INSTITUT FUR INFORMATIK

DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Master’s Thesis

Mesh based Scene Evaluation
Metrics for LOD and Simplification

Daniel Kolb

INSTITUT FUR INFORMATIK

DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Master’s Thesis

Mesh based Scene Evaluation
Metrics for LOD and Simplification

Daniel Kolb

Aufgabensteller: Prof. Dr. Dieter Kranzlmiiller

Betreuer: MNM-Team-Betreuer Dr. Christoph Anthes
MNM-Team-Betreuer Markus Wiedemann

Abgabetermin: 25. Januar 2017

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbstiandig verfasst und
keine anderen als die angegebenen QQuellen und Hilfsmittel verwendet habe.

Miinchen, den 13. Januar 2017

(Unterschrift des Kandidaten)

Abstract

I present seven metrics to quantify attributes of different meshes in a scene. Each metric
represents a different geometrical or topological aspect of the mesh. The resulting rating
values serve to convey the underlying complex data to the user. These allow the user to
swiftly compare several features of multiple meshes. The metrics may thus guide users
and programs during the process of mesh modification, i.e. optimization, simplification or
smoothing, and scene modification as a whole.

I evaluate each metric individually by applying them to a sample scene. To examine the
correctness and expressiveness of the metrics I compare the automatically calculated ratings
to the raw base data. I find two of the metrics to be immediately useful and four of the
ratings promising, but in need of adjustments. The remaining last metric, however, requires
significant rework to generate useful data on par with the other six metrics.

This thesis first introduces the subject with a motivating example. It then presents important
concepts and research on related topics. Afterwards it details the concept of the program
and the mathematical considerations it is based on. It also lists my approach to solving the
challenges which emerged during the implementation. Subsequently, the thesis focusses on
the visualized output of the program and challenges said ouput. Finally, it contrasts the
expectations and goals of each metric with the respective actual results.

vii

Contents

(1. _Introduction| 1
2. _Fundamentals and Related Work| 3
RI. TFundamentals 3
[2.1.1. Planar Grouping| 3

[2.1.2. Gray Scale Co-Occurrence Matrix| 5

2.2. Related Workl 6
[2.2.1. Mesh Segmentation and Segment Classification| 6

[2.2.2. Simplification Algorithms|o 0oL, 10

13
BI DMetricd« o oo 15
[3.1.1." Polygons per Planar Group| 15

[3.1.2. Planar Group Variation| 0 0L, 15

3.1.3. Relative Density] o 16

B.I4. Distancel. 16

) Jo-occurrence Matrix] oo 17

[B.1.6. Fourier Transforml 18

3.1.7. Rendering Time| 19

B.2. Visualizationl 20

[4. Tmplementation| 23
[4.1. Planar Grouping|o 25
[4.2. Distance of Polygons on the Surtace of a 3D Mesh| 25
[4.3. Co-occurrence of Surface Areas of Polygons| 26
5. _Results and Discussion| 29
[>.1. Exemplary Application of Mesh Rating Metrics| 29
[5.1.1. Polygons per Planar Group of Geosphere, Cube and Hexagonal Prism| 29

[5.1.2. Planar Group Variation of Tetrahedrons| 30

15.1.3. Relative Density of Prismg| 31

B.I4. Distance of Cubedo o oo oo 32

[p.1.5. Co-Occurrence of Triangle Sizes in Tubes| 33

(1.6, Fourier Transforml oo oo oo oo 34

[5.1.7. Average Rendering Time ot Geospheres| 35

5.1.8. Relative Rating of Geospheres| 36
B2Scend 37
[5.2.1. Polygons per Planar Group| 38

[5.2.2. Planar Group Variation| 41

5.2.3. Relative Density] oo 42

ix

Contents

[6. Conclusion and Future Work|

|7. Acknowledgements|
||:|st of Flgure§|

53
55
57
61

1. Introduction

Even though performance of computers, CPUs and GPUs continues to increase [Rup14], so
does the demand for more details, higher resolution and more dense meshes. As individual
3D models in video games surpass 100 000 polygons [Pir13], scene optimization algorithms
have never been more beneficial. Another advantage of optimized 3D models lies in their
reduced memory requirements. This holds especially true for applications running on mo-
bile devices, as smart phones and other mobile gaming devices already provide little memory
space due to size constraints. Furthermore, the memory capacities of mobile devices can not
be enhanced as almost arbitrarily as desktop computers or laptops.

The memory space of Nintendo’s 3DS, for example, employs SDHC memory cards, which
can provide up to 32 GB [Ass16] for downloaded software, while its game cartridges carry a
maximum capacity of 8 GB [Yeul(0]. With the current 7th generation of Pokemon bringing
the number of individual pocket monsters (including alternate forms) well above 800. This
means that on average for every 10 MB on a 3DS cartridge of maximum memory space all
data relevant to a single Pokemon need to be present; especially its mesh, its textures and
its animation. Thus it is in the best interest of the game developers to optimize the memory
usage of their 3D models in order to save the memory space needed for further required
game data, like sounds, music, character models, game mechanics etc.

With the release of Pokemon GO the very same problem is present with smart phones. Many
of today’s smartphones come with a memory space of 32 GB in their basic models (iPhone
7 [Incl6], Samsung Galaxy S7 [Marl6]). However, these 32 GB of internal memory are only
partially available for installed apps as the provided memory space is also used for pictures,
videos, music, pre-installed apps as well as the operating system itself. Thus, in order to
maximize the reachable audience, the memory requirements of an app need to be minimized.
Otherwise, one would risk alienating users unwilling to invest non-unsubstantial amounts of
money to upgrade their model’s memory. Once again mesh optimization is a critical step
during the development of the game. However, unguided reduction of the complexity of the
game’s models would lead to noticeable differences in the perceived quality of the individual
models, unless the equality of the levels of detail of all models is ensured.

Consequentially optimization of individual meshes is needed to maximize the number of
visual details per polygon count. Moreover the perceived fidelity of a rendered scene can
be promoted by adapting level of details (LODs) to the user’s needs [FS93]. Both applica-
tions, however, need ways to gauge a mesh’s LOD, complexity or redundancy to enable easy
comparison of the mesh to different versions of itself as well as to other models within the
current scene.

Hence, I propose specialized, yet standardized metrics to rate 3D meshes based on intrinsic
attributes. Specialization aims to preserve the informative value of a single rating, while
standardization is needed to keep ratings expressive when comparing different metrics as
well as identical ratings of different meshes. The calculation of these metrics and their sub-
sequent rating values are conglomerated in the Scene Analyzer. It automatically analyzes
and rates provided scenes.

1. Introduction

During this paper I first detail the work previously achieved in the field of mesh analysis
as well as concepts relevant to my research. I then present the structure and the mathe-
matical keynotes of my scene analysis. Afterwards I explain the challenges I faced during
the implementation of the intended algorithms and how I solved or circumvented them. I
subsequently provide the empirical findings and the actual automated analysis of several
scenes and multiple diverse meshes as well as the examination of the results. At the end I
inspect the positive and negative results, discuss possible solutions for found shortcomings
and explore possible future research topics and applications of the Scene Analyzer.

2. Fundamentals and Related Work

In this chapter I discuss notions relevant to my thesis, both the direct and fundamental kind
as well as the indirect and related kind. I cover groundwork which introduces new concepts,
which I then transfer to fit the problem adressed by this thesis, and other solutions to
variations of said problem.

2.1. Fundamentals

This section contains mathematical approaches relevant to my thesis which are neither well-
known common techniques nor trivial in their execution and relevance. I detail each method,
their origin and provide an example to visualize their use.

2.1.1. Planar Grouping

Planar grouping is a segmentation algorithm which subdivides a mesh based on the similarity
of attributes of adjacent triangles. Planar grouping originates in the gathering of polygons
in Near-Coplanar Sets using a representative tree [HH93] as a means of Polygonal Reduction
and Unseeded Region Growing |[LJT01] from the field of image analysis.

