
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Diplomarbeit

Design and implementation

of a generic quality of

service measurement and
monitoring architecture

Cécile Neu

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Markus Garschhammer
Bernhard Kempter

Abgabetermin: 01.11.2002

2

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Diplomarbeit

Design and implementation

of a generic quality of

service measurement and
monitoring architecture

Cécile Neu

Aufgabensteller: Prof. Dr. Heinz-Gerd Hegering

Betreuer: Markus Garschhammer
Bernhard Kempter

Abgabetermin: 01.11.2002

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit
selbständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe.

München, den 31.10.2002

. .
(Unterschrift des Kandidaten)

5

Abstract

Durch die Dienstorientiertheit heutiger IT-Infrastrukturen ist ein Bedarf nach
vorhersehbarer und berechenbarer Dienstgüte entstanden. Während jedoch die
heutigen praktische Ansätze zur Überwachung und Messung von Dienstgüte sehr
technologiespezifisch sind, fordert die Heterogenität moderner Netzwerke einen
generischen Ansatz. Moderne Dienstgütearchitekturen wie das ISO Quality of Service
Framework behandeln die Frage der Dienstgütemessung jedoch nur sehr abstrakt und
überlassen die Entscheidung über detaillierte Spezifikation und Implementierung den
Benutzergemeinden.

Diese Arbeit stellt eine generische Architektur zur Messung und Überwachung
von Dienstgüte vor. Das generische Konzept von Event Streams wird eingeführt, um
die Interaktion am Dienstzugangspunkt zu modellieren. Ableitungen einer abstrakten
Event-Oberklasse werden dazu verwendet, protokollspezifische Event Streams zu
beschreiben.

Auf Grundlage des ISO Quality of Service Framework wird eine vereinigte Sicht
auf Dienstgüte erarbeitet. Dabei wird Dienstgüte mit Hilfe von vier generischen Ba-
sisdimensionen modelliert. Durch eine geeignete Abbildung dieser Basisdimensionen
auf protokollspezifische Messwerte kann diese Architektur an jede Art von Protokoll
adaptiert werden.

Die Basisdimensionen werden durch Event-Korrelation bestimmt. Event-
Korrelation definiert eine Abbildung zwischen zwei oder mehreren Event Streams
auf Grundlage einer wohldefinierten Beziehung zwischen Events - zum Beispiel einer
Identitätsbeziehung, wenn zwei Mitschnitte des selben Datenstroms korreliert werden.

Das Framework besteht aus drei konzeptuellen Blöcken: dem Datenkollektor,
der einen Datenstrom mitschneidet und daraus einen entsprechenden Event Stream
generiert, dem Datenkorrelator, der eine beliebige Anzahl von Event Streams
korreliert und dem Datenanalysator, der eine statistische Analyse auf den korrelierten
Event Streams durchführt und die QoS Basisdimensionen ausgibt.

Zudem wird das Konzept des Messkontextes eingeführt, um die Umstände zu
modellieren und zu erhalten unter denen die Messung und Analyse durchgeführt
werden. Kontext kann an jedem Punkt des Mess- und Analysevorganges gemessen
werden und wird bis zum Datenanalysator propagiert, um dem Endbenutzer die
Kontextinformation zur Verfügung zu stellen. Mittels eines Mechanismus namens
Kontext-Backpropagation kann der Endbenutzer wiederum die Datenkollektion oder
Korrelation beeinflussen.

Um zu veranschaulichen wie die Konzepte der Architektur in Software umge-

setzt werden können, wird eine prototypische Implementierung vorgestellt. Diese

Implementierung unterstützt eine repräsentative Auswahl an Event Typen für

TCP/IP-Netze und hat ein benutzerfreundliches graphisches Interface.

6

Contents

1 Introduction 11

2 Quality of service 13
2.1 Definitions . 13

2.1.1 ISO QoS Framework . 13
2.1.2 ITU-TS and ATM QoS 14
2.1.3 Quality of service in IP networks 15
2.1.4 TINA . 16
2.1.5 Discussion . 17

2.2 Measuring and monitoring quality of service 18
2.2.1 QoS in multimedia networks 18
2.2.2 IPPM (IP Performance Metrics) RFC2330 19
2.2.3 Fasbender . 20
2.2.4 Discussion . 21

2.3 A new approach? . 21
2.3.1 Requirements . 21

3 Architectural view 23
3.1 Overview . 24
3.2 Events - a unified description of network activity 26

3.2.1 The data stream approach 27
3.2.2 Events . 27

3.3 Modeling quality of service . 29
3.3.1 Requirements . 30
3.3.2 QoS base dimensions . 32
3.3.3 Discussion . 34

3.4 Context of the measurement process 35
3.4.1 The measurement context 36
3.4.2 Backpropagation of the data context 37
3.4.3 Conclusion . 38

3.5 Architectural details . 38
3.5.1 Data collector . 38
3.5.2 Data correlator . 40
3.5.3 Data analysator . 45
3.5.4 Further analysis? . 47

3.6 Discussion . 48

7

8 CONTENTS

4 Software model 51
4.1 Interaction . 51
4.2 Software deployment . 52
4.3 Events and context . 53
4.4 Collector, correlator and analysator 54

5 Implementation aspects 57
5.1 General considerations . 57
5.2 Experimental setup . 58

5.2.1 Introduction . 58
5.2.2 Comparing the different approaches 59

5.3 Technical constraints . 60
5.3.1 Sampling methodology . 60
5.3.2 Computer clocks . 61
5.3.3 Libpcap interface . 62
5.3.4 Calibration . 63
5.3.5 Other technical limitations 64

5.4 Prototype implementation . 65
5.4.1 Prototype software . 66
5.4.2 Conclusion . 67

5.5 Conclusion . 69

6 Proof of concept implementation 71
6.1 Collector . 71

6.1.1 Event trace format . 72
6.1.2 Code . 73

6.2 Correlator - Analysator . 76
6.2.1 Measurands . 76
6.2.2 Code . 76
6.2.3 Context . 78

6.3 Application screenshots . 78
6.4 Conclusion . 80

7 Summary and conclusion 83

List of Figures

3.1 The measurement architecture 24
3.2 The measurement framework as pipeline 26
3.3 The OSI protocol stack . 28
3.4 Event classes . 29
3.5 Overview of the data collector . 38
3.6 Detailed view of the data collector 40
3.7 Collector interface definition . 40
3.8 Vertical and horizontal correlation 41
3.9 Correlation across the service boundary with an event counter . . 43
3.10 Correlator interface definition . 45
3.11 Analysis of a video transmission between two hosts 47

4.1 Sequence diagram . 51
4.2 Deployment diagram . 52
4.3 Event streams . 53
4.4 Event classes . 53
4.5 Context . 54
4.6 Class diagramm . 54
4.7 Object diagramm . 55

5.1 Different measurement points . 58
5.2 The BSD packet filter . 63
5.3 Experimental setup for the prototype 65
5.4 Screenshot of the prototype collector 67
5.5 Screenshot of the prototype correlator - 1 packet / second ping . 68
5.6 Screenshot of the prototype correlator - 2 packets / second ping . 68

6.1 Analysator screenshot . 79
6.2 Analysator screenshot during measurement 79
6.3 Analysator output during measurement 80
6.4 Collector screenshot . 81

9

10 LIST OF FIGURES

Chapter 1

Introduction

In today’s connected world, the concept of service quality has gained an
importance never seen before. With the emergence of multimedia applications
with high demands to network performance and the widespread use of networks
and networked applications in business context, a demand for predictable and
accountable service quality has arisen.

To this end, service level agreements between service providers and cus-
tomers specify the service quality level expected by the customer and should
be reliably provided. With the shift from network management to service
management (see [33]), the handling of quality of service has become one of
the foremost topics an integrated management has to face. To ensure the
enforcement of SLAs, a detailed specification and later, a constant monitoring
of quality of service is needed.

Today, the monitoring of service quality is often done implicitly using
heterogeneous methods and gathering the relevant data from a multitude
of different sources: traffic statistics can be gathered via SNMP, tools like
Netsaint ([1]) give information about service availability etc. Analyzing the
collected data and estimating the level of compliancy with the SLAs remains
a human activity. The heterogeneity of both the underlying network technolo-
gies and the tools used for network management further complicate this process.

Considering the importance of QoS management, it is surprising that no
unified QoS measurement architecture has emerged. The approaches so far
have been either very abstract, mentioning the problem but leaving the details
of the implementation to the end user, or too specific to be of use outside a
very narrow range of application. The International Standards Organization
QoS standard X.641 ([35]) identifies QoS monitoring as a mechanism of QoS
management, but fails to specify a framework for QoS monitoring. On the other
hand, the IP performance metric RFCs (RFC2330, [47]) give a very detailed
discussion of the implementation of a performance metric for IP networks, but
lack the background of a QoS architecture.

This thesis proposes a generic framework for the measurement of quality
of service, providing a unified view on QoS and ensuring the comparability of

11

12 CHAPTER 1. INTRODUCTION

service quality regardless of the technical details of the underlying network. The
framework proposal will be concluded by an implementation of this framework
for packet-switched networks as a proof-of-concept and in order to verify some
of the assumptions made during this work.

Using a unified view on QoS lays the groundwork to developing a generic
QoS measurement architecture, as the concepts used are not inherently limited
to one networking technology, and thus the heterogeneity of today’s networks
can be adequately reflected. Furthermore, this raises the point of comparability:
can a representation of service quality found such that the results permit not
only a qualitative comparison but also a quantitative assessment of the relative
performance of different network technologies. Finally, a generic measurement
architecture is very adaptive and can easily accommodate emerging new
technologies without needing a fundamental revision.

First, an overview of the most common definitions of QoS will be given
in chapter 2. The QoS definition used in this thesis will be heavily based
on the definition given in the ISO QoS standard, but it is important to
see the heterogeneity present in this field to better contextualise this work.
A representative choice of works on the subject of QoS measurement and
monitoring, both from the academic and the industry world, is then presented
and discussed. After this summary of the current state of the art, a list of
requirements for the QoS measurement framework is formulated.

Chapter 3 presents the QoS measurement architecture. To achieve a high
level of generality but keep the implementation easy, the concept of events
is introduced to model network activity. While the processing of events is
inherently protocol- and network-specific, the methods used remain generic,
hiding the underlying heterogeneity from the architectural framework. The
partitioning of the framework into three main aspects - event collection,
event correlation and event analysis - further sustains this modular approach.
Finally, the rules used in those steps are not hard-coded in the framework, but
implementation-specific, preserving the generality of the approach.

