
the addition of actual quantum-resistant key exchange methods. Chapter 3 introduced two
libraries that provide some of the NIST post-quantum key exchange candidates with a common
interface and build system. The proof-of-concept implementation uses the liboqs [SM16] from
the Open Quantum Safe project because it has a more convenient build system that could
easily be ported to the OpenBSD operating system which the implementation runs on. The
library allowed to extend iked with the following selection of new PQKE options:
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• BIKE1_L1
• BIKE1_L3
• BIKE1_L5
• BIKE2_L1
• BIKE2_L3
• BIKE2_L5
• BIKE3_L1
• BIKE3_L3
• BIKE3_L5
• Kyber512
• Kyber1024
• NewHope-512-CCA

• NewHope-1024-CCA
• FrodoKEM-640-AES
• FrodoKEM-640-SHAKE
• FrodoKEM-976-AES
• FrodoKEM-976-SHAKE
• FrodoKEM-1344-AES
• FrodoKEM-1344-SHAKE
• Sidh-p503
• Sidh-p702
• Sike-p503
• Sike-p702

The downside of liboqs over libpqcrypto is the limitation to only some of the 17 proposed
schemes, but the library offers several different configurations for each scheme. Moreover the
implemented schemes include KEs selected across all categories described in Chapter 2.2.3,
which allows a detailed comparison of the usability of each approach.

The schemes are implemented in the daemon as new transforms for the Diffie-Hellman group
type, which allows to use them interchangeably with the classical Diffie-Hellman and ECDH
exchanges. An example configuration with a hybrid post-quantum key exchange using the
“NewHope” scheme is presented in Listing 7.3

1 ikev2 esp active from 10.0.0.0/24 to 10.0.1.0/24 \
2 peer 10.0.1.0 \
3 ikesa group x25519 ake1 newhope512

Listing 7.3: A hybrid post-quantum iked configuration

A more detailed list of the new options comes in the manual page of iked.conf(5) included
with the implementation.

7.2 Benchmarks

To evaluate whether the presented protocol is actually practical for use in real world settings,
the implementation was tested with different IKEv2 configurations. The test environment
is straightforward, two hosts "A" with IP 10.0.1.33 and "B" with 10.0.1.34 are connected
directly via Ethernet. Both hosts run an up-to-date snapshot of OpenBSD from October
2019, including the patched iked daemon and a self-built liboqs library. The host configuration
for “A” can be seen in Listing 7.4.

1 set fragmentation
2 ikev2 "test" esp active from 10.0.1.33 to 10.0.1.34 \
3 peer 10.0.1.34 \
4 ikesa group x25519 [ake1 ...]\
5 psk "sharedkey"

Listing 7.4: The Test Setup Configuration
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Figure 7.2: Key Exchanges in Comparison: SIKE

The config of host “B” looks identical with the only exception that the IPs are switched and
“B” is passive instead of active, meaning only “A” will initiate the handshake. Fragmentation
is enabled and as the setup uses IPv4 addresses IKEv2 packets will be fragmented to a
maximum size of 548 Bytes. For simplicity, all tests use pre-shared key authentication, which
should not make a difference between post-quantum and non-post-quantum IKEv2.

The first measurement compares a classical x25519 ECDH exchange with four different
hybrid exchanges added on top of x25519. These include newhope1024 and kyber1024, a
combination of both, and the isogeny based sikep751. Each of the exchanges was performed
100 times, and then averaged. The result can be seen in Figure 7.2. Measurements were taken
on the initiator side at four different points in the protocol: Before the first IKE_SA_INIT
message is sent, to know when the exchange started, before the IKE_AUTH request is
sent and after receiving the IKE_AUTH reply when the IKE_SA is activated. Each bar
represents the time from the start to the measurement, so the blue bar shows the time until
the IKE_INTERMEDIATE was sent, the green bar the time until the IKE_AUTH was sent
and the red bar the total time for the exchange.

What becomes obvious at first sight is that the hybrid exchange using sike seems to perform
much worse than the other candidates in the benchmark. In total it takes over 1 second until
the IKE SA is activated, while the curve25519 alone, kyber and newhope take less than 25 ms.
This result is even more interesting when considering fragmentation: sike has the smallest
public keys of the compared schemes at 644 Byte resulting in the IKE_INTERMEDIATE
messages being sent in two fragments each. Meanwhile the x25519+newhope1024+kyber1024
does two IKE_INTERMEDIATE exchanges with five and four fragments respectively. Frag-
mentation and key size seems to only have a limited negative impact in this test setup. On
the other hand as seen in Section 4.1.1 sike’s computational performance is known to be
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Figure 7.3: Key Exchanges in Comparison: Kyber and NewHope

by far the worst of all NIST candidates which the test confirms. With key exchange times
of over one second the scheme is not a realistic Diffie-Hellman replacement in any latency
critical use-case.