Near-Coplanar Sets are created by adding polygons whose normals 7; differ from a set’s
representative normal n; by at most 2e:

cos™ ! (nio Tff) < 2e.
[alios

These representative normals 7, can either be the mean average of the normals of all polygons
contained within the set or chosen by the user. Both variants can lead to bad fits by barely
including a polygon p; with its normal 7] in a set S and barely excluding an adjacent
polygon po with its normal 75 from S. Even though nj is more similar to n5 than to the
normals of the other polygons in S, p; and ps are not part of the same set. Fig. presents
one such case: p; and ps are part of the same Near-Coplanar Set S constructed around the
representative normal with an angular criterion of 2¢ = 50°. Due to ps not meeting the
angular criterion, it is not part of S. This means that p; and ps are grouped together while
their respective normals differ by 90°, whereas p; and ps, which differ by only 18°, are not.

Region Growing is a technique which can be utilized to dissect and analyze an image
based on the pixels’ attributes. This method grows regions by adding pixels to a region, if
the difference d in color values of an edging pixel px; and an adjacent regionless pixel pxo
doesn’t exceed a given threshold ¢:

d(px;, prj) < t.

2. Fundamentals and Related Work

Representative Normal

a=18°

Figure 2.1.: Near-Coplanar Set S containing p; and p3, but not po

Unseeded Region Growing eliminates the otherwise present need for the user to choose
starting pixels around which the regions are grown by fusing regions. Thereby the resulting
grouping becomes independent from the choice of the starting pixel. Fig. shows a
grayscale image of 6*6 pixels. The colors of the image are encoded as integers. For the
sake of this example I assume ten different shades of gray, ranging from 0 to 9. Of these
ten unique values, seven are present in the given picture. I apply Unseeded Region Growing
with a threshold of t = 1 to the image, which led to the segmentation into two disjunct sets,
S1 and Sy. As the difference in color values along the border of S; and So exceeds t, the
two regions can’t be joined. In this example S represents the darker region, whereas Sy
contains the brighter pixels, and their border signifies a sudden disparity in the otherwise
gradual variation of values.

S,

Figure 2.2.: A 6*%6 px image and its segmentation by Region Growing

2.1. Fundamentals

2.1.2. Gray Scale Co-Occurrence Matrix

Another utilized approach originating from Image Analysis is the Gray Scale Co-occurrence
Matrix (GSCM) [HS™73]. It aggregates spatially dependent appearances of color values.
Hereby a given image is analyzed along a specified direction d and distance A. This means
that each pair of two pixels (p;,p;) counts as one co-occurrence if p; can be reached from
the position (z,y) of p; by moving at most A pixels in direction d. Each co-occurrence then
increments the co-occurrence value of the respective color values of p; and p; in the GSCM
C' at position [color(p;), color(p;j)] by one.

Clcolor;, color;] = Z Z

{1 if color(x,y) = color; and color(x+A,,y+A4A,) = colorj,
z=0 y=0

0 otherwise.

Fig. shows the GSCM resulting from the example image previously introduced in Fig.
The underlying color scale has ten unique shades, which leads to a 10x10 Matrix. The
analysis was carried out along the horizontal direction and A = 1, although the approach
is not limited to this kind of co-occurrence. Therefore the image was examined by column-
wise counting directly neighboring pixels. The cells of the completed GSCM C' contain the
absolute quantitiy of co-occurrences: C[6,5], for example, equals 5. This means that there
exist b instances within the image of a pixel with the color value of 4 having a pixel with
the color value of 5 as immediate neighbor to its right. Due to the small size of the image,
the total number of co-occurrences is, when compared to the size of the GSCM, low and
the matrix itself is very sparse. Nevertheless the GSCM delivers viable results: All non-zero
values lie either directly on the main diagonal of the matrix or close by. This signifies an
image of low frequency and gradual changes as spatially close pixels share similar colors. A
high frequency image, on the other hand, would result in most values converging towards
the counter diagonal, which represents sharp edges. This is due to proximal pixels having
contrasting colors.

@ [0 [O | | W
Q [Q0 |00 | O |

OrL | W N

|0 [| W IN |~
Q| |[OL |k |WI|N
© | © |0 |0 |0 | U

OO OO OO oo oo
= elaleolBeoBoeoloNel =
OO OO OO oo NNOo
O OO OO OO WwWoo
OO OO OO O oo
OO O OOt O oo
OO OO OO oo oo
OO OO OO oo oo
OO O Uto OO0 oo
_ N O O OO OO oo

Figure 2.3.: A 6*%6 px image and its Co-occurrence Matrix

2. Fundamentals and Related Work

2.2. Related Work

This section deals with previous work containing ways to quantify geometrical and topologi-
cal characteristics of a mesh. While my thesis does not make direct use of these algorithms
and metrics, it does share some of the underlying ideas. This also serves to supply the
inclined reader with further research relevant to the field of mesh analysis.

I find that metrics for rating geometrical and topological features to be mostly present in sci-
entific papers dealing with one of two fields of research: Mesh segmentation, which requires
a way to differentiate mesh sections based on a specific measure, and mesh optimization,
which needs to evaluate the complexity of a mesh in order to guide the optimization process.
The metrics here listed may also, after some neccessary adjustments towards standardization
and normalization, be suited as additions to my own metrics.

2.2.1. Mesh Segmentation and Segment Classification

A very important contribution to my thesis comes from the research of Lee et al. [LV.J05].
Their paper addresses the quantification of the individual importance of a mesh’s subregions
to the user by transferring the previously established approach to Image Saliency by Itti et
al. [IKNT98|. Lee et al. solved this problem by distinguishing between smooth consistent
regions and curved regions. The authors further propose to take the surrounding regions
into account when calculating the saliency of a vertex: a curvature of a small group vertices
in an otherwise planar region is perceived as more important than a repeating pattern of
curved groups of vertices. Hence, the importance of a vertex can be seen as the amount of
information it carries by diverging from the pattern in its surroundings. Vertices, which are
similar to their surroundings, on the other hand, represent partially redundant information,
as they create a shape which the user expects. Those vertices are consequently of less
importance.

When comparing the attributes of a vertex to those in its vicinity, Lee et al. opted to use
a Gaussian filter to weight proximity instead of scaling distance linearly. Furthermore, the
saliency of a vertex is the result of multiple saliency calculations which use different radii
to determine the extent of the surroundings of the vertex. These individual results are
weighted and aggregated into a single normalized value, which represents the final saliency
value of that vertex in the mesh. The authors used statistical measures in the calculation of
the curvature deviation of each vertex by comparing the bend of a vertex to the mean and
standard deviation of the curvature of the surrounding vertices. The so generated saliency
map of the mesh can be used to simplify a mesh. The eligibility for deletion of a vertex
is inverse proportional to its saliency, which represents its importance and contribution to
the structure and shape of the mesh. Fig. shows the saliency of a 3D model of a male
bust. In this visualization cold colors represent low saliency, whereas warmer hues highlight
regions of high saliency. The wrinkles of the garment, prominent facial features and the ear
get emphasized, while the smooth bald head and the neck are colored deep blue due to their
low curvature variation.

Further interesting work was provided by Shilane and Funkhouser [SE07] by their pro-
posal for segmenting meshes and measuring the importance of each segment for the mesh
classification. The authors accomplished the partitioning of arbitrary meshes by construct-
ing spheres around sample points of the 3D object. Every part of the object within the set
radius around a sample point is then a component of that partition. They were then able

2.2. Related Work

Figure 2.4.: Mesh Saliencies [LV.J05]. Warm colors represent locally deviating surface cur-
vatures.

to describe these spherical regions with a Harmonic Shape Descriptor (HSD) [KFR03]. A
HSD is a vector which contains the amplitudes of the harmonic decomposition for a shape
describing function. Shilane and Funkhouser applied the process to a wide array of 3D ob-
jects, which were also divided into several groups matching the representated object. Thus
they could identify the shape descriptor which were most similar to meshes of the same class
and dissimilar to meshes of different classes, i.e. most distinctive. The partitions of a mesh
corresponding to the distinctive shape descriptors are consequentially of higher significance
to the recognizability of the object. The distinctiveness of each vertex of a mesh could there-
fore be generated by mapping the distinctiveness of the shape descriptors onto the mesh. A
visualization of the distinctive regions of several examplary meshes can be seen in Fig. 2.5

Figure 2.5.: Distinctive Regions of 3D surfaces [SFQO7]. Heatmaps show the mesh regions
most relevant to object classification.