After the presentation of the UML implementation model in chapter 4,
chapter 5 discusses the technical details of the implementation: what kind of
experimental setups can be used with this measurement architecture, what
technical and methodical problems are likely to be encountered and how should
they be solved.

Chapter 6 presents the final proof-of-concept implementation which can be
used to measure the QoS of ICMP and TCP traffic in IP networks and discusses
the code in more detail. Finally, chapter ?? shows some experimental results
gained with this software.

Chapter 2

Quality of service

In the last years, numerous quality of service frameworks targeting different
application fields - from generic QoS architecture proposals to very technical
frameworks - have evolved. In this chapter, a broad overview of the state of
the art regarding quality of service framework will be given and the respective
definitions of QoS, focusing on their relevance for this work given. In the second
section, a few representative approaches to the problem of quantifying and
measuring quality of service will be presented, and their advantages and draw-
backs discussed. Finally, I will attempt to show why a more generic and unified
approach to QoS measurement is needed, and list the requirements such an
approach has to fulfill. A discussion of QoS frameworks can also be found in [15].

2.1 Definitions

2.1.1 ISO QoS Framework

One of the fundamental works in this area is the QoS framework that was
proposed by the International Standards Organization ([35]). This framework,
built on the concepts of the Open System Interconnection management frame-
work, defines the architectural principles, concepts and structures underlying
the provision of quality of service in OSI networks. It provides a conceptual
and functional framework only and is not 1 as an implementation specification.

In this framework, the concept of service is to be understood in a very
broad sense as the interaction between entities and the provision of functions
by entities, objects and applications. The model considers two classes of
entities responsible for the management of QoS: the system QoS entities, which
monitor and control the performance of the global system by interacting with
specific layer QoS entities; and the layer QoS entities, which implement direct
control of protocol entities and are responsible for negotiating service quality
with inferior layer and exchanging information between layers.

Quality of service is characterized by a few key concepts. The QoS character-
istics designate any aspect of system QoS which can be identified and quantified.
This models the actual behavior of a system, not the result of a measurement.

13

14 CHAPTER 2. QUALITY OF SERVICE

QoS categories are a policy leading to the choice of a particular set of QoS
characteristics for the implementation of different QoS requirements targeting
different user groups. Examples of QoS categories would be: security, ease of
use, flexibility / extensibility etc. The user requirements are expressed as a
set of QoS requirements, which can consist of QoS parameters (the require-
ments between entities) or QoS context (modeling the requirements within one
entity). Those requirements are then realized by QoS mechanisms or manage-
ment functions: for instance, establishing QoS for a set of QoS characteristics or
maintaining actual QoS as close as possible to target QoS. While the standard
presents a set of QoS characteristics of general importance, it leaves the selection
of a suitable subset of characteristics for actual measurement and monitoring
of QoS to the user communities. Also, the set of characteristics presented is
not exhaustive, and leaves open a wide range of further specialization for many
characteristics. From the ISO QoS standard ([35]):

This QOS framework specifically excludes the detailed specification
of QOS mechanisms. It is not the intent ... to serve as an imple-
mentation specification, to be a basis for appraising the conformance
of implementations, or to define particular services and protocols.
Rather, it provides a conceptual and functional framework for QOS.

2.1.2 ITU-TS and ATM QoS

The concept of quality of service used in ATM networks corresponds to
the ITU-T (International Telecommunication Union) Recommendation I.350
[34] 1 QoS and network performance in digital networks. Starting from the
definition of QoS as the degree of satisfaction experienced by the service
user, quality of service is then characterized as service support, service
operability and service integrity performance. A clear distinction is made
between quality of service and network performance: while the first is a
user-oriented service attribute, focusing on user-observable effects, the latter
is defined as a provider oriented, connection element attribute, focusing on
planing, development, operation and maintenance of a network. More impor-
tantly, network performance is defined as an end-to-end characteristic of the
network, while quality of service is to be observed between service access points.

Based on this recommendation, the ATM Forum has defined a set of cell
transfer performance parameters which serve as a basis for measuring the QoS
provided by the network. User quality expectations are matched to four service
classes, which have been defined on the basis of three type of requirements:
the need for between the sender and the receiver, constant or variable bit rate
and connection-oriented or connectionless transfer. The AAL (ATM adaption
layer) then matches the service class requirements onto the ATM layer, where
service quality is measured using parameters such as cell error ratio, cell loss
ratio, cell transfer delay etc. (see [10]).

This QoS framework is quite interesting because it begins with a user-
centric concept of service quality and provides a mapping onto network-centric
performance parameters. The obvious drawback is that this approach is only
valid for ATM networks and was not conceived with a more abstract and

2.1. DEFINITIONS 15

generic framework in mind. While the parameter mapping might provide
some interesting insights for the implementation part of this thesis, the QoS
framework is of no direct concern.

2.1.3 Quality of service in IP networks

Traditionally, traffic in IP networks only had one type of service quality class
available: that of point-to-point, best effort delivery. Traffic is processed as
quickly as possible, but there are no guarantees as to actual delivery, available
bandwidth or timeliness. Even though the IPv4 standard envisioned different
IP precedence classes using the TOS (type of service) header field (see [9]), this
never found widespread acceptance. In the last years, two new developments
in the field of IP QoS - Integrated Services and Differentiated Services - have
succeeded into bringing differentiated service classes to IP networks. Both the
intserv and the diffserv approach, as well as the IETF QoS manager will now
be presented and evaluated.

Integrated services and RSVP

The integrated services model, as specified by the IETF intserv working group
in [13], provides mechanisms for resource reservation and admission control. By
reserving bandwidth and router resources along the communication path us-
ing the RSVP protocol ([12]), applications can request a specific QoS which is
then provided to the packet stream. So far, two service quality classes have
been defined: controlled load, targeted towards application requiring reliable
and enhanced best effort delivery, and guaranteed service for application requir-
ing fixed delay bounds. No framework for the implementation of those service
quality classes is provided.

Differentiated services

The differentiated services model, as specified in [45] and [11], uses the TOS
header field as DS field and a set of per-hop-behaviors to realize different traffic
classes. In IPv6, the corresponding header field used is the traffic class field.
Diffserv is significantly different from the intserv model. As the classification,
marking and policing of packets is only necessary at the boundary of networks,
the ISP core routers need not implement as much functionality as RSVP-
enabled routers. Thus, the implementation and deployment of differentiated
services is easier. Furthermore, while intserv works on network layer 4, diffserv
acts on network layer 3.

IETF QoS Manager

In [20], an early work on an IETF QoS manager for the integrated services
protocol suite is presented. The QoS manager is an abstract management layer
separating the core QoS semantics from the details of the implementation,
thus enabling applications to negotiate QoS requirements without knowing the
details of any specific network service. This interesting approach seems not to

16 CHAPTER 2. QUALITY OF SERVICE

have been developed any further and thus will not be discussed here.

Discussion

The quality of services concepts used by the integrated services model are very
simple and network-centric. From [13]:

The core service model is concerned almost exclusively with the time-
of-delivery of packets. Thus, per-packet delay is the central quantity
about which the network makes quality of service commitments.

The emphasis lies on real-time QoS, characterized by end-to-end packet
delay and controlled link sharing.

The differentiated services model uses a flexible definition of quality of service
(see [11]):

A ”service” defines some significant characteristics of packet trans-
mission in one direction across a set of one or more paths within
a network. These characteristics may be specified in quantitative
or statistical terms of throughput, delay, jitter, and/or loss, or may
otherwise be specified in terms of some relative priority of access to
network resources.

The network traffic is then classified according to rules defined in the
TCA (traffic conditioning agreement, which ”specifies the forwarding service
a customer should receive”, [30]). Still, both approaches lack the back-up
of a larger QoS framework. Both QoS definitions apply only to packet
switched networks, and while the diffserv approach is more flexible it still leaves
the definition of what can actually be conceived as the QoS of traffic to the TCA.

2.1.4 TINA

The TINA (Telecommunication Information Networking Architecture) consor-
tium, formed by network operators, telecommunication equipment suppliers and
computer suppliers was working on the definition of a software architecture to
support flexible introduction and integrated management of new services in the
telecommunication area. As of 31.12.2000, work on TINA-C has ceased. It is
still discussed here as the software architecture proposed features an interesting
approach to the description of service quality. A more in-depth description of
the TINA-C architecture can be found in [27] and on the TINA-C web site ([2]).

The service concept used here is very broad and covers both the traditional
concept of telecommunication services (services provided by network operators
etc. to customers) and management services (needed for the operation and
administration of telecommunication services or networks).

The TINA-C software architecture aims to be independent of underlying
technical aspects of the network as well as interoperable across different net-
work domains. It is divided in four technical areas: Computing Architecture,

2.1. DEFINITIONS 17

Management Architecture, Service Architecture and Network Architecture.
Quality of service is defined 2 the context of the Computing Architecture,
which provides a set of modeling concepts as a basis for the interoperability of
telecommunication software.

Using the Object Definition Language, an extension of the Object Man-
agement Group Interface Definition Language, quality of service is defined as
an object attribute of operations and stream flows to specify non-functional
aspects. The goal here is to provide QoS transparency: applications do not
have to deal with complex resource management mechanisms, as these are not
handled by the application layer.

From [50]:

The quality of service attributes associated with an operation or a
flow address the timing constraints, degree of parallelism, availability
guarantees and so forth, to be provided by that component.

The TINA-C architecture only provides the concepts necessary to associate
quality of service statements with operations and flows. What it does not
provide are the semantics of those specifications. I.e., if the service attribute
”bandwidth” is assigned the value ”2 Mbits”, this does state whether the value
should be interpreted as a mandatory capability, a mean value to be expected,
or the maximum bandwidth capability of the interface.

2.1.5 Discussion

The relevance of these QoS architectures for this thesis will now be evaluated
and discussed. A generic and technology-unspecific QoS definition is essential,
as the aim of this thesis is to present a generic measurement architecture
for QoS. Still, the QoS definition needs to be flexible enough to allow an
easy mapping onto low-level, network-specific characteristics without posing a
restriction as to the type of network where it is applicable.