Figure 7.3 gives a closer look at the four better performing configurations which all stay
under 25 ms for the full key exchange. It seems that most time for each exchange is spent
for the setup of the initial message and the SA initialization, seen in the height of the left
bar of each key exchange. The actual key exchange round-trips seem to make only a small
difference in comparison. As expected the non-hybrid exchange doing only x25519 is the
fastest at roughly 20 ms closely followed by x25519+newhope1024 and x25519+kyber1024
which both finish at approximately 22 ms with newhope being slightly faster and last the
exchange combining all of the before mentioned, x25519+newhope1024+kyber1024 at slightly
less than 24 ms. It is also the only configuration with two overlaying IKE_INTERMEDIATE
bars, and the difference from blue to blue and from blue to green seems to be almost identical,
meaning the two post-quantum exchanges take approximately the same time at roughly 2
ms each, which is also the difference between non-post-quantum exchange and each of the
two-exchange hybrid combinations.

The results show that the presented protocol can indeed provide a realistic countermeasure
against quantum-attackers adding merely 10% latency to the initial handshake depending on
the chosen cryptographic key exchange method. Even a three-way hybrid handshake, which
will rarely be necessary except for highly confidential data, costs only 20
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8 Conclusion

The time is ticking against classical exchange methods, as a breakthrough in quantum
computing might happen any day. Even worse, the IKEv2 key exchange is vulnerable to an
ex-post attack where the attacker saves the encrypted communication today and breaks the
key exchange handshake in the future, once a powerful enough quantum computer exists. A
compromise of the IKEv2 key exchange leads to a leak of the symmetric ESP encryption
keys which allow the attacker decrypt the following IPsec communication.

While there presently exists no quantum computer able to factor numbers in sizes as they
are used in asymmetric cryptography, the research for novel quantum-resistant key exchange
methods has produced a number of cryptographic schemes existing today that are designed
to be secure against both classical and quantum computers. Some major problems of those
schemes is the uncertainty when it comes to their actual security, because most lack proper
cryptographic review, as well as their unique constraints when it comes to performance or
key size.

This work aimed to find a way to integrate post-quantum cryptographic key exchange
algorithms into the IKEv2 key exchange protocol. Therefore it has thoroughly has analyzed
and categorized most of the post-quantum key exchange schemes to better understand their
specific constraints, and then compared them to the abilities and constraints of the IKEv2
key exchange protocol to find what is necessary to integrate the new algorithms in a protocol
originally designed to be used only with a single Diffie-Hellman key exchange. What became
clear is that none of the post-quantum schemes is established enough to even be considered
secure against classical computers. Instead of using a post-quantum scheme in place of the
original Diffie-Hellman exchange, the solution lies in the use of a hybrid key exchange of a
well understood classical key exchange such as ECDH with the x25519 curve combined with
one or even more post-quantum schemes. The idea is that in case the post-quantum scheme
turns out to be broken in the future the protocol falls back to the security of a strong classical
exchange, whil, if the post-quantum scheme holds up, an attacker can break ECDH but not
the additional PQKE, combining the best of both worlds. In addition it has become clear
that the selection of a single post-quantum scheme will not be enough, instead the protocol
should be agnostic of what key exchange scheme it transports. The resulting requirement is
called crypto agility, the ability to freely exchange a cryptographic algorithm with another.

A further analysis of the security of the IKEv2 protocol lead to a clear definition of four
security properties that the protocol must fulfill: Authentication, Consistency, Key Secrecy
and Identity Hiding. These properties are used to have a basis for comparing the IKEv2
protocol as is with a modified protocol to support PQKEs.

With the requirements being clear, the biggest change required to the protocol was clearly
the integration of a hybrid key exchange. For all protocol design choices several options were
laid out, partly compiled from related work, partly original ideas first introduced in this work.

77



8 Conclusion

After a detailed discussion of the advantages and disadvantages of each approach, a single
solution was chosen resulting in the definition of a new quantum-resistant IKEv2 protocol
named PQ-IKEv2. With the requirements guiding the protocols design choices, the result is
a protocol implementing a hybrid key exchange which allows to freely combine any of the
defined key exchange mechanisms of the IKEv2 protocol, clearly separating the two problem
domains of hybrid KE and post-quantum KE. In the proposed protocol, post-quantum KEs
behave exactly like their non-post-quantum counterparts, and both can be freely combined
and exchanged. The hybrid classical and post-quantum exchange is only one of the allowed
combinations.

The design of the protocol has resulted in the PQ-IKEv2 which is meant to implement a
secure hybrid and possibly post-quantum key exchange, but whether the required protocol
changes have actually preserved the claimed security of the IKEv2 protocol is unclear. The
problem with security is that it can not easily be measured and thus is hard to compare. In
order to get a better understanding of the security of the new protocol, this work resorts
to a method that has been used in the design of another recent IETF protocol: TLS 1.3,
which has been formally analyzed with a symbolic network protocol proofer called Tamarin in
each major iteration of the proposed RFC draft. This process has helped to eliminate attack
vectors early in the design stages of the protocol and turned out to be a useful addition to
the informal expert review process an IETF protocol has to go through.