However, Distinctive Regions serve a different purpose as Mesh Saliency. Distinctive Re-
gions represent a wholistic rating of vertex signficance, whereas Mesh Saliency measures
local significance. It could therefore be used to quantify the similarity of different LODs of
the same 3D object by rating how well the Distinctive Regions were preserved during mesh
simplification. This in turn would help describing the concrete change of object quality as
perceived by the user upon switching LODs. Similarly, Distinctive Regions can be used in
guiding of mesh optimization, e.g. by displaying to a 3D artist which parts of a mesh can
be reduced without hazarding the shape.

2. Fundamentals and Related Work

Podolak et al. also developed an interesting approach to mesh analysis and mesh
segmentation based on symmetry. The authors proposed a random sampling of pairs of
points on the surface of a 3D object, constructing a plane of symmetry for each pair and
then evaluating how well the plane reflects further surface points. The suitability of each
such plane is calculated by mirroring surface points along the plane and aggregating the
quadratic errors generated by the deviation of mirrored symmetry points to closest surface
points. Due to the use and rating of several possible planes of symmetry the algorithm
detects global symmetries as well as strong local symmetries. Regions of a mesh which lead
to strong planes of symmetry can then be identified and highlighted. The application of the
algorithm to the Stanford bunny (see Fig. highlights parts of its ears, its face and its
chest as the most symmetrical regions. The red points display the arbitrarily chosen surface
points which were reflected through the plane. The green points are the closest matches to
these reflected points.

Figure 2.6.: A planar-reflective symmetry transform for 3D shapes [PSGT06]. Left shows
the chosen points (red) and their reflections (green). Right highlights the most
symmetric regions.

The results of this kind of mesh analysis can be used in several ways. First, meshes can
be divided and segmented according to their local symmetry. These mesh segments could
then be analyzed and rated individually, instead of the mesh as a whole. A mesh rating
could then be aggregated from the individual segment ratings. Secondly, the data garnered
from the mesh symmetries can be used to quantify the information gained when viewing
the 3D object from a certain perspective. Presenting the symmetrical segments displays less
information than a rotation showing the asymmetrical aspects. Thirdly, the mesh symmetry
is another geometrical attribute which can be used to compare different LODs of a single
3D object and describe their (dis-)similarity. A loss of strong symmetries would equal a
loss of important mesh features. Lastly, the presence of multiple strong symmetry planes
sharing a single intersection means that the surface of the mesh is very even. The absence of
strong symmetry planes or common intersections, on the other hand, represents an uneven,
complex mesh. The planar reflective symmetry transform could thus also be used to examine
mesh complexity. However, the runtime complexity of the algorithm when not relying on
approximations is extremely high at O(n° log n).

2.2. Related Work

Another way to segment a mesh, though not based on local features and instead using
the occurrences of random cuts, was proposed by Golovinskiy and Funkhouser [GF08]. The
authors determine edges of the mesh which were suitable as segment boundaries by apply-
ing a number of random cuts and then evaluating the likelihood of each edge to lie on a
random cut. This algorithm thus emphasizes comparatively narrow parts of a mesh and
part boundaries. Identifying these edges allows for a segmentation of the mesh in individual
parts for further analysis. As this approach does not investigate fluctuation of specific local
features its resulting segmentations can be used uniformly. Fig. shows its application
to the Stanford Bunny, a trophy, a skeletal hand and a chair. Each uniquely colored region
represents a distinct segment of the mesh.

Figure 2.7.: Randomized Cuts for 3D Mesh Analysis [GF08]. Each distinct mesh segment is
colored uniquely.

With no mesh-specific values being required for a succesful analysis, this segmentation
algorithm has the benefit of functioning without prior knowledge or analysis. Additionally,
the runtime complexity amounts to O(V E?) for a mesh with the vertex count V and an edge
count of E. While this makes it unsuitable for real time analysis, it is on par with compara-
ble tools for preparatory steps preceeding the real time analysis relying on solving max-flow
min-cuts or all-pairs shortest paths problems. However, with the algorithm not using specific
features to group polygons and its random nature, Randomized Cuts can clearly not be used
for feature-based partitioning or analyses requiring consistent input values.

Semantical or feature-based segmentation of meshes also finds immediate use in locating
optimal viewpoints. Takahashi et al. [TFTNOQ5] solved this problem by partitioning a mesh
into subvolumes based on their topological features. Each viewpoint, and thereby a specific
orientation of the 3D object relative to the user, is rated based on how much of each sub-
volume is visible. The authors chose the value set [0;1] to quantify the relative quality of
any given viewpoint in comparison to the best and worst viewpoints. Viewpoints which lead
to a subvolume occluding other important subvolumes or a large portion of itself are thus
rated low. The choice of such a normalized value set makes it possible to also evaluate a
viewpoint in regard to a scene containing multiple 3D objects by aggregating their respective
ratings. Takahashi et al. also included a weighting factor to account for partial opacity and
transparency of a volume. Fig. shows the ratings of diverse viewpoints for a 3D horse
model.

This algorithm can inversely also be used to describe how well a 3D object can be seen
by a user based on its given rotation and the user’s position and viewing perspective. By
evaluating how much information of the mesh is currently being presented to the user, a
LOD switch may be pushed up or pushed back. Additionally, this metric already operates
on a normalized value range which makes it highly compatible to other normalized metrics.

2. Fundamentals and Related Work

KM

J e

35

0.5

FX PO :
i T P
0013 N “4 K‘;!-' A% 0.738
0.52 N

o by
0.309 0.687 1.000

Figure 2.8.: A feature-driven approach to locating optimal viewpoints for volume visualiza-
tion [TETNO5]. Each viewpoint is rated according to their relative quality.

2.2.2. Simplification Algorithms

Of further interest are algorithms which are able to detect regions of a mesh eligible for
simplification. Optimally those simplifications would not even result in a decrease of detail
or important features. A detection of large regions of this kind or a high detection rate
thus imply that the analyzed 3D object has a high level of detail or an opportunity for
optimization. These ratings could therefore be used for both LOD evaluation and guiding
the user’s mesh modification process.

An early example for a metric which quantifies the simplifiability of a mesh can be found in
the Mesh Optimization algorithm by Hoppe et al. . The core of this algorithm is
detecting the overall shape of the mesh and the ensuing removal of vertices while minimizing
the progressive deviation from the original shape. To guarantee a gradual increase of mesh
simplicity while retaining topological features, the mesh is evaluated by an energy function
E. The authors use the function E to measure the amount of vertices, the distance of the
vertices and the deviation from the original point set. Each iteration of the algorithm applies
a random simplification operation - edge collapse, edge split or edge swap - to a random edge
of the mesh. If this results in a decrease of E, the simplification step is accepted and the
iteration resumes. If the algorithm otherwise fails several times to reduce E, it terminates.
Other non-random alorithms for selection of the vertex reduction and its application can
be used as well. For example, instead of choosing a random edge of all available edges, the
authors also suggest limiting the candidate set to include only edges which could lead to a
decrease in E. This candidate set could even be sorted by its anticipated energy decrease.
Fig. [2.9) shows five input meshes and the respective results of the Mesh Optimization.

10

2.2. Related Work

Figure 2.9.: Mesh Optimization [HDD™93|. Original meshes and their vertex reduced ver-

sions.