None of the QoS definitions presented so far has provided a unified, high-
level QoS concept. Both the ATM QoS and the intserv / diffserv approaches
for packet switched networks are highly technology-specific, although the
definition of QoS as the degree of user satisfaction presented in the ATM QoS
standard maybe comes closest to a unified high-level QoS definition. The
TINA-C approach, while quite interesting, will not be considered in this work
as development has ceased. Furthermore, while the modeling of service quality
as object attributes is a very interesting approach, it is much too specific to
be of relevance here. Finally, the ISO QoS standard prepares the ground-
work for a unified definition of QoS but leaves the details to the implementation.

Instead of trying to find a unified, high-level QoS definition, the concept of
service quality used in this work will be heavily based on the ISO QoS standard
and consider only technology-based QoS characteristics as presented in [17].
As will be shown in section 3.3.2, the exact definition of high-level, end-user

18 CHAPTER 2. QUALITY OF SERVICE

QoS is irrelevant for this work. By using a suitable subset of technology-based
QoS characteristics, a mapping from those QoS parameters onto high-level
QoS is always possible. This will be discussed in more detail in chapter 3 and
especially section 3.3.2.

2.2 Measuring and monitoring quality of service

With service orientation gaining more and more importance today, monitoring
and thus precise measuring of quality of service has become one of the foremost
topics network management has to face. Comparability of network services
becomes possible only if a quantitative assessment of the services is offered.
Service level agreements between service providers and customers rely on
mechanisms for specifying levels of QoS which are to be expected and, later,
monitored during operation. Network management needs tools to keep the
quality of service provided by a network under surveillance.

Still, no unified approach to the monitoring and especially quantification
of quality of service has emerged. With QoS and QoS monitoring being an
inherent part of ATM networks, the topic of monitoring quality of service
in multimedia networks has not lead to new developments in the field, but
provides interesting approaches to the problem of defining a QoS metric, and
overcoming the gap between user-centric and network-centric QoS. In the IP
world, notable developments have been made by the IETF’s Internet Protocol
Provider Metrics working group. Finally, a research project on measuring and
modeling service quality in packet switched networks is presented.

After a short presentation, these approaches will be rated according to the
following criteria:

• Use of passive or active measurement methods? Passive measurement
methods are to be preferred, as they do not disrupt or influence normal
network operations and thus provide unbiased and more accurate mea-
surements.

• End-to-end or network centric measurement? Due to the nature and scope
of this work, only end-to-end approaches are of interest. The network is
considered to be a black box, whose internal workings are of no concern.
The traffic flows are measured and analyzed only across the protocol or
the service interface.

• QoS definition used? A network-independent, high-level QoS definition
is to be preferred, as this thesis aim towards a generic, technology-
independent measurement interface. Ideally, a flexible mapping of high-
level QoS parameters onto network-level QoS parameters should be pro-
vided.

2.2.1 QoS in multimedia networks

As a quality of service metric is already present in ATM networks through
the definition of cell transfer performance parameters by the ATM Forum (see

2.2. MEASURING AND MONITORING QUALITY OF SERVICE 19

[26]), the difficulties posed by measuring network performance in multimedia
networks are not those of finding a suitable set of performance parameters, but
rather of mapping user expectations to the already present set of measurement
parameters. The existing mechanisms for measuring QoS being network-centric,
a technique for quantifying user-centric QoS - which is often expressed in very
vague terms - and mapping it onto network-centric QoS is needed.

[28] presents a method of QoS mapping between the user’s video quality
preference and the bandwidth required. User preference, in this case, can
be a fast but coarse video transmission, or a slow but clear transmission.
These are mapped onto three QoS parameters: spatial resolution, SNR1

resolution and time resolution using mean opinion score evaluation to quantify
the user’s perceived video quality. Finally, the bandwidth required to sup-
port a given set of QoS parameters is determined by analyzing MPEG2 streams.

[48] holds that service quality should be measured according to its impact
on final entities - that is, the applications, their users or the service provider
themselves. To this end, the value of a given QoS characteristic is classified
in one of 5 zones, denoting gradual degradation or improvement of perceived
service quality. The authors also present a prototypical implementation of a
QoS monitor.

[37] evaluates the performance of multiplexer service disciplines, which con-
trol traffic flows through ATM switches and are important in provisioning QoS.
A quantitative comparison of the performance of common service discipline
algorithms shows that a performance evaluation based on QoS parameters such
as cell loss ratio, end-to-end delay and delay jitter do not adequately reflect
user satisfaction. A new performance metric - the unified QoS metric - is
presented. It uses a more user-centric approach by comparing delivered QoS to
expected QoS.

All of these works are very specific and none presents a generic approach
to the problem of measuring quality of service independently of the underlying
network. While the question of mapping user-centric QoS onto network-centric
QoS is an interesting one, it is never considered outside a given, network-
specific QoS framework - that is, the ITU-TS framework in [28] and [37], or
the ISO-QOS framework applied to packet switched networks in [48]. No effort
is made to provide a generic interface to map high-level QoS concepts onto
network-centric QoS, regardless of the type of network involved.

2.2.2 IPPM (IP Performance Metrics) RFC2330

While the 3 as a whole has been standardized since its beginning, efforts in
standardizing 3 measurements were late in coming. The necessity for an 3
performance measurement framework led to the creation of the IP provider
metrics working group by the IETF (see also [31]). The goals of this working
group can be quickly summarized as follows:

1Signal to noise ratio

20 CHAPTER 2. QUALITY OF SERVICE

• to define specific metrics and procedures for the accurate measurement of
connectivity, delay variations, loss patterns etc.

• to produce a MIB to retrieve results of IPPM metrics from existing net-
work management systems and facilitate the communication of such met-
rics between existing management entities.

The broader goal, as stated in [46], is to aid capacity planning and trouble-
shooting in large networks and enable customers to compare the performance
of different providers, or to rate the service quality they are experiencing. In a
series of RFCs (see RFC2678 [41] through RFC2681 [8]), the concept of metrics
is defined more clearly, resulting in a distinction between analytical metrics
(defined in terms of abstract, theoretical properties of components) and exper-
imental metrics (directly defined by measurements). Furthermore, propositions
are made regarding measurement strategies, measurement infrastructure, error
evaluation etc.

While these RFCs provide a solid groundwork for experimental methodol-
ogy, their relevance is strictly limited to IP networks. As the goal of the IPPM
working group is to standardize 3 measurements and not to provide yet another
QoS framework, no attempt is made to tie this work into a more generic, less
network-specific QoS architecture.

2.2.3 Fasbender

In [24], the author presents an analytical characterization of the service quality
of packet switched networks, geared towards the collection of sufficient data for
a realistic simulation of a packet switched network. By assessing the network
performance on an end-to-end basis, it is possible to gain a description of
the characteristics of packet switched networks without considering the inner
workings of such a network, or the detailed interactions of application software
and transport protocols.

Using a slightly modified version of the ping tool for active measurements
(that is, probe packets are injected into the network using a random-additive-
sampling distribution), round trip times and one way trip time of IP packets
are collected and evaluated. The tool is used to survey quality of service of
network connections between the RWTH Aachen and a representative choice of
network hosts. Thus, network characteristics are described from an end user’s
point of view.

Although the experimental methodology presented in this work is quite
interesting, its focus does not lie primarly on QoS monitoring. The use of an
active measurement technique skews the observed results, but the impact on
system and network performance is not estimated. The QoS concept used in
this work is very vague. Basically, QoS is considered to be sufficiently described
by round trip times, one way trip times and packet loss rates. The approach is
centered on packet switched networks and there is no effort to tie this view on
QoS into a more abstract, high-level QoS architecture. Finally, the emphasis of

2.3. A NEW APPROACH? 21

the work lies more on providing a mathematically accurate description of the
observed traffic characteristics than on measuring service quality in the sense
of the ISO QoS framework.

2.2.4 Discussion

This section gave a broad overview of different 1 to the question of QoS
measurement and monitoring, ranging from more theoretical works concerning
the mapping of user-centric QoS onto network-centric parameters in ATM
networks to the practical work of the IPPM, and Fasbender. The lack of a
generic framework to back up the measurement methodology is common to all
those 1.

The multimedia-related works discussed all use very specific definitions
of QoS which are not applicable outside the narrow field of multimedia
applications in ATM networks. The IPPM framework and the experimental
work presented by Fasbender focus both on technical aspects of the question
without attempting to tie the approaches into a bigger background of a generic
measurement architecture. While inspiration for the practical aspects of
implementing such a generic measurement architecture can be gained from
those approaches, they clearly do not provide a satisfying outlook on the field
of QoS measurement frameworks.

2.3 A new approach?

Why try to design a generic QoS measurement architecture? Section 1
gave a quick overview of the problem. With the increasing complexity and
heterogeneity of today’s networks, integrated management concepts are sought
out to ease network management - but no work has been attempted into the
direction of a generic, integrated approach to QoS management and monitoring.

By using a common QoS concept and well-defined interfaces, a generic QoS
measurement architecture hides the heterogeneity of the underlying networks
and provides the user with a unified interface, thus reducing the complexity of
QoS management, and ensuring the comparability of QoS measurements.

2.3.1 Requirements

As a conclusion, the requirements that have emerged for the QoS measurement
framework and its implementation will be listed.

The measurement framework should use a generic, high-level QoS definition
like the one presented in the ISO QoS standard X.641 ([35]). A suitable
mapping onto protocol-specific measurands will have to be specified. The use
of a generic QoS definition ensures the generality of the approach and makes it

22 CHAPTER 2. QUALITY OF SERVICE

possible to define unified interfaces.

The underlying network heterogeneity should be hidden by using a generic
description of traffic. As with the QoS definition, a mapping of this generic
model onto more technology-specific elements of network traffic will be needed,
but this description allows the definition of generic methods.

Accordingly, the layer of the OSI stack at which traffic was captured, should
be hidden by the measurement methods. Using unified methods allows unified
views and unified interfaces. Technical details like the layer of a capture or the
protocol used in network traffic are relegated to the implementation.

The implementation should follow the paradigm of unification proposed
by the measurement framework. This means the implementation should be
as modular as possible, enabling users to add new functionality (i.e. the
support of new types of protocols or the evaluation of other types of service
quality) easily and quickly, without reimplementing the bulk of the software.
The computation should be done generically with reusable methods, keeping
the logic of the analysis in exchangeable rule sets. Finally, the impact of the
measurement process on the system should be kept as low as possible to avoid
falsifying the results. A quantification of the error level introduced is also
desirable.