In order to compare the original IKEv2 and the PQ-IKEv2 protocols for their security
properties, this work has modeled both protocols in the Tamarin proofer and translated the
properties found in the security analysis lemmas the automatic proofer can validate or negate.
Previous formal analysis of the IKEv2 protocol allowed a validation of the findings against
and thus a baseline for the correctness of the implemented model. As the PQ-IKEv2 protocol
handshake is a superset of the original, the IKEv2 model could easily be extended while the
almost identical lemmata could be reused. As a result it was shown that the IKEv2 protocol
actually provides the security it claims, which is in line with previous work on the subject,
and more importantly that the added hybrid key exchange provides the same security, even
against an attacker that can break the original key exchange. The result is groundbreaking as
it is the first time formal analysis has been used in the design of an IKEv2 protocol extension.

After the design of the protocol was final, with the security properties proven to be fulfilled a
last uncertainty was whether the protocol was actually usable in a real world setting, which
for a key exchange mostly means does it perform fast enough or does the added hybrid key
exchange add a considerably to the latency of the exchange. The protocol was therefore
implemented in the open IKEv2 implementation used in the OpenBSD operating system
called iked. The post-quantum cryptography schemes are provided by the liboqs software
library which provides various quantum-resistant scheme implementations. A benchmark of
several different schemes has shown that the latency impact from the hybrid key exchange
protocol turns out to be considerably smaller than the performance difference between the
post-quantum schemes themselves, making a combination of three different well-chosen
schemes more than 40 times faster than a combination of x25519 and the isogeny based SIKE
scheme. Even more, the hybrid key exchange using the promising structured-lattice based
NewHope and kyber schemes add only 2 milliseconds to the overall key exchange, which is
only a 10% increase in latency, which shows that the proposed construction is actually suited
to be used in real world settings without major caveats.
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This work has shown that it is actually possible and even practical to make the IKEv2
protocol quantum-resistant without losing security or usability of the protocol. The required
tools and implementations exist today and the only thing stopping us from widely deploying
quantum-resistant communication protocols are the missing quantum-resistant cryptography
standards, which are actively being worked on. It is unclear when NIST’s standardization
process will come to an end, but the theoretical work for IKEv2 integration is mostly done
and once the NIST “winners” are being announced they can easily be integrated into the
protocols.

Another possible future problem with the availability of quantum computers is not solved
by this protocol, which is quantum-resistant authentication. The PQ-IKEv2 protocol still
uses classical authentication, because it is considered much harder to break than the key
exchange. In order to break authentication, it must be broken in real time and there is no
ex-post attack as for the key exchange. It is uncertain whether and when quantum computers
will be potent enough and available for an attacker to perform a real time authentication
attack, but once a quantum computer exists that can run Shor’s algorithm this problem
should also be considered.

The results of this work in the form of source code of the Tamarin IKEv2 and PQ-IKEv2
model as well as the protocol implementation are freely available in the hopes that they will
be used as basis for a formal analysis in the design process of future IKEv2 extensions. A
future work may also extend the model with the existing non-implemented protocol states
such as the optional EAP-only authentication or the cookie challenge, which would help to
further confirm the security of the protocol as a whole, not only the reduced initial handshake
this work has considered.
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Nomenclature

AES Advanced Encryption Standard

AH Authentication Header

BSD Berkley Software Distribution

CVP Closest Vector Problem

D-H Diffie-Hellman Group (in IKEv2)

DH Diffie-Hellman

DOS Denial of Service

DSA Digital Signature Algorithm

EAP Extensible Authentication Protocol

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ENCR Encryption Algorithm

ESN Extended Sequence Numbers

ESP Encapsulating Security Payload

FTP File Transfer Protocol

HDR Header

HMAC Hash-Based Message Authentication Code

HTTP Hypertext Transfer Protocol

ICV Initialization Vector

IETF Internet Engineering Task Force

IKE Internet Key Exchange

INTEG Integrity Alorithm

IP Internet Protocol

IPsec Security Architecture for the Internet Protocol

KA Key Agreement

KE Key Exchange
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8 Conclusion

KEM Key Encapsulation Mechanism

KEX Key Exchange

LWE Learning With Errors

MAC Message Authentication Code

MTU Maximum Transmission Unit

NIST National Institute for Standards and Technology

PAD Peer Authorization Database

PFS Perfect Forward Secrecy

PK Public Key

PKCS Public Key Crypto System

PLD Payload

PPT Probabilistic Polynomial Attacker

PQC Post-Quantum Cryptography

PQKE Post-Quantum Key Exchange

PRF Pseudorandom Function

PSK Pre-Shared Key

RAM Random Access Memory

RFC Request For Comments

RLWE Ring Learning With Errors

RSA Rivest-Shamir-Adleman Cryptosystem

SA Security Association

SAD Security Association Database

SHA Secure Hash Algorithm

SI Supersingular Isogeny

SIDH Supersingular Isogeny Diffie-Hellman

SIGMA Sign and Mac Protocol

SIKE Singular Isogeny Key Encapsulation

SPD Secure Policy Database

SPI Secure Parameter Index

SSL Secure Socket Layer

SVP Shortest Vector Problem

82



TLS Transport Layer Security

TS Traffic Selector

UDP User Datagram Protocol

URL Uniform Resource Locator

VPN Virtual Private Network
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