The algorithm aims to minimize the vertex density of a mesh while maintaining the mesh’s
overall structure. It is therefore a suitable method to either help create lower LODs for a
given mesh or to rate the redundancy of the vertices used to generate a mesh regarding the
mesh’s shape. However, as the energy function E scales linearly with the vertex count, it is
not normalized and therefore would need to be modified to enable comparison of diverse 3D
object.

Another effective method for creating LOD libraries for a given mesh was designed and
implemented by Schroeder [Sch97]. This approach, too, makes use of previously established
simplification operators: edge collapse and vertex merge [HDDT93|. However, the algorithm
also relies on the inverse operators, edge split and vertex split, to revert a previous sim-
plification step and once again increase mesh complexity. This enables the algorithm to
create and retrace a set of progressively simpler meshes as each simplification results in a
decrease of vertex and/or edge count. The choice of which vertex (and its corresponding
edges) is modified is made by examining the so introduced topological deviation from the
original mesh. The operation on the vertex which leads to the least error gets executed.
This also allows the user to limit the mesh modification by providing a maximum error.
The algorithm terminates as soon as it can not go below this error threshold. Otherwise
the algorithm continues to create progressively less complex LOD instances until there are
no more edges left. The algorithm aims to create meshes with arbitrary levels of reduction.
This ultimately enables it to change the topology of a mesh by changing and even closing
holes. An example for this desired behavior can be seen in Fig. 2.10]

Figure 2.10.: A topology modifying progressive decimation algorithm [Sch97]. Left: Un-
modified plane with holes. Center: Partially reduced plane with changes in
the shape of the holes. Right: Maximal simplification with elimination of the
holes.

This method provides the following two metrics for measuring mesh complexity and level
of detail. First the pair of vertex count and edge count of a mesh, which directly relates
to rendering time. Secondly, the error value generated by the progressive simplification.

11

2. Fundamentals and Related Work

Together, the metrics succeed in quantifying the decrease in required rendering time as well
as the introduced loss of mesh quality; neccessary steps to evaluate a potential change in
level of detail for a given 3D object during real time visualizations. However, these values
do not explicitly account for the changes in the mesh topology in regards to the fidelity of
the mesh. Furthermore, both metrics are only useful when comparing different LODs of the
same mesh, since the rating values carry information relative to the initial, unmodified mesh.
The error value also requires a full execution of the algorithm as its calculation is dependent
on previous simplification operations.

Finally, Karni and Gotsman [KG00] show that treating a mesh, more precisely its ver-
tices, as characteristics of trigonometric functions allows for the application of established
frequency analysis tools; most importantly the Fourier transform [Tau95]. The algorithm
uses the adjacency matrix of the mesh’s vertices and their position vectors to describe to-
pological fluctuation. The authors use the eigenvalues of the Laplacian Matrix to describe
the frequency introduced by the corresponding vertex. A high eigenvalue and thus a high
frequency means that the respective detail generated by the vertex is vastly different from
the surrouding structure. A low frequency, on the other hand, implies a smooth surface
feature. Therefore, a frequency analysis can be used to examine the unevenness of a mesh.
Consequently, filtering of the basis functions by including only the n lowest frequencies and
the subsequent reconstruction of the mesh using the corresponding n vertices serves as a
means for mesh reduction while preserving the overall structure. An increase in the fre-
quency threshold n allows the gradual inclusion of further details in order of prominence.
An iteratively more detailed reconstruction of a 3D horse model can be seen in Fig. 2.11]

balala

Figure 2.11.: Spectral Compression of Mesh Geometry [KG00]. Left: Unmodified model with
2978 vertices. Center: Reconstruction with 100 vertices. Right: Reconstruction
with 200 vertices.

This motivates further research regarding the frequency analysis of additional features
and attributes of the mesh to investigate mesh evenness under different aspects. Unlike
the Co-occurrence Matrix the Fourier transform is able to detect changes on a global scale,
whereas the analysis of the Co-occurrence Matrix is limited to neighbors of the nth degree.
Unfortunately, the runtime complexity of the Fourier analysis is prohibitively large. The
authors themselves had to segment the mesh beforehand and apply their algorithm to each
segment separately.

12

3. Concept

This chapters deals with the design of the Scene Analyzer. It explains the individual steps,
and their respective tasks, which encompass the program. This also includes the mathemat-
ical ideas behind the metrics and the visualization.

The ratings used to analyze the scene can be divided into two categories: Those, which
use data generated during runtime, such as user position and orientation, and those, which
remain unchanged during runtime. As the second, static category contains several computa-
tionally and memorywise expensive algorithms and as the results are invariant to subsequent
executions of the Scene Analyzer, they are precalculated. Upon precalculation of a given
scene, the results are written to files, which can then be read and reused indefinitely. This
not only saves time and memory space during ensuing executions but also reduces the run
time complexity of the Scene Analyzer to O(n), given that the runtime exclusive metrics
adhere to this limit as well. When supplied with the analysis files for the current scene, my
application therefore enables the user to evaluate that scene.

The Initializer represents the first part of the scene analysis, encompassing all the steps
relevant to the precalculations, which can be seen in Figure It is structured as follows:
The User supplies the program with one or several 3D Input Files to be analyzed as a scene.
The data provided by these files of possibly different file formats is then decoded and trans-
formed by the File Parser into uniform geometrical data, such as vertex coordinates and
normals. Additionally the user may opt to specify Analysis Specifications, for the Metrics. If
the user provides no parameters, default values are used instead. Both inputs are then used
to calculate the Runtime Invariant Metrics. Further external algorithms for the Frequency
Analysis are also incorporated in the analysis. Upon execution of the analysis the resulting
ratings as well as relevant meta-data are saved in binary Scene Analysis Files for each mesh.

Frequency Analysis

Y

3D Input File

File Parser ‘}

Runtime Invariant

Y

User
Metrics

Analysis Specifications i

Scene Analysis File

Figure 3.1.: Concept Initializer

13

3. Concept

Once execution of the Initializer has finished succesfully and a Scene Analysis File has
been generated for each mesh of the scene, the realtime visualization by the Scene Analyzer
(see Figure can be executed. The first step involves the calculation of the Runtime
Exclusive Metrics. This mirrors the procedure of the Initializer with the User providing the
3D Input File to the File Parser and combines the output with Analysis Specifications, e.g.
the user’s position and viewing direction, to determine the non-static and runtime dependent
metrics. The processes of metric calculation differ only in the Initializer requiring a tool to
facilitate Frequency Analysis (cf. Figure [3.1), whereas the Scene Analyzer does not. The
results of these Runtime Ezclusive Metrics are then combined with the Runtime Invariant
Metrics provided by the Scene Analysis File, which was generated by previous execution
of the Initializer. At that point all Metrics used in the analysis of the scene are finally
present. The user has the option to supply each of these rating with Rating Weights suiting
their needs to emphasize, diminish or even ignore different attributes of each mesh. The
Aggregation of these data then results in single values representing the combined ratings for
each mesh. Each aggregated rating is then mapped on a RGB-value and afterwards set for
each mesh during Coloration. The eventual scene is comprised of the original 3D Input File,
imported by the File Parser, and the modifications to the color values of each mesh. Lastly,
the User is able to Navigate and explore the Displayed Rated Scene.

Initializer
i
»| SHBES E).(cluswe Scene Analysis File
Metrics
i
> Rating Weights > Aggregation
/
User [—
—1 3D Input File [—* File Parser Coloration
h J
> Navigation > Display Rated Scene

Figure 3.2.: Concept Scene Analyzer

14

3.1. Metrics

3.1. Metrics

The following subsections detail each of the seven metrics I designed to analyze a scene by
allowing easy comparison of the included meshes by rating their geometrical features. For
each metric I specify the exact mathematical formula, the origin and computation of the
variables used therein, its value set, its intended meaning as well as exceptional and fringe
cases.