Chapter 3

Architectural view

As seen in chapter 2, the field of QoS frameworks and QoS measurement
methodology is very heterogenous. There is no unified definition of what
high-level, user-centric QoS is, and while the subject of QoS measurement has
received much attention in the industry as well as in academia, the work pre-
sented remains very technology-specific. There does not seem to be any active
effort to develop a unified architecture for the measurement of quality of service.

The goal of this thesis is to present a framework for the measurement of
quality of service that provides a unified view on QoS: by using an abstract and
generic definition of quality of service and providing a non-ambiguous mapping
onto network-technology and layer-specific QoS parameters, the underlying
heterogeneity can be hidden. Section 2.3.1 listed the requirements that have
been identified for this QoS measurement architecture. After an outline of the
basic idea, the architectural framework will be presented in section 3.1. The
elements of the architectural framework are discussed in sections 3.5.1 through
3.5.3.

High-level QoS parameters like ”available bandwidth” or ”reliability” can
be broken down into several different QoS parameters depending on the layer
at which the service quality is considered, and depending on the type of
network and application that is considered. While ”reliability” might be the
complete transfer of a HTML page when considering HTTP over a TCP/IP
network at layer seven, it could be the lossless transmission of a live video
stream over an ATM network, or the frame loss that occurs over a wireless
LAN (IEEE 802.11b) connection. The same high-level QoS parameter comes
to describe very different situations when broken down at network level. Still,
there remains a certain comparability: a lossy video transmission, a bad
WLAN-connection, an interrupted web page transfer all appear as insufficient
service quality to the end user and can indeed be traced back to similar causes,
a loss of data at a certain point and layer in the network.

But how can those different service qualities be measured without having to
implement a totally new measurement framework each time? The differences
outlined might seem huge, but a more careful look onto measurement techniques
shows similarities between all approaches. Basically, traffic is intercepted or

23

24 CHAPTER 3. ARCHITECTURAL VIEW

Capture
rules

Correlation
rules

Analysis
rules

collector
Data

Context

Correlated
event
stream

Event
streams

Data
streams

QoS base
dimensions

Network
protocol
specification

Data

User

analysator
Data
correlator

Figure 3.1: The measurement architecture

captured at one or many points in the network, and 1 in order to obtain the ser-
vice quality information needed. The mechanisms of the analysis will often be
very similar: bandwidth usage measurements involve some kind of counting, be
it cells, packets or frames; reliability can be defined in term of loss factors etc. If
a suitable and generic representation of network traffic can be found, and unified
interfaces to the data gathering and analysis processes defined, then a generic
QoS measurement architecture can be built, keeping the framework abstract
and generic, with an implementation than is easy to customize to new protocols.

3.1 Overview

The QoS measurement architecture proposed consists of three conceptual
blocks: the data collector, which captures a data stream at the service
access point or between the layers of the protocol stack, performs some data
preprocessing and presents the collected data in a suitable representation as
event stream; the data correlator, which correlates the event streams provided
by the collector, and finally the data analysator, which performs a statistical
analysis on the correlated event streams, and presents the QoS parameters
(which will be called QoS base dimensions) computed at a common interface.
This QoS information could then for example be used to provide an end user
with a suitable high-level QoS representation.

To further refine the process of extracting QoS information from the
data stream captured, contextual information gained from the data stream
and, later, the correlation, is propagated to the data analysator. In reverse,
contextual requirements given by the user are propagated back to the data
collector and correlator. This gives the end-user the option to influence the
accuracy, freshness, reliability etc. of the QoS information he receives.

Since the architecture is generic, detailed information about the inner
workings of network protocols is not part of the architectural framework itself,
but part of the implementation. Figure 3.1 shows how protocol information can

3.1. OVERVIEW 25

be made available to the three blocks by the use of suitable description rules.
In the implementation, this could mean using a suitable symbolic language to
express data capture or correlation rules, or simply having the protocol-specific
parts of the software encapsulated in modules, so that the support of a new
protocol can easily be added without touching the core software.

Why the subdivision in these three conceptual blocks? This architectural
decisions reflect the logical flow of information through the measurement pro-
cess:

1. collecting a number of data streams (that is, capturing interaction at the
SAP)

2. parsing the data streams to extract relevant information and produce
an event stream (a more abstract and unified representation of the data
stream captured)

3. performing a correlation on the event streams in order to be able to 2 the
level of similarity or difference later on (in the example discussed earlier,
to be able to number the packet loss of a TCP/IP network, one must
correlate the sent data with the received data so that missing packets can
be identified through their sequence number)

4. finally, performing a statistical analysis of the event stream to compute
QoS data and providing this information at a unified interface

The data collector corresponds to point 1 and 2, the data correlator to
point 3 and finally, the data analysator corresponds to point 4. As will be
seen in 3.5.1, the data collector itself is further subdivided into a recorder
(corresponding to point 1) and an event generator (point 2). Since capturing
network traffic and generating event streams are very closely related operations,
and since the data capture offers little complexity by itself, they are modeled
as one conceptual block.

This modular approach also opens up the possibility to implement the
architecture in a distributed fashion: i.e., having n collector processes on m
networked machines and one central correlator / analysator. This reduces the
system load on the collector machines - which is a benefit since minimizing
impact on system performance has been phrased as a requirement in section
2.3.1 - while giving the user the benefit of a centralized data evaluation. The
measurement process can also be visualized as a pipeline, as shown in figure
3.2, with arbitrary timing delays between the steps. While one user might
request the QoS data to be provided in real-time (or as close as possible),
another one might prefer to gather data at one time and perform the correlation
and analysis process a few hours or days later. With a suitable approach to
serializing the event stream produced by the collector, such a delayed data
evaluation is possible.

The three interfaces, namely between the collector and the correlator,
between the correlator and the analysator, and between the analysator and the
end user, will now be discussed.

26 CHAPTER 3. ARCHITECTURAL VIEW

Data
streams

Event
bit stream

QoS
base dim.

High−level
QoSCollector Correlator Analysator

Figure 3.2: The measurement framework as pipeline

The collector provides the correlator with a stream of events. Although
these events are derived from an abstract event class, they are inherently
protocol-specific. The interface is generic, but the specific event classes and the
event stream format are protocol-specific.

The correlator provides the analysator with a correlated event stream: the
event streams generated by the collector are 1 in order to identify matching
events. The correlation process is discussed in section 3.5.2. The correlated
event stream provided by the correlator is simply the set of event streams
that was generated by the collector plus the event mapping determined by the
correlator.

Finally, the analysator has a unified interface, using a form of QoS
representation based on the ISO QoS standard ([35]). Service quality is char-
acterized through the usage of a small set of QoS base dimensions, which are
protocol-independent but can be conveniently mapped onto protocol-specific
measurands. Thus, the representation of QoS used at the interface between
analysator and end user is always the same, regardless of the underlying
network technology. The architecture could be extended to incorporate yet
another level of correlation and analysis between the analysator and the end
user in order to give the end user a more user friendly representation of service
quality. This will be discussed briefly in 3.5.4, but since there is no common
and generic definition of what exactly end user QoS is, there will be no in-depth
consideration of the question in this thesis.

After a presentation of the data stream approach in section 3.2.1, the
concept of events will be discussed in section 3.2. Events are used to model the
captured network traffic. Section 3.3 explains the representation of quality of
service through QoS base dimensions used to provide unified QoS information
at a common interface, and the concept of data context, which is used to
weight the fidelity of the collected data. Finally, the collector, correlator and
analysator will be presented in a more in-depths discussion of their functionality
in sections 3.5.1 through 3.5.3.

3.2 Events - a unified description of network ac-
tivity

The input interface of the correlator needs a unified data structure usable for
the common representation of SAP interaction captures as diverse as streams
of IP datagrams, a HTTP transaction or multimedia traffic over ATM. The
data captured by the collector is very protocol-specific and contains a lot of

3.2. EVENTS - A UNIFIED DESCRIPTION OF NETWORK ACTIVITY 27

superfluous information which is of no use to the analysator. The collector is
not only responsible for capturing the data stream of network communication,
but also for providing the correlator with a refined view on that data stream.

3.2.1 The data stream approach

The concept of data stream used here is presented in [29]. The type of
communication considered here is a stream of data between two edge systems
in a communication network - that is, a system connected to the edge of a
network - or a stream of data inside a system, at different levels of the protocol
stack. What happens between the communication endpoints is of no interest:
the network, or the stack layers through which the data stream flows, are
considered as a black box. The properties of the data stream are dependent
both of the layer and the protocol. At the lowest layer, a data stream is a
stream of electromagnetic impulses, at layer two it is a stream of, for example,
Ethernet frames; at layer 3 we see IP packets or, when considering ATM traffic,
cells, byte streams or frames, depending on the AAL chosen.

3.2.2 Events

Before the concept of events in the context of the QoS measurement architecture
is discussed, a quick overview of the OSI reference model is used to clarify the
terminology used.

The OSI reference model is used to model a layered network architecture.
Each of the seven layers defines a different level of abstraction, performing a
well-defined function with clear layer boundaries so that information flow across
the interfaces is minimized, and functionality is clearly encapsulated inside the
layer. According to [33], three interfaces can be identified in the OSI model:
the system interface, which defines the boundaries between transit systems and
end systems; the service interface, which describes the communication between
layers in functional terms and identifies the service primitives used; and finally
the protocol interface, which defines the instances which 2 a service defined by
the service interface across the systems given by the system interface. Figure
3.3 details the three interfaces.

The data collectors operate either across the service interface or across the
protocol interface, as seen in 3.1. In the first case, this means the data collector
is used to observe the interaction of different layers of the protocol stack on
one machine, thus needing a specially instrumented protocol stack.

In the second case, the measurement is performed directly at the service
access point, and only a specific layer is considered. A typical example of
that type of measurement is the use of the tcpdump ([3]) utility for capturing
network traffic. The latter measurement is not performed across the system in-
terface, as the focus lays on the interaction of specific protocols across a network.

28 CHAPTER 3. ARCHITECTURAL VIEW

interface

Physical layer

Data link layer

Presentation layer

Application layer

Transport layer

Session layer

Network layer

Physical layer

Data link layer

Presentation layer

Application layer

Transport layer

Session layer

Network layer

Physical layer

Data link layer

Network layer

System interface

Protocol interface

Service

Figure 3.3: The OSI protocol stack

It is quite straightforward to associate an event type with every set of
service primitives used to describe a specific protocol when measuring across the
service interface or the protocol interface. Thus, measuring across the service
interface means identifying and capturing the SDUs1 encountered, while mea-
suring across the protocol interface means identifying and capturing the PDUs2.