3.1.1. Polygons per Planar Group

Planar Grouping is used to partition all present polygons composing a mesh m. Each Planar
Group pg € PG contains neighboring polygons. A new polygon p; is added only under the
condition that its normal nj differs no more than a certain amount of degrees o from the
normal 75 of a previously added polygon ps. p; and po also need to share a common edge.
In case no suitable pre-existing Planar Group is found, p; is assigned to a new and until
then empty Planar Group. If p; fulfills the conditions of multiple Planar Groups, these join
on p; and form a singular, bigger group. Once iteration over all polygons has finished, each
polygon is member of exactly one Planar Group. A partitioning with o = 0 can be employed
to identify cases of plane surfaces using multiple planar triangles. The resulting quantity of
Planar Groups |PG|, when compared to the number of polygons n, represents the proportion
of "needed” polygons to used polygons. Thus, I define the metric as

n — | PG|

— € [0;1],| PG| € [1;n].

Rpppg (m) =
If all triangles’ normals differ from their neighbors’ normals by at least «, all Planar Groups
are singletons. Hence, |PG| = n, which leads to Ry,,; = 0. Partitionings of the polygons in
decrementally fewer and incrementally bigger Planar Groups results in higher R,,,, values.
Ryppg = 1 means that all polygons are part of the same Planar Group, as |PG| = 1.
This metric uses only one mesh’s geometrical data and can thus be precalculated. Its rating
values are not influenced by other meshes or the user’s movement.

3.1.2. Planar Group Variation

Another analysis utilizing the above established structure compares the sizes of the individual
Planar Groups, which Ry, completely disregards. By summing the squares of all normalized
Planar Group sizes pg I aim to rate meshes with few proportionately big Planar Groups
higher than those with multiples of small or medium size. This results in the following

calculation:
> Ipal

pg€PG,|pg|>1
Rpgo(m) = - € [0;1], | PG| € [1;n], |pg| € [1;n].

Once again, a rating of 0 represents a mesh with absolutely no occurrences of co-planarity,
as singleton Planar Groups, which represent the best case sceneario, are disregarded. Since
the metric is heavily biased towards big Planar Groups, high ratings can only be achieved
by meshes with a significant degree of co-planarity. The most extreme of these cases, a
two-dimensional plane, results in 12,4, = 1.

As this metric relies on the exact same data as Ry, it can be pre-calculated as well.

15

3. Concept

3.1.3. Relative Density

A simple metric to determine complexity of 3D meshes lies in comparing their respective
number of polygons n and provided surface S. It incorporates linear interpolation in three
distinct intervals, I, II and III, determined by the range of densities of all meshes m € M of
a scene.

First, I calculate the average amount of polygons per unit of area for each mesh. I define
the resuling quotient as density d,,, of each respective mesh m:

Nm

S

I use the density values of all meshes in the scene to calculate the mean average density u
of the scene and its standard deviation o. These values are defined as

Z dm, Z (1w — dm)2

meM meM
g =

po= .
| M| | M|

dpm =

Additionally, I identify the smallest density value d,;;, = min,,e s din and the highest density
value dpqr = maXy,epr dp, within the scene. With these data I construct the three density
intervals.

The central interval, I, encompasses all density values which are part of the mean deviation
o environment around the mean density . It produces linearly interpolated ratings ranging
from -0.5 to 0.5. If there exist density values which undercut the lower bound of this interval
then these values create another interval, I, with its smallest value d,;, as its lower bound.
Interval I creates ratings in the range [-1;-0.5] by linear interpolation, albeit possibly with a
different gradient as the interpolation used in interval II. An analogous addition on the right
side of interval II occurs if d,,q, €xceeds p + o. This interval III generates ratings ranging
from 0.5 to 1. The compounded equation is as follows:

dm_/JJ+0- .

—05-05- " FTT 11, 05] if dp € [duin; pt —

0.5—-0.5 dmm*M+0’€[;—0.5] i €l pw—ol

dy — ‘
Reg(m) = § 0.5+ 272”“ € [~0.5;0.5] if d € [— o+ 0] p € [-1;1].

dm_ - .

0.540.5- E=7 €051 if dyy €)1+ 0 dimag]
dmax_M_O'

If all meshes have the same density, however, o would be 0 and d;;, = dpmazr = - To avoid
division by zero, R,q is instead set to 0 for all meshes.

The relative density metric relies on the composition of the analyzed scene, particularly the
meshes included. This information is only available once the execution of the Scene Analyzer
has begun. Therefore, R,q can not be precalculated. Due to the resource light implementa-
tion the calculation can easily be done in real time during the program’s execution.

3.1.4. Distance

Level of detail environments can rely on the distance A of 3D objects to the virtual camera
to classify the objects’ importance. I rate each mesh by its distance to the user, relative
to largest distance Apq: = max,,en Ay and smallest distance Ay, = ming,eps Ay, within

16

3.1. Metrics

the scene. I use linear interpolation to calculate the individual distance ratings. This results
in

Am - Amzn
A’maac - Amzn
Thus one can combine the attribute distance with several other metrics operating on the same
domain when ranking the user’s need for a higher level of detail of meshes. The time needed
to calculate the distance to each object can be decreased by conservatively approximating
the object; for instance via its own bounding box. In case of all meshes having equal distance
to the user the distance rating is unable to deliver meaningful data and rates each mesh with
a neutral 0.5.
Since this metric requires both all meshes of the scene to be analyzed as well as the user’s
position, it can not be precalculated and instead needs to be determined during runtime.

Ra(m) = e [0;1].

3.1.5. Contrast of Co-occurrence Matrix

Gray-level co-occurrence matrices are a powerful tool in the area of image analysis to de-
termine spatial relationships of data points. Transferring the underlying idea from 2D color
data consisting of a fixed range of values to 3D data of variable kinds and dynamic ranges
requires a definition of spatiality on Meshes and a way to reinterpret the column and row
indices of the matrix.

By drawing from the previously implemented neighborhood of polygons, I determine the
spatial relation of two polygons pi, pe as being neighbors of a certain degree. If p; and
po are direct neighbors, then they are neighbors of the first degree. If p; and po require a
common neighbor p3 to reach each other, they’re indirect, second degree neighbors. For the
sake of simplicity, I limit the evaluation to direct, first degree neighbors.

Unlike pixels, polygons offer more attributes suitable for analysis than color alone, especially
geometrical data like area, circumference or normals. Color values, however, are confined
to a static limited value set - such as RGB, RBY, grayscale - irrespective of the occurrence
of these colors. Therefore modelling a co-occurrence matrix M for each possible pair of
neighboring area values would be infeasible given the infinity of possibilities. Thus I limit
the range to those values, which are positively present within the mesh. A sorted set S with
dim = |S| of attribute values serves as a mapping of attribute values to matrix indices.
The co-occurrence matrix M is filled by iterating over all polygons p; and their respective
neighbors p;. A lookup in S delivers the position of the attributes of these polygons in
the ordered list, enabling us to increment M (S(p;), S(pj))new = M(S(pi), S(P5))otd + ™
and normalizing the increase by dividing by the number of polygons in p;’s nelghborhooé
N;. During the summation of the entries of M I supply each summand with a weight.
These weights are the result of the squared respective difference in the chosen attribute:
weight = (attribute; — attributej)Q. Finally I normalize the sum by dividing the outcome by
n, which equals the number of entries in M. Further division by the squared difference of
the highest and the smallest attribute value in S accounts for the previously added weights:
normalization = n - (max (S) — min (S))2. This prevents a scaling of the attribute values
from influencing the rating. Thus, the complete equation is

dim dim dim dim
Z Z M(i,7) - weight Z Z M(i, §) - (attribute; — attribute;)?
i=1 j=1 i=1 j=1
R = = € |0;1].
cem(m) normalization n - (max (S) — min (S5))? 0;1]

17

3. Concept

By design the metric simply returns 0 if all triangles are of the exact same size. Otherwise
the result of R.cy,, would lead to a division by zero due to max(S) = min(S). I chose the
value 0, as a mesh having maz(S) = min(S) features the maximum possible uniformity. The
highest rating, on the other hand, would be the result of a mesh containing but two different
kinds of triangles with each triangle being surrounded by only triangles of the respective
other kind.

As the metric features both quadratic runtime and memory usage and uses only mesh-
specific data, it is best suited to be precalculated to lessen the start up time of the analysis
and visualization of the scene.

3.1.6. Fourier Transform

The discrete Fourier transform (DFT) is a useful resource to analyze the fluctuation of
attributes of a series. I generate this series by picking a starting polygon pgier+ and add
every remaining polygon p; by order of distance Dgqer¢ pi- The distance p; p; itself is defined
by the length of the path from p; to p; by passing only through direct neighbors at a time,
which in turn are reached only by going from the centroid of the polygon to the center of the
common edge to the centroid of the neighboring polygon. Two examples for such a pathway
can be seen in Fig. A more detailed examination of the example can be found in chapter
4.2. T define pgiqert as the polygon with the highest average distance to every other polygon.
This implies that there exists no polygon p, without neighbors. Any such polygon p, is
removed from this analysis beforehand.

Figure 3.3.: Distances of polygons on the surface of meshes

18

3.1. Metrics

Now I apply the DFT to the attributes of the thus generated one-dimensional series of
polygons. As the imaginary part of the result is an odd function around ¢ = (”7_11 +1
and as I am taking only the absolute values of the transformation into consideration, it
suffices to limit the analysis to Xy € [Xo; X.] with X}, being the amount of % in the series.
The metric consists of two aspects: One factor favors the magnitude of high frequencies
by weighting each alternating component with its respective frequency. W normalizes the
sum of all these weighted components by dividing by the sum of their magnitudes and the
number of elements c:

c

DI

W = =1

&
> 1Xil e
i=1
The second factor is the comparison of the strongest alternating component to the direct
component. The combination of both factors thus results in

C
> OIX] i

maxi <j<c | Xi] W~ MaXicice [Xi| =

| Xo| B | Xo| <
D IXil e
=1

In case the mesh contains only triangles of equal size, the Fourier transform of the resulting
function would only have one non-zero spectral component: Xg. Thus the sum A of the
magnitudes of all alternating frequencies would amount to 0 as well. In this case R; simply
returns 0 to signify the most even distribution of the attribute in the mesh. This serves
to avoid the division by zero during the calculation of W. The whole calculation, however,
is based on the presumption that the absolute value of all spectral components | Xj| are
elements of Rg . This can be accounted for by using an input signal containing only positive
numbers or zero as values. Surface area values satisfy this condition. If the input signal does
not meet this requirement, the resulting rating would not be element of [0;1].

Ry is another metric with high runtime complexity. As it does not require data other than
the analyzed mesh’s geometrical data, it is calculated prior to the execution of the Scene
Analyzer as well.

th = S {0, 1]

3.1.7. Rendering Time

Lastly, measuring each objects’ rendl rate each mesh by its distance to the user, relative
to largest distance Az = maxyens A and smallest distance Agyipn = ming,epr Ay within
the scene. I use linear interpolation to calculate the individual distance ratings. This results
inering time supplies an empirical rating of object complexity. Every object is rendered
multiple times, each time with a different rotation applied to the mesh. The resulting
measured rendering times ¢; are aggregated and used to calculate a singular representative

value
Z tm,i

icl
1]

Tty =

19

3. Concept

I rate each mesh by its rendering time, relative to largest rendering time rt,,4; = maXycp rtm
and smallest rendering time rt,,;, = min,,cas 7t within the scene. I use linear interpolation
to calculate the individual rendering time ratings. This results in

Ry(m) = o —Ttmin_ ¢ 1)
Ttmaz — Ttmin

In case of each mesh of the scene having exactly equal rt,,, each is rated with a medium
value of 0.5.

Since R,; uses the rendering times rt,, of all meshes used during the execution of the Scene
Analyzer, the calculation is split into two parts. The empirical measuring of each mesh’s
rendering time is sourced out to the precalculation. The measured data are then used to
determine the actual relative rendering time rating during the runtime of the Scene Analyzer.

3.2. Visualization

In order to display the individual ratings of 3D objects, the respective meshes are dyed in
different colors, thereby allowing the user to easily compare several objects within a single
scene.

All previously listed ratings range from 0 to 1, with the exception of relative density which
ranges from -1 to 1. With 0 representing simple, smooth or comparatively average meshes and
1 signifying complex or irregular meshes, as well as outliers, I choose a spectrum stretching
from green for low ratings via lime, yellow and orange to red for higher ratings. For ratings
encompassing negative values, which, for instance, can be used to visualize outliers of the
lower extreme (with a rating of -1) differently than outliers of the higher extreme (with a
rating of 1), I mirror the approach utilizing blue to represent low negative ratings (see Figure

39).

250 250
200 F200
o o
=1 =
‘< 150 150 ¢
> >
1= 1=
2 100 100 S
5] 5]
) O
50 50
0 T Y T (0]
-1 -0.5 (0] 0.5 1
Rating

(a) RGB values

_ T T T -

-1 -0.5 0 0.5 1
Rating

(b) Spectrum

Figure 3.4.: Assigned colors as a function of Rating

The hereby calculated RGB values are then applied to each mesh. If the mesh possesses
original colors due to materials or textures, I combine the luminance of these hues with
the mesh’s ranking color in equal measure. I determine the luminance Y by weighting and
combining the individual RGB values as in [Rec95]:

Y =0.299-R+0.587-G +0.114 - B.

20

3.2. Visualization

This aims to ease identification of similar 3D objects having similar meshes, but different
characteristics in terms of original color. The aggregation of multiple metrics into a single
value occurs by multiplication of each rating R;(m) with its respective user-determined
weight w;. These weighted ratings are then totalled and normalized by the sum of all
weights:

1
R(m) = Z Ri(m) -w;, I ={pppg,pgv,rd,d,ccm,dft,rt}.

ZiGI Wy iel

In case metrics with differing value sets would be combined, the ratings are mapped on a
common value set beforehand. The aggregation of R,.q and any of the other metrics would
therefore require the use of |R,4| instead. Thereby each used metric would deliver results
within [0;1].

To obviate difficulties in recognizing small differences in assigned colors, which would result
from the scene having little variation in mesh ratings, I provide the option to normalize and
scale the rating values. This means that the lowest and the highest rating present within
the scene for each metric is set as to the respectively lowest and highest rating possible for
that metric. The rating values of the remaining meshes is then linearly interpolated between
these bounds:

1 R;(m) — min,epr Ri(m')

Y ier Wi = maxpy e Ri(m') — min,epr Ri(m)

Rrel (m) =

* Wy,

I = {pppg, pgv,rd,d, ccm, dft, rt}.

These relative ratings R,.¢;(m) are then used for the visualization instead of the absolute
ratings R(m). The values of R,;(m) and R4(m), however, remain unchanged by the rel-
ativization, as these are relative metrics already. The mapping of ratings in a way that
employs the whole range of the value set allows me to make use of the whole color spectrum
corresponding to said value set. This makes it easier to recognize the meshes’ individual
rating colors and to discern differences which would otherwise be difficult to spot. In case
that the rating values of a metric are identical, which would result in division by zero during
the linear interpolation, the ratings are not mapped onto their whole range of possible values
and are instead left unchanged.

21

4. Implementation

In this chapter I explain my approach to implementing the previously introduced concepts,
the problems I encountered and their solutions. I split the program in two applications:
One, the Initializer, calculates the mesh-specific data which is invariant to the actual scene
composition. The other application, the Scene Analyzer generates the remaining runtime
exclusive data and handles the visualization of the results. In the actual implementation
the 3D Input File (see Figure supplied by the user is decoded by the open source
library ASSIMP [Teal6] and converted to a standardized representation of the geometrical
data. ASSIMP is capable of parsing multiple different file formats, which are listed in the
library’s documentation. Additionally the user may provide parameters to the Initializer:
A threshold angle o which dictates the definition of co-planarity during the generation of
Planar Groups, a threshold size DIM which limits the size of the Co-occurrence Matrix in
order to reduce running time and storage space and an amount of steps which represents
the number of sample renderings during a full revolution of 360° around a single axis. The
total number of measured renderings thus amounts to steps® different rotations as object
is rotated around two axes. These data allow the calculation of Ry, Rpgv, Reem and
the average rendering time. The final part of the Initializer, the calculation of the Fourier
transform, is handled by the Fastest Fourier Transform in the West library [FJ16], which is
provided by the Massachusetts Institute of Technology where it was developed by Matteo
Frigo and Steven G. Johnson. The results of the Fourier transform are then used to calculate
the Ryp; of the mesh, which, along with the previously mentioned Ry,pg, Rpgo, Reem and
the average rendering time, are then written to a binary Scene Analysis File.