All those events can be derived from a common abstract event class, as
outlined in figure 3.4. They all share the following attributes:

• a timestamp, to indicate the time at which the event was collected

• a unique ID identifying the event

The ID is necessary because the timestamp can not serve for IDing. There
are two reasons for that: in a distributed environment, where clocks are not
necessarly synchronized, simultaneous events could have different timestamps;
on the other hand, simultaneous events with similar timestamp would become
indistinguishable without ID. The ID can be computed, it can be a simple
count, or it can be extracted from the PDU itself. In a TCP event, the TCP
sequence number could serve as an ID.

A special type of event, the timer event, is also introduced. This
event consists only of a timestamp and a unique ID, and is used to have
a reference time line for the collector. By having the collector generate a
timer event at fixed intervals, it is possible for the correlator to detect how old
the events of a non-timer event stream are without needing synchronized clocks.

Furthermore, non-timer events have also the following attributes:

• the name and type of the service primitive responsible for the generation
of this event

• parameters passed along with the service primitive

1Service Data Unit
2Protocol Data Unit

3.3. MODELING QUALITY OF SERVICE 29

<<uses>>

set_timestamp()
get_ID()
set_ID()
create()

<<interface>>

Event

operations

IP Event TCP Event

ScrIP
DestIP

SrcIP
DestIP
SrcPort
DestPort
SeqNr
AckNr
Flags

Flags

<<uses>>

get_timestamp()

Figure 3.4: Event classes

So, what can intuitively be conceived as an event? It could be anything
from the arrival of an IP datagram (C.DATA.indication) over the sending
of an HTTP get request (A.ASSOCIATE.request) to the arrival of a video
frame in the player software. If the event is generated at a layer where present
procotol mechanisms already provide a unique ID, the matter of identifying
the event is easily solved be 4 the ID. For example, if the event stream is gen-
erated only on layer 4, and the data stream intercepted is a TCP stream, then
a unique ID for each event can be easily generated using TCP sequence numbers.

The layer at which events are generated depends heavily on the viewpoint
one wants to take to assess the quality of a service. Consider for example a user
surfing the world wide web. If the focus of the analysis is to be on the quality
of service of the network, the data stream would best be captured at layer 3
and 4 of the OSI stack, using a TCP/IP event type. On the other hand, if the
quality of the HTTP service is the main point of interest, one would chose a
HTTP event type, analyzing the data at level 7.

This event approach provides a unified view on data streams and thus,
activities at the SAP. It is easily extensible: adding an event type for a new
protocol simply means another implementation of the abstract event class.
Having such a unified view on data streams means that further processing of
the events can be done using unified methods, thus fulfilling the requirement of
having a generic framework.

3.3 Modeling quality of service

Quality of service is, as discussed in chapter 2, a very vague and high-level
concept. While user satisfaction might be a desirable definition of service
quality, this is not a concept which can be fed ”as is” into a measurement
architecture. User-oriented quality of service is often defined with very vague
terms, and the subjective perception of a service’s quality can greatly differ
from person to person. Translating this high-level representation onto a more

30 CHAPTER 3. ARCHITECTURAL VIEW

technical view of QoS serves two goals: having a more technical view of QoS
makes it easier to find a suitable mapping onto measurable network parameters;
and this mapping establishes the QoS parameters as a unified interface hiding
underlying network heterogeneity. This set of QoS parameters will be called
QoS base dimensions.

3.3.1 Requirements

While the mapping of QoS parameters into network parameters is often left to
the implementation, here a careful modeling of QoS parameters is required in
order to keep the architecture generic. The following requirements have been
identified as 2 necessary to obtain a suitable QoS model, and will be discussed
in more detail:

• A non-ambiguous mapping onto protocol-specific measurands is needed.

• QoS should be network-centric rather than user-centric, in the sense that
the focus lies on technological aspects of service quality.

• Measurands should be quantifiable.

• The completeness of this representation needs to be discussed (that is,
whether all aspects of service quality can be covered by the QoS represen-
tation used here)

Non-ambiguous mapping

The mapping of high-level QoS characteristics onto lower-level QoS character-
istics is discussed in [21] and [14]. [21] proposes a QoS architecture providing a
unified framework in which user level QoS (e.g. picture quality, sound fidelity)
is mapped down onto lower level QoS. [14] states:

QoS mapping performs the function of automatic translation be-
tween representations of QoS at different system levels (i.e., oper-
ating system, transport layer, network) and thus relieves the user
from the necessity of thinking in terms of lower level specifications.
For example, the transport level QoS specification may express flow
requirements in terms of QoS commitment, average and peak band-
width, jitter, loss and delay constraints - all related to transport
packets.

Why is the non-ambiguity of the mapping important? One of the goals of
this measurement architecture is to ensure a certain comparability between the
service qualities measured, without having to consider the (hidden) details of
the network. If a mapping between QoS parameters and measurands is done at
random, the QoS representation might possibly not be generic anymore, as the
same QoS parameters are mapped onto measurands which are too different to
be comparable, or which are even totally unrelated.

For example, consider ”error rate” as a possible QoS parameter. This
could be mapped onto the packet fragmentation rate in TCP/IP networks

3.3. MODELING QUALITY OF SERVICE 31

and the cell loss rates in ATM networks. While each mapping seems valid
for itself, they introduce a big semantic difference in the interpretation of
”error rate”, depending on the underlying network. The data loss in an ATM
network and the conservation of the data stream structure in a TCP/IP
network are two 1 different things, while cell loss and packet loss are somewhat
comparable. Had packet loss rate been chosen as the gauge for the QoS parame-
ter ”error rate” in IP networks, both measurands would have stayed comparable.

This problem is inherent to the concept of mapping QoS parameters onto
measurands and thus not easily avoidable. A careful mapping will eliminate
most problems, but non-ambiguousness cannot be guaranteed.

Finally, a careful mapping is central to having a generic QoS measurement
architecture, as it is used to hide the protocol-specific details of the measurands
behind the unified interface of the set of QoS base dimensions. Also, it is
this mapping which ensures the comparability of the QoS information gained,
regardless of the underlying network technology.

Network-centric QoS

The next requirement was the network-centricity of the QoS representation cho-
sen. The emphasis lies on network-centric aspects of QoS because user-centric
aspects are difficult to grasp and quantify. Consumer satisfaction is subjective
and not easily measured. On the other hand, bandwidth, throughput, network
congestion etc. can be measured and monitored and give a good indication of
the current QoS.

Quantifiable measurands

This aspect is also found in the requirement of quantifiable measurands. While
”equipment manufacturer” might be a very important aspect of service quality
for a specific user having had a bad experience with the reliability of certain
manufacturer’s equipment, and while this is certainly a technical and low-level
QoS parameter, it is not quantifiable and thus unsuitable for further statistical
analysis. This QoS measurement architecture focuses on statistical analysis, so
that quantifiable measurands are needed.

Completeness

Finally, completeness means the QoS base dimensions should cover enough
aspects of high-level QoS (in the sense of ”user satisfaction”) to be considered
an adequate modeling. It is not within the scope of this work to present a proof
of the completeness. Instead, I will argument that the representation chosen is
a suitable approximation and can be used in this context.

After a suitable set of QoS base dimensions has been chosen, a non-
ambiguous mapping of those base dimensions onto protocol-specific measurands

32 CHAPTER 3. ARCHITECTURAL VIEW

will be presented, and the validity and completeness of this approach discussed.

3.3.2 QoS base dimensions

As stated in [14]:

In characterizing the QoS of activities, it is necessary to identify
dimensions along which QoS can be measured and quantified.

The QoS base dimensions with their mapping onto protocol-specific mea-
surands are characteristics describing service quality; that is, they are the di-
mensions along which service quality can be quantified. The ISO QoS standard
X.641 ([35]) lists QoS characteristics ”of general importance to communications
and processing” and classifies them in eight characteristic groups:

• time-related

• coherence

• capacity-related

• integrity-related

• safety-related

• security-related

• reliability-related

• other

Security- and safety-related QoS characteristics will not be considered here.
It is difficult to find quantifiable measurands for those characteristics, so their
monitoring is not a task this QoS measurement architecture is suited for. For
example, the QoS characteristic ”security” might be an agreement between a
service provider and a customer to make use of certain technologies in order to
assure a secure data transfer; for example to use only virtual private networks
with IPSec encryption and to avoid any traffic passing unencrypted over the
public 3. There is no level of compliance to be measured here - either the
service provider honors the customer’s request, or he does not, and is in breach
of contract.

Coherence denotes the completition of certain tasks (data production, data
transmission, data consumption) within a given time interval and can thus be
considered as a special case of timeliness. A further discussion of this topic can
be found in [25]. The category ”other” only covers precedence, ”the relative
importance of an object, or the urgency assigned to an event”, and will thus
not be considered further, as this type of QoS is seldom encountered and can
adequately be described using time- and capacity-related characteristics.

[17] lists three categories in the overview of technology-based QoS charac-
teristics:

3.3. MODELING QUALITY OF SERVICE 33

• Timeliness

• Bandwidth

• Reliability

This fits quite well with the remaining four categories from [35]: time-related,
capacity-related, integrity-related and reliability-related characteristics. I thus
identify the following four QoS base dimensions:

• Reliability - the reliability of the service offered by the layer at which the
event stream is captured. This can be the residual error rate, the resilience
for connection-oriented services or the service availability on layer seven.

• Capacity - throughput or bandwidth between the end systems

• Integrity - how much are the data / datagrams affected by the transport
(ignoring errors, that is considering only syntactic changes bearing no
semantic significance)

• Timeliness - timing characteristics

In order to ease the mapping onto protocol-specific measurands, table 3.1
details the specific meaning of those QoS base dimension at different layers of
the OSI stack. The session and presentation layers are not considered, as they
are of little importance outside the OSI model.

Reliability Capacity Integrity Timeliness
Level 7 Service avail-

ability
Application
level data
rate

Data is un-
tampered

Response
time

Level 4 Residual er-
ror rate or
resilience

Throughput Sequencing
errors

Msg trans-
mission
delay

Level 3 Residual er-
ror rate

Throughput
(pps)

Fragmentation Msg trans-
mission
delay

Level 2 Resilience Throughput
(kbps)

Transmission
error

Frame trans-
mission
delay

Table 3.1: QoS base dimensions

Tables 3.2, 3.3 and 3.4 detail three exemplary mappings of the QoS base
dimensions onto protocol-specific measurands, for a HTTP connection over a
TCP/IP network, video / audio streaming with RTP over a UDP/IP network,
and ATM network. The detailed choice of the measurands is left to the
implementation, but should stay consistent with the approach proposed here.
The measurands listed in 3.2 will be used for the prototypical implementation
in this thesis.

It should be noted that the ATM example is not very satisfactory, but, to
quote [49]:

34 CHAPTER 3. ARCHITECTURAL VIEW

Reliability Capacity Integrity Timeliness
HTTP Availability

of WWW-
Server

Application
level data
rate

Web page is
complete

Server re-
sponse time

TCP Packet loss Throughput Sequencing
errors

–

IP Packet loss Throughput Packet frag-
mentation

One-way de-
lay

Table 3.2: Mapping of QoS base dimensions onto a HTTP connection over a
TCP/IP network

Reliability Capacity Integrity Timeliness
Video con-
ference (7)

Frame loss Frames per
second

Frame errors Coherence

ATM adap-
tion layer (4)

Cell loss Service bit
rate

Misinserted
cells

–

ATM layer
(2-3)

VC resilience VC bit rate n.a. Delay

Table 3.3: Mapping of QoS base dimensions onto ATM measurands

The layers of the ATM model do not map onto the OSI layers espe-
cially well, which leads to ambiguities.

3.3.3 Discussion

The set of QoS base dimensions chosen 2 heavily based on the QoS categories
discussed in the ISO QoS standard X.641, it should be fairly complete and
cover most relevant aspects of service quality. Notable exceptions here are
safety- and security-related QoS characteristics, which need other monitoring
mechanisms than those discussed within the scope of this QoS measurement
architecture. The QoS base dimensions chosen provide a fairly complete cover-

Reliability Capacity Integrity Timeliness
Video appli-
cation

Video outage fps Frame loss? Smooth
video image
etc.

RTP Packet loss session band-
width

Sequencing
(with times-
tamps, seq.
nr)

–

UDP – Throughput – One-way de-
lay

IP Packet loss Throughput Packet frag-
mentation

One-way de-
lay

Table 3.4: Mapping of QoS base dimensions onto RTP over UDP

3.4. CONTEXT OF THE MEASUREMENT PROCESS 35

age of service quality, and can safely be used as a base to derivate user-level QoS.

Finally, the QoS representation chosen here fulfills the requirements that
were outlined in 3.3.1. The QoS base dimensions are obviously network-centric
rather than user-centric, in the sense that they relate directly to network-centric
measurands. A non-ambiguous mapping onto network-level measurands is
possible, and an exemplary mapping has been proposed. The base dimensions
are easily mappable onto quantifiable measurands; there are no abstract
dimensions like ”user satisfaction” which would have to be discussed and
further refined.

The QoS representation using a set of four QoS base dimensions based on
the QoS categories of the ISO QoS standard X.641 provides a unified represen-
tation of service quality, and thus ensures the comparability of measurement
results. This approach was chosen to meet the requirement of having a generic
measurement architecture with unified methods and unified views, as using
QoS base dimensions makes it easy to define generic interfaces.

3.4 Context of the measurement process

To ensure the usability of the collected data, the measurement process should be
accurate and lossless. As this goal is not reachable due to inherent limitations
of the technology, it becomes necessary to provide mechanisms to control and
quantify the error level introduced by the measurement process itself, and to
record the conditions under which the event capture was realized. Furthermore,
the analysis of the event stream in the correlator and analysator might also
introduce an error factor and thus falsify the data. This information shall be
call context:

The interrelated conditions in which something exists or occurs.
([43])

This is a problem commonly encountered with any kind of measurement.
For example, [7], which details a one-way delay metric for IPPM, states:

The calibration and context in which the metric is measured MUST
be carefully considered, and SHOULD always be reported along with
metric results. [...] Any additional information that could be useful
in interpreting applications of the metrics should also be reported.

Many different factors can contribute to errors during the measurement pro-
cess and have to be identified accordingly. Also, information implicitly present
in the data stream can get lost during measurement, for example:

• If the incoming data rate is higher than the rate at which the data can
be processed, the event stream produced will not reflect the nature of
the incoming data stream, as part of the data stream are simply not
considered.

36 CHAPTER 3. ARCHITECTURAL VIEW

• If the sampling interval is very coarse, the arrival distribution of the data
stream gets lost. This can mean a loss of important QoS information. I.e.,
if the data stream is sampled only every 15 minute, a temporary service
outage of less than 15 minutes will not be recorded.

• If not enough data points are collected, the correlator might have to in-
terpolate and thus make assumptions about the data stream that are not
necessarly correct.

The goal is to preserve this implicit information and to make it available
to the data analysator and, accordingly, to the end user. It should also be
possible for the data analysator to specify error level requirements, boundary
conditions for the data collection process etc. to the collector and correlator,
so that both can adapt the measurement and analysis process.

3.4.1 The measurement context

To obtain a representation of context sufficient for the implementation, a
bottom-up approach was chosen to identify the most important aspects of the
measurement process which count as context. A more thorough discussion of
context should, of course, feature a top-down analysis of the subject.

The contextual information can be roughly classified into two categories:
context of the measurement itself, and error context. Error context gives infor-
mation about the reliability of the measurement process, while measurement
context designates contextual information about the event stream and the
conditions under which the data was captured.

Furthermore, it is important to carefully discriminate between the distinct
contextes at different stages of the measurement process. Most of the mea-
surement context has to be captured in the collector, as this is where the
measurement process happens. Once generated, the event streams remain
rather static, as the correlator and analysator operate on the event streams
without changing them. The error context, on the other hand, is strongly
present in the correlator and analysator, as this is where the analytical part
of the measurement process happen and interpolation, rounding etc. might
introduce a certain error. Furthermore, the error context is cumulative and can
only be fully evaluated in the analysator. An error factor previously introduced
by the correlator will still be present in the analysator and thus has to be
considered there too.

After identifying measurands that constitute measurement and error context,
their occurrence in the measurement process will be discussed. The following
context information can be denoted as measurement context:

• The sampling scheme used (systematic, stratified random, simple random
etc.) and details of its implementation (i.e. for systematic sampling,
where every kth sample is 2 processed: how big is k?) For a discussion of
sampling schemes and their application to network traffic characterization,
see also [19].

3.4. CONTEXT OF THE MEASUREMENT PROCESS 37

• The buffer size used in the correlator and analysator to correlate events
and process the correlated event stream - this determines how far back into
the past events are 2 considered, and how much averaging is 2 done. This,
as well as the sampling buffer size, is relevant as the processes considered
are not time-homogeneous. For example, using a buffer size of 24 hours to
measure bandwidth usage will hide the usage-peaks that typically occur
around noon and in the afternoon.

• Freshness - the time gap between data capture and result output. Of
course, this is only relevant when doing analysis in real-time. When using
a pre-recorded event-stream, freshness is irrelevant. A low freshness here
means the time gap was small, a high freshness means the time gap was
large.

Error context comprises the following:

• The influence of the measurement process on the system performance

• The reliability of the measurement (i.e., is a significant data pool used?
does the analysis process interpolate? how much approximation is per-
formed?)

This list is, of course, not exhaustive, but it covers the main aspects of
measurement context. Context as it is considered here is in part event-stream-
specific3, and in part event-specific. Event-stream-specific means that some
context information is valid for the whole stream, i.e. the sampling scheme
used. Discussing the sampling scheme for one single event makes little sense, as
the sampling scheme becomes important only when considering a set of events.
Also, a sampling scheme switch affects the whole event stream, and it cannot
be changed for each event, as this would not make much sense. Freshness, on
the other hand, is a typical example of event-specific context. Each event has
a certain freshness. If the collector process happened to be swapped out when
interaction at the SAP called for event generation, then the freshness value
of the next event will be high. Freshness can be individually changed. For
example, the correlator process might request a lower freshness for each event
generated by the collector until the lowest possible freshness has been reached.

3.4.2 Backpropagation of the data context

Clearly there is a strong interdependency of the different contextes at different
levels of the measurement process. For example, a high error rate during the
data collection process will be difficult to compensate later in the correlator or
analysator. The time taken by the collector and correlator to process raw data
into an event stream will influence the freshness of the QoS data provided by
the analysator.

This dependency also exists in the other direction: to ensure a higher
freshness of the QoS data, it is necessary to lower the time taken by the data

3As will be shown in chapter 5, context as considered in the prototypical implementation
is, due to technical limitations, collector-specific

38 CHAPTER 3. ARCHITECTURAL VIEW

collection and correlation process - possibly by choosing a slightly bigger sam-
pling interval, thus reducing the system load and enabling higher throughput.
By giving the user appropriate control of the context, the behavior of the
measurement software can be adapted to the user’s need: quicker response or
more accurate data, a broad overview of network behavior for the last hours
or very fine-grained measurement etc. This property of the measurement
architecture is named ”context backpropagation”.

3.4.3 Conclusion

With the concept of contextual information, it is possible to capture the
conditions under which a measurement occurred, and use it during the event
stream processing. Two types of context where identified: measurement
context, which covers details of the measurement process itself, such as event
freshness and sampling scheme; and error context, which covers the errors
introduced by the correlation and analysis process. Finally, the concept of
context backpropagation forms a feed-back control loop to balance the user’s
requirement with the measurement’s efficiency.

3.5 Architectural details

In this section, the details of the three main points of the architectural
framework, the collector, correlator and analysator, will be discussed.

3.5.1 Data collector

G: event generator

GR

GR

System Data collector

Event streams

Layer M

Layer N

Layer O

Layer P

R: data stream recorder

Figure 3.5: Overview of the data collector

The data collector, which was already presented in a broad overview in
section 3.1, is responsible for the recording of network traffic and the extraction
of events. The collector records n data streams simultaneously and produces as

3.5. ARCHITECTURAL DETAILS 39

many event streams as there are data streams. Generating less event streams
than there are data streams would mean that some arbitrary correlation of the
data streams has already taken place, and that information was lost. This is
different from a sampling of the incoming data stream, as the information loss
through sampling is due to a consistent choosing operation on one data stream,
since the sampling is a well-defined operation which can later be considered in
the correlation and analysis phases.

For each system, the collector can be thought of as consisting of as many
recorder / event generator boxes as there are layer instances at which the
data stream is to be captured. In figure 3.5, the protocol stack of the system
consists of four layers, with only two recorder / event generator boxes. The
upper one records the service primitives generated and received by layer M, the
lower one is responsible for layer P. Both generate an event stream. The term
”data collector” is used to designate the set of recorder / event generator boxes
associated with one system. When considering more than one system, each
system has its own data collector, which may consist of one or more recorder /
event generator boxes.

Let’s consider a real-world example. To 2 the service quality of a HTTP
connection between two hosts, each system will be outfitted with a data
collector. Each data collector will in turn consist of two recorder / event
generator boxes, one operating on layer 7 to collect data pertaining to the
HTTP traffic itself, one operating on layer 4 to collect data which will later
be used to generate information about the quality of service of the network
connection.

Figure 3.6 gives a detailed view of the recorder / event generator boxes.
The recorder simply gathers all the service primitives sent or received by the
layer, and timestamps each of these. It filters out unwanted traffic which is not
to be considered further (i.e., one might want to 2 only one TCP connection)
and passes the captured primitives on to the event generator. The event
generator is then responsible for stripping the service primitives of whatever
superfluous information they contain (this could be, for example, the payload
or header fields that are not used in the correlation or analysis process),
and generates an event with a unique ID for each service primitives. The
event streams thus generated are then passed on to the data correlator. By
timestamping the events, the arrival distribution of the service primitives is
well documented and can be used as a base for the computation of data context.

To keep the data collector generic, it is necessary to separate the knowledge
about protocol mechanisms needed for the event capture and generation from
the collector itself. By using a suitable formal language for the specification
of protocol mechanisms, as proposed in 3.1, the data collector could be kept
generic with unified interfaces, but easily adaptable to any kind of underlying
network.

Of course, the number of data streams which can be simultaneously
captured is not limited by the measurement architecture presented here. Still,
a careful choice of the number of data streams and the layer at which they

40 CHAPTER 3. ARCHITECTURAL VIEW

Data collector

Layer N

G

Event Generator

ev
en

t

ev
en

t

ev
en

t

R

Recorder

Figure 3.6: Detailed view of the data collector

operations

Collector

start
stop
get_context
set_context
get_next_event

<<interface>>

Figure 3.7: Collector interface definition

will be captured has to be made when using this architectural principle in
an actual implementation, as the event stream presented at the collector /
correlator interface affects the quality of service information which can later be
computed from it. For example, the capture of only one data stream at only
one point in the network will yield information about jitter, but not about
packet loss. When planing to correlate event streams across a system interface,
it is also advisable to generate the event stream on the same layer in each system.

Figure 3.7 shows the interface definition for the collector in UML notation.
get context and set context are used by the correlator to obtain information
about the collector context and update the collector’s context to the desired
value. start and stop start or stop a given capture, and get next event returns
the next event produced.

3.5.2 Data correlator

The data correlator takes a number of streams as input and tries to establish
a mapping on those streams; that is, the correlator identifies corresponding
events in the streams. These could be, for example, the ICMP echo reply
corresponding to an ICMP echo request which was sent.

Correlation

The correlation process itself is one of the more complex and interesting
aspects in this measurement architecture. The goal of the correlation is to

3.5. ARCHITECTURAL DETAILS 41

2
Collector

Collector

Collector

Vertical
correlation

Horizontal
correlation

Layer N

Layer M

System 1

.

.

.

.

Layer N

System 2

1 2 3

1 2 3

1

Figure 3.8: Vertical and horizontal correlation

find matching n-tuples of events in a set of n event streams. A matching
n-tuple of events can be determinated by a well-defined relationship between
events. When the correlation is done across the system interface, two or
more events are matched if they were all raised by the same PDU across
the network. This is called a horizontal correlation. The events represent
snapshots of one PDU at different moments in time. When the correlation
is done across the service interface, two or more events are matched if they
represent the same SDU at different layers of the OSI stack. This is called a
vertical correlation. The n-tuple of events can here be thought of as a chain re-
action spreading through the stack and caused by the arrival of a SDU at layer 1.

One can also consider the semantic relationship between events. Consider
for example the three-way-handshake which is used to establish a TCP
connection. System A sends a SYN packet to system B, which responds with
an ACK, causing system A to send an ACK to system B too. These three
events (SYN, ACK, ACK), though not temporally or causally related, form an
event triple which is ”meaningful” to the transport layer, although the three
events do not bear any obvious relationship to the network layer. Thus, this
form of correlation is called ”semantic correlation”.

How is the correlation performed? This is no trivially answered question.
There are different possibilities to perform the correlation, but as we will see,
this is not always easy to do - especially across the service interface. The
easiest way to find matching event n-tuples would be to compare payloads.
As the application data unit travels through the OSI stack, each layer adds
its PCI. If the original payload is still present in the event stream, it should
be possible to compare those. This approach is immediately defeated if
the payload is changed in the stack, for example by encryption or fragmen-
tation. Since this approach is so easily defeated, it will not be considered further.

The next idea would be to fit each event with a unique ID, which should
of course be the same for matching events, and through this ID recombine
the matching n-tuples. If the protocols considered already contain some sort
of sequence number, this approach is easily implemented when performing
the correlation across the protocol interface. For example, if the traffic of a
TCP/IP connection is captured, one might take the TCP sequence number to
uniquely identify the events.

42 CHAPTER 3. ARCHITECTURAL VIEW

Tagging events

When correlation is attempted across the service interface, such protocol-
specific IDs can not be used as they are not propagated through the entire
protocol stack. Any protocol-specific information will be lost as soon as the
processing for this stack layer has been done. This is an obvious drawback of
the layer encapsulation of the OSI protocol stack. Instead, when attempting to
correlate events across the service interface, it is necessary to ”tag” every PDU
through the stack without disrupting the processing operations. This approach
also has its complications.

Since an untampered operation of the protocol stack is necessary to obtain
meaningful measurements, any extention of the stack to include some kind of
tagging layer is out of the question. Another drawback is that only a protocol
stack instrumented to understand the extra tagging layer could serve as a
communication endpoint. This 1 limits the range of experiments which could
be performed using such a setup.

Another idea would be to implement a mechanism to keep track of the
service primitives exchanged and help the collector boxes synchronize their
event streams by counting events. Why isn’t it sufficient to simply count
service primitives? There are occurrences where a layer might receive an input
and ignore it - for example, if the ATM layer receives malformed cells, those
will not be relayed to a higher layer. A layer might also send two or more
service primitives for one it received - this happens, for example, when the IP
layer decides that a fragmentation of the received TCP packet is needed. In
the reverse, when packet reassembly is performed, the network layer (here the
IP layer) receives more service primitives as input as it sends to the transport
layer (here the TCP layer). In all those cases, any simple counting scheme
would soon become heavily desynchronized.

Figure 3.9 presents a mechanism for keeping a synchronized track of
events over a multilayered protocol stack. The top part of the figure shows
the timelines for three layers of the protocol stack and for two collectors.
Collector n-1 monitors the activity between layer n-1 and layer n; collector n
monitors the activity between layer n and layer n+1. Every time a collector
sees the exchange of a service primitive, it sends a tick to the collector next
above it. When a layer sends out more service primitives than it received, a
backpropagation of the ticks is necessary. The lower part of this figure shows
the event streams generated by the two collectors. If the collector monitored
as many service primitives as it received ticks, then each tick corresponds to
an event. When extra ticks have to be propagated, the collector generates an
synchronization event - a placeholder which keeps the count even.

Four possible situations are presented in figure 3.9. Situation 1 is the
most trivial. One service primitive is sent from layer n-1 to layer n, and one
from layer n to layer n+1. Each collector generates one event. In situation 2,
layer n receives only one service primitive, but sends two. Collector n has to
backpropagate a tick. Collector n generates two events, collector n-1 generates
one event and one placeholder. Situation 3 shows what happens when a

3.5. ARCHITECTURAL DETAILS 43

1

2

3

4

1

1

2

2

3 4

3 4

PDU

Tick

Event

Sync−tick

t t t

Layer n−1 Layer n Layer n+1
Collector n

n−1

Event stream collector n−1:

Event stream collector n:

Collector

Figure 3.9: Correlation across the service boundary with an event counter

44 CHAPTER 3. ARCHITECTURAL VIEW

malformed packet is dropped by a layer. Collector n-1 generates an event,
collector n only has a placeholder. Finally, in situation 4, layer n receives two
service primitives but only sends one. This can be seen as a special case of
situation 2 - packet loss - as there is no possibility to determine whether a
PDU was rejected, or packet reassembly was performed, without help of some
semantic analysis. Here, collector n-1 generates two events while collector n
has one event and a placeholder. As can be easily seen, both event streams are
still perfectly synchronized - the total number of events and placeholders is the
same for both collectors. If the events are timestamped with enough precision,
it would even be possible to determine the influence of the protocol stack on
temporal characteristics of the data stream: the delay and jitter induced, for
example.

While this concept might, in theory, seem feasible, its implementation is
rather problematic:

• It works fine for a synchronous protocol stack, but fails in asynchronous
protocol stacks, as a lower layer can have started the processing of a new
PDU before all higher layer have finished their processing. Since there are
no synchronous protocol stack implementations, the concept is not useful
outside a theoretical consideration.

• Using hard real-time systems, it could be possible to achieve a satisfying
level of reliability, as timing boundaries could be specified for the event
processing, thus guaranteeing an event was generated at most n ms af-
ter the PDU arrival, and the event streams remains globally in correct
ordering.

As a consequence, the prototype implementation presented in chapter 4
will focus on event correlation across the protocol interface and leave aside
correlation across the service boundary.

Conclusion

Event correlation is used to find a mapping between a number of event streams.
Three types of correlation have been identified: vertical correlation, when
considering an event stream captured across the service interface; horizontal
correlation, when considering an event stream captured across the protocol
interface; and finally semantic correlation to detect protocol mechanisms like a
TCP handshake.

The problem of tagging events - that is, of giving them a unique ID - was
discussed. When related events from different event streams share IDs, the
correlation is very easy. For example, the TCP sequence numbers can be used
to correlate two captures of the same TCP connection. When the protocol
considered features unique IDs for its datagramms, those can be used for
tagging the events. Otherwise, IDs have to be generated, which leads to severe
synchronization problems when capturing multiple event streams in a protocol
stack. An alternative to IDing is payload comparison.

3.5. ARCHITECTURAL DETAILS 45

<<interface>>

operations

correlate_event()

Correlator

Figure 3.10: Correlator interface definition

3.5.3 Data analysator

Statistical analysis

Once a suitable event correlation has been found, an analysis of the correlated
event streams has to be performed to determine the value of the QoS base
dimensions:

• Reliability

• Capacity

• Integrity

• Timeliness

Reliability

Reliability denotes the reliability of the service offered at the specific network
layer. At the application layer, this is the service availability: how probable is
it the end user will be able to use the offered service at a given timepoint? At
the transport layer, the meaning depends on the type of service offered. When
a connection-oriented service is offered, the reliability denotes the resilience of
the connection, that is, the probability that the connection will be dropped
prematurely. For a connection-less service, it is the residual error rate: the
ratio of incorrectly received and undetected cells, frames or packets to the total
number received.

The non-availability of a service or the premature closing of the connection
can be detected using semantic correlation on the event streams. Here, the
correlation should be successfull only when the interaction between the client
and the service provider is successful itself; that is, as long as the attempt
to use the service did not fail, the correlation itself should also be successful.
A detailed knowledge of the inner workings of the concerned protocols is,
of course, necessary to distinguish between a premature connection closing
and a normal one, or between a successful service usage and an unsuccessful one.

For a connection-less service, horizontal correlation is sufficient to detect
incorrectly received cells, frames or packets when measuring the protocol

46 CHAPTER 3. ARCHITECTURAL VIEW

interface. If the events do not possess a unique ID determinated by protocol
mechanisms (for example, a sequence number), it might be necessary to
compare payloads in order to obtain a meaningful correlation.

Capacity

Capacity is the throughput or bandwidth between two end systems. The
capacity measured here is not the total capacity, but rather the capacity
used by the protocol at the considered layer. The available bandwidth of a
connection depends on two things: the underlying capacity of the network
path, and the amount of other traffic competing on this path (see [16]). The
easiest way to determine capacity is simply by counting the number of events
per second on a single event stream. By correlating the event stream vertically
with a timer event stream, it becomes possible to evaluate the event streams
on a continuous timeline without synchronized clocks. Using the timeline, it is
possible to detect gaps in the transmission that would otherwise go unnoticed:
without synchronized clocks, the correlator can not know how old the last event
in a given event stream is and whether a big time difference between the event
timestamp and the correlator time is due to very bad clock synchronization or
to a gap in the transmission.

Integrity

Integrity denotes how much the data stream was affected by the transmission.
At layer 7, this means the payload was untampered. Here, a horizontal
correlation between event streams using payload comparison is necessary to
detect changes in the payload. At layer 4, the definition of integrity depends
strongly on the definition and feature-set of the protocol considered. If UDP is
the protocol considered at layer 4, the QoS base dimension integrity becomes
meaningless, as UDP provides an unreliable (”best-effort”), unordered delivery
service. Using TCP, on the other hand, integrity designs the correctly sequenced
arrival of all packets. When considering a protocol that uses sequence numbers,
sequencing errors can easily be determined by comparing the event succession
with the sequence number succession. No correlation is necessary.

Timeliness

Finally, timeliness denotes the delay encountered for frame / message trans-
mission or the service response time when considering the application layer.
When measuring across the protocol interface, a horizontal correlation of
event streams is needed; but since the clocks of the different collectors are not
necessarly synchronized (see 5.3.2), it might not be possible to compute the
absolute transmission delay. In this case, the average deviation or the variance
of the transmission delay can be computed. When measuring across the service
interface, a vertical correlation of the event streams is sufficient, and since
there are no problems with clock synchronization, the transmission delay can
be directly computed.

3.5. ARCHITECTURAL DETAILS 47

RTP

End system 1 End system 2

1.4 2.4

1.7 2.7
RTP

UDP

IPIP

UDP

Figure 3.11: Analysis of a video transmission between two hosts

3.5.4 Further analysis?

The data analysator provides a rather technical and very detailed view on ser-
vice quality. The information is broken down according to the four QoS base
dimensions and to the protocol stack layer at which the data stream was cap-
tured. Here, a second level of correlation can be used to perform an additional
analysis on the data. Also, a more concise representation of QoS might be
needed for end-users. Only a broad overview of these ideas will be presented,
as they are outside the scope of this QoS measurement framework.

Second correlation

The QoS data provided by the data analysator is, as stated previously,
layer-specific. Consider a video transmission with RTP over a UDP/IP network
(fig. 3.11). Four event streams are generated: the RTP event stream before
and after transport over the network (labeled 1.7 and 2.7) and the UDP event
stream before and after transport (labeled 1.4 and 2.4). Since the measurement
took place across the protocol interface, the correlation will consider event
streams 1.4 and 2.4, and event streams 1.7 and 2.7 respectively.

A second correlation process could now take place to find relations between
the QoS information of layer four and layer seven and 2 the repercussions of
lower layer QoS changes on higher layers.

Why is it important to differentiate between this correlation process and the
one that was considered earlier? The correlation process taking place during
the measurement is a correlation of event streams: it basically matches events
against each other. This correlation process, on the other hand, takes place
on statistical data. It is important to note this distinction: despite the similar
names, the correlation process proposed here is entirely different of the one
taking place on the event streams.

User-centric QoS

The QoS base dimensions considered so far are rather technical. User-centric
QoS, on the other hand, typically deals with very vague and human concepts.
A further analysis step might be used to further refine the QoS representation.

End users typically seek a simple representation of quality of service:
the relevant question is whether the service provider keeps his contractual

48 CHAPTER 3. ARCHITECTURAL VIEW

obligations regarding service quality. The end user wants to know if the
product delivered (be it connectivity, application serving etc.) corresponds to
the one he paid for - and has probably little need for all the detailed technical
information that was gathered during the QoS measurement process.

The lack of a common, standard definition of high-level QoS makes it
difficult to treat this question in depth, so only a broad overview of possible
approaches to the problem of providing QoS information to an end-user will be
given.

There needs to be an appropriate representation of user satisfaction which
can be mapped onto the QoS base dimensions in order to assess whether the
QoS encountered satisfies the user’s expectations. The QoS base dimensions
alone are not sufficient to judge whether a given service quality should be
considered ”good” or ”bad”. What satisfies one user’s expectations (for
example, a low latency, high throughput connection-oriented service) might
be entirely unsatisfying to another user. The AAL service classes are a good
example different service types with potentially conflicting goals regarding QoS.

If a service level agreement specifying the service quality in technical terms
(that is, offering guarantees such as keeping the packet loss under a certain
limit etc.), and when a mapping from those guarantees onto the QoS base
dimensions specified here can be found, it is sufficient to monitor the base
dimensions and notify the user when the service quality does not satisfy the
SLA anymore.

It is also possible to define a metric for user satisfaction (see, for example,
[48], which was already discussed in section 2.2.1) and map it onto the QoS
base dimensions. An additional problem that has to be considered here is the
interdependency of the QoS base dimensions: for example, if the packet loss
increases, but the one-way-delay decreases, the effects might cancel each other
out, thus giving no impression of subjective degradation of the service quality
to the end user.

It should also be noted that the QoS measurement framework presented
here does not consider all aspects of service quality that are important to many
end users: for example, the security and safety of a connection. This limitation
was discussed in 3.3.2.

3.6 Discussion

After this in-depth discussion of the proposed QoS measurement framework, I
will now evaluate this proposal in reference to the requirements that were listed
in section 2.3.1. Those were:

1. Use a generic, high-level and complete QoS definition and define a suitable
mapping onto procotol-specific measurands

3.6. DISCUSSION 49

2. Hide underlying network heterogeneity by using a generic modeling of data
streams

3. Provide unified views and interfaces

4. Use context parameters to control the conditions under which the mea-
surement takes place

The four QoS base dimensions identified provide a high-level, generic
QoS definition. Since those are based on the ISO QoS standard X.641,
the QoS representation is fairly complete and can be regarded as generic.
An exemplary mapping onto network-specific measurands for TCP/IP net-
works, multimedia applications over RTP and video conferencing over ATM
networks was proposed, showing that the architecture is not limited to packet-
switched networks. Mappings onto other network technologies should be fairly
straightforward and, as long as care is given to a non-ambiguous mapping,
the measurement results stay comparable, thus keeping the architecture generic.

The event paradigm gives an abstract description of data streams. By
defining suitable event classes inheriting the event class proposed, this generic
concept can be used to describe any kind of data streams. Having one
common model hides the heterogeneity of underlying networks and enables
the use of unified methods. The concept of event correlation is also very generic.

The three blocks of the architecture, the collector, correlator and analysator,
permit a modular implementation. Using externally defined rules for event
generation, correlation and analysis keeps the interfaces and methods generic,
as protocol-specific information is not part of the measurement framework, but
easily exchangeable and modular.

This proposal of a QoS measurement architecture clearly meets all the
requirements stated in section 2.3.1. It is generic, not limited to a particular
type of network, and provides unified views, hiding the underlying heterogeneity.

The limitations of this approach should also be noted. The definition of
service quality much of this framework is based on is very network-centric and
technical. The reasons for this limitation have been discussed in 3.3.2; basically,
the QoS base dimensions have to be restricted to quantifiable measurands in
order to be of any use in such a measurement framework. Still, it is a drawback
that this measurement architecture offers no provision for the handling of,
for example, security-related QoS characteristics. Also, the concept of QoS
proposed ignores functional QoS: that is, it cannot evaluate whether the service
provided the functionality desired by the user. For example, there is no way to
distinguish between a meaningful video transmission and white noise using the
four QoS base dimensions discussed previously.

Certain ideas that have been proposed and discussed will be very difficult to
implement. Correlating across the service interface is problematic, as has been
discussed in section 3.5.2; even the measurement process itself is non-trivial in
this case, as a live protocol stack has to be instrumented in such a fashion that
accurate results can be obtained without disrupting normal operation. Such a

50 CHAPTER 3. ARCHITECTURAL VIEW

setup also carries very extensive timing problems, but a very precise and timely
measurement is needed to get usable results.

Chapter 4 will present the UML modeling for the QoS measurement and
monitoring architecture, and prepare the ground for the discussion of the
implementation aspects in chapter 5 and the proof-of-concept implementation
in chapter 6.

Chapter 4

Software model

4.1 Interaction

Figure 4.1 shows the typical interaction of a user with the system. When the
user starts a measurement, the correlator starts all necessary captures at the
data collectors, which in turn send the event streams corresponding to those
captures. After a pre-buffering phase, the correlator begins sending a corre-
lated event stream to the analysator, which outputs the QoS base dimensions
to the user. The data collection, correlation and analysis process are concurrent.

Data

analysator