FFTW
3D Input File —* ASSIMP v
User > Rpppg’ Rpgv’ Rccm’ Rﬁt’
Rendering Time
a, DIM, steps }
Scene Analysis File

Figure 4.1.: Implementation Initializer

During the execution of the Scene Analyzer the user again provides one or multiple 3D
Input Files detailing the scene to be analyzed, which is parsed with the help of ASSIMP.

23

4. Implementation

The filepaths used to describe the location of the input files are also used to locate the
respective Scene Analysis Files, which are stored in locations relative to the files containing
the meshes. The average rendering times of each mesh within the scene are then gathered
and used to determine each mesh’s R,;. Similarly, the calculation of R.; and Ry takes place
during runtime, since these metrics rely on runtime dependant values as well: composition
of the scene and user position. With all seven ratings present, the user then assigns a weight
w; to each rating R;, which is used to compute the weighted aggregated rating of each mesh.
After that the final ratings are mapped on corresponding RGB values and assigned to each
respective mesh, thereby completing the visualization of the scene analysis. During runtime
the user is able to interact with the scene by using the arrow, ”;” and ”.” keys to navigate
the scene. Presses of "4+” and ”-” result in the enlargement and shrinking of the scene,
respectively. "F1” through "F7” are used to de- or reactivate visualizations of particular
metrics in order to explore different aspects of the scene. As an additional analysis tool
"F10” can be pressed to change to the visualization of each mesh’s Planar Groups and back.
"F11” switches the rating mode between ” Absolute” and ”Relative”. Pressing "p” writes
all current rating values to file for examination of the exact values, whereas ”F12” serves as
a general helper key, which details all key functions and the current rating weights in the
terminal output. Finally, the application can be exited by the use of "ESC”.

Initializer

A

> R,.R.R, Scene Analysis File
Y
> W, > y

User [—

A

— 3D Input File ASSIMP RGB values

y

y

> Keyboard input Display Rated Scene

Figure 4.2.: Implementation Scene Analyzer

24

4.1. Planar Grouping

4.1. Planar Grouping

Planar Grouping is achieved by iterating over all polygons and their respective neighbors
(see Algorithm [I)). If their normals diverge by less than the required threshold (line 3), then
they need to be assigned to the same Planar Group: If both polygons already belong to
different groups, their respective groups are joined together (line 4f.); if only the currently
tested neighbor is part of a group, then the previously unassigned polygon is added to the
neighbor’s Planar Group (line 6f.). Otherwise a new Planar Group containing only the
polygon is created (line 11), even if a groupless neighbor fulfills the grouping condition. The
neighbor will lateron be added to the polygon’s group over the course of the encapsulating
iteration over all polygons.

Algorithm 1 Planar Grouping

1: for all pl in Polygons do

2 for all p2 in pl.neighbors do

3 if angle(pl.normal,p2.normal) < threshold then

4: if pl.group # NULL && p2.group # NULL && pl.group # p2.group then
5: join(pl.group,p2.group)

6: else if pl.group = NULL && p2.group # NULL then

7 p2.group.add(pl)

8

9

end if
: end if
10: end for
11: if pl.group == NULL then
12: pl.group = new planarGroup()
13: end if
14: end for

4.2. Distance of Polygons on the Surface of a 3D Mesh

Since my frequency analsis requires a one-dimensional ordered list of the polygons of the
mesh as input signal, I needbegin a sorting condition which fulfills the following two require-
ments: First the resulting list needs to be defined well enough to create an unambiguous and
reproducable signal. This leads to consistent deterministic results over repeated executions.
Secondly the sorting condition needs to be based on the spatial relationships of the poly-
gons, as the goal of the frequency analysis is to highlight correlations between the polygons’
attributes and their proximity.

Therefore, I choose to sort the polygons by distance. Comparing two-dimensional distances
in three-dimensional space requires a way of dealing with the possible change of plane upon
traversing the shared edge of two polygons. For this the distance between two neighboring
polygons p; and ps is defined as the distance of the centers C1, Cs of both polygons to the
center of their common edge C1 2. The distance of two polygons p3 and ps without common
edge ps, psg is recursively defined as the shortest of the paths which result from traversing
adjacent polygons. Therefore the distance of ps and p, is the sum of the distances of p3 and

ps, ps and pg, and lastly pg and py (see Figure .

25

4. Implementation

To find the respectively shortest paths in this large, but sparse graph, I implement Dijkstra’s
solution [Dij59] to this All Pairs Shortest Paths Problem.

Figure 4.3.: Distances of polygons on the surface of meshes

4.3. Co-occurrence of Surface Areas of Polygons

For the implementation of the analysis of co-occurrences of surface areas of polygons two
hardware-based hurdles need to be handled. The first and more obvious problem is the
required memory space of the Co-occurrence Matrix M. At n? dimensions the matrix cor-
responding to a single mesh of 100 000 triangles would necessitate 20 GB memory if each
individual entry was saved as 16 bit unsigned short int. With scenes containing multiple
meshes of similar or even bigger polygon counts, such memory requirements are decidedly
too large. Converting the matrix to triangular form by mapping M'[i, j| = M|i, j] + M[j, 1]
would halve these requirements, but not mitigate the memory requirements in a sufficient
way. The second problem results from the inherent discretization of values. As vertex co-
ordinates are saved with a finite precision, a theoretically completely regular mesh, e.g. a
geosphere, might contain triangles of diminutively diverging area sizes upon digitalization.
I solved both problems by modifying the construction of the initial sorted list S of the trian-
gle sizes which are present within the mesh. Since a triangle’s size is only added to S if it is
unique, i.e. not already an element of S, a pairwise comparison of all triangles is necessary
in any case. I expand the relational operator to treat triangles as equal sized even if their
areas differ by up to the valuebegin of the machine epsilon of the used data type; 1.19209e-07
when using float. This does away with the second problem of same sized triangles not being
recognized due to technical limitations. I approach the problem of too much memory being
required by setting a hard limit DIM on the number of elements in S and thereby the size of
M. For my implementation I set DIM = 20 000, which, along with each entry being a double
of 8 bytes, leads to a maximum of 3.2 GB memory per Co-occurrence Matrix. The eventual
value of DIM, though, can be adjusted to fit individual requirements and hardware condi-
tions. A maximum threshold of the number of elements, however, requires a non-arbitrary
filtering to keep the resulting error as low as possible and correspondingly the analysis as
meaningful as possible. The Planar Grouping Algorithm

To this end I group adjacent elements of the unreduced sorted list S and calculate the mean
average of these groups (see Algorithm . I use this mean value, in turn, to represent all
elements of these groups. Each representative mean average therefore reduces the amount of
elements in S by the size of the group it represents minus one. To guarantee that the thus

26

4.3. Co-occurrence of Surface Areas of Polygons

aggregated error (lines 11, 14) is the smallest possible error, each turn one element is added
to a group (line 20) only if it generates the least possible error during that iteration (line
16f.). To facilitate grouping and retain the values of the elements of each group, I initialize
the algorithm with a new list of lists S’ (line 1) containing all elements of S as singletons
(line 2f.) and keeping the previously generated ascending order.

Algorithm 2 Limiting the size of the co-occurrence matrix

1: T = new List(List)

2: for all sin S do

3: T.add(new List(s))

4: end for

5: while sizeof(T) > DIM do

6: to_joinl = i, to_join2 = i+1, error = oo
7: for i=0 to sizeof(T) do

8: m = mean(T[i],T[i+1])

9: e=20

10: for all t; in T[i] do

11: e += |t; — mean|

12: end for

13: for all t5 in T[i+1] do

14: e += |ta — mean|

15: end for

16: if e < error then

17: to_joinl = i, to_join2 = i+1, error = e
18: end if

19: end for

20: join(to_joinl, to_join2)
21: end while

27

5. Results and Discussion

In this chapter I examine the actual ratings and renderings which resulted from the auto-
mated analysis of 3D scene files. For each scene I present a flat rendering and the correspond-
ing rated and dyed rendering. The flat rendering serves as a presentation of the raw scene
data as seen by a potential user. The rated rendering, on the other hand, is automatically
created by the Scene Analyzer by using the geometrical data of the 3D meshes. The thus
generated ratings are then assigned to each mesh as color value in the successive rendering
of the scene.

For each scene I compare the flat rendering and its underlying data to the rating assigned.
On the one hand I investigate whether each rating suitably represents the attributes and
structure of the corresponding mesh. In that case, I present the causes leading to the cal-
culated values; which characteristics and features of the mesh warrant its rating. On the
other hand, I explore the unrated scene and the raw data to reveal unbefitting ratings, be
it by flaw of design or otherwise inability of the metric to pick up features it is intended to
pick up. I discuss these cases of considerably improper ratings values, the reason for their
impropriety, the causes of these metric shortcomings as well as possible solutions to these
algorithmic deficiencies.

5.1. Exemplary Application of Mesh Rating Metrics

In this section I give seven example scenes, one for each metric, to elaborate representative
cases of rating values and their causes. Each case is chosen to depict meshes of distinctly
differing rating values in order to explore most of the value set of each metric. The scenes were
designed to result in at least one low, one high and one medium rating. Therefore, not all of
the meshes presented in this section are neccessarily representative of real life applications.
Instead, the scenes serve to comprehensibly illustrate meshes of different rating values as well
as the implications of each value for the mesh attributes and structures. Additionally, for
each scene I provide a table containing all data relevant to the calculation of the respective
metric.

5.1.1. Polygons per Planar Group of Geosphere, Cube and Hexagonal Prism

Fig. [5.1]shows two renderings of three specific 3D objects: a geosphere, a cube and a regular
hexagonal prism. The geosphere consists of 320 triangles, each angled slightly different than
its neighbors. The cube is built from 6 squares of 2 co-planar triangles each. Lastly, the
regular hexagonal prism contains 5 layers, which leads to a polygon count of 72 triangles,
6 per top and bottom and 10 per side plane. I apply Planar Grouping with o = 0°. This
leads to the ratings of Rpypg(geosphere) = 3%, Rpppg(cube) = 5 and Ryppg(prism) = %
(cf. Table . The geosphere receives the best possible rating, due to all Planar Groups
being singletons, as no triangle within the mesh has the same normal as at least one of

its neighbors. The cube receives a mediocre rating, because each of its triangles shares a

29

5. Results and Discussion

plane with one of its neighbors. The prism is rated worst out of the three meshes, as it
uses 72 triangles to construct only 8 different planes. The same mesh could be created less
redundantly by using less triangles per side.

The rating of the cube can be misleading, as it can not be simplified any further. The
problem lies within the choice of the base primitives of the mesh. The cube is built from
tetragons, whereas the metric operates on triangles. Generally a mesh built from a specific
kind of n-polygons with n > 3 would volitionally contain many n — 2 co-planar triangles.
Given prior knowledge of the components of the mesh the algorithm can be tweaked to group
its m-polygons instead of its triangles.

) Flat lines rendering

b) Rating rendering

Figure 5.1.: Ry, evaluation of a scene containing a geosphere, a cube and a prism

Mesh n |PG| | Rpppg
Geosphere | 320 | 320 | 0

Cube 12 |6 0.54

Prism 72 |8 0.901408451

Table 5.1.: Data relevant to the R,,,, evaluation of a scene containing a geosphere, a cube
and a prism

5.1.2. Planar Group Variation of Tetrahedrons

Fig. displays three tetrahedrons with differing polygon counts on the front facing side:
The left tetrahedron has the most simple mesh of the three, featuring one triangle per side.
The center tetrahedron is of increased complexity, as its front facing side is created by
combining three triangles. Lastly, the tetrahedron to the right features a side containing 27
triangles, while the remaining three sides consist of singular triangles.

Once again I perform Planar Grouping on these three objects With a = 0°, which results in
a rating of Ryg,(left) = 9, Rygo(center) = 2 and Rpgy(right) = 2 (see Table . Since
the left tetrahedron uses no redundant triangles to create its four 81des, it receives the best
possible rating. Next, the centered tetrahedron uses half of its total polygons to create one
side, while the remainder is distributed over the other 3 sides. Consequently, it receives a

30

5.1. Exemplary Application of Mesh Rating Metrics

mediocre rating. Lastly, the tetrahedron to the right expends 27 of its 30 triangles on its
front facing side, while the remaining three sides use but one triangle each. Therefore this
3D object receives the worst rating out of the three objects compared.

(a) Flat lines rendering

(b) Rating rendering

Figure 5.2.: R4, evaluation of a scene containing three tetrahedrons

Mesh | n | |pg| € PG | Rpgo
Left |4 | 1,1,1,1 0
Center | 6 | 1,1,1,3 0.5
Right | 30 | 1,1,1,27 0.9

Table 5.2.: Data relevant to the R4, evaluation of a scene containing three tetrahedrons

5.1.3. Relative Density of Prisms

This example utilizes six prisms of equal height and iteratively bigger base areas (see Fig.
. The base areas are approximations of the same disc and thereby share the same radius
and differ only in the number of vertices. Consequently the six models are of comparable
volume, but differ drastically in the number of polygons. Therefore, their respective densities
of polygons per unit of area vary as well.

Statistical analysis of this scene delivers a mean density of p = 0.29604 and a standard
deviation of o = 0.215309 (see Table . The resulting categorization of the meshes shows
that both leftmost prisms lie within interval I, due to their respective density falling below
u— o = 0.080371 (see Table . Hence both are dyed in shades of blue. Mirroring these
properties, both righmost prisms exceed p+ o = 0.511349, which leads to assigning them to
interval I1I and a coloration in shades of red. Finally, both prisms in center lie between y— o
and p + o and thereby meet the requirements for interval II. As correspondingly meshes of
average density, both are dyed in shades of green.

31

5. Results and Discussion

9 i
.U

0

(a) Flat lines rendering

(b) Rating rendering

——

Figure 5.3.: R,.q evaluation of a scene containing six prisms

dmaaz

0.56065

dmin

0.0369505

I o
0.29604 | 0.215309

Table 5.3.: Mean density, standard deviation, minimum density and maximum denstiy of a
scene containing six prisms

Mesh dm Interval | R,q4
Leftmost 0.0369505 | I -1
Second from the left 0.0558266 | I -0.784423
Third from the left 0.179589 | II -0.270428
Third from the right | 0.40802 11 0.260045
Second from the right | 0.535204 | III 0.741934
Rightmost 0.56065 111 1

Table 5.4.: Data relevant to the R,.; evaluation of a scene containing six prisms

5.1.4. Distance of Cubes

To demonstrate the relative distance rating 1 use three equal cubes arranged within a scene
at differing z-coordinates (see Fig. . Since I approximate the distance of meshes to the
user by resorting to their respective bounding boxes, the meshes and their approximations
are identical.

At the presented position and orientation of the user’s viewpoint the distance of the meshes
amount to, from left to right, 1.66838, 1.73882 and 1.81755 (see Table . Consequently
the cube to the left, being the closest to the user, receives the lowest possible rating of 0.
The cube on the right is treated analogously and rated with the highest possible value of 1
due to it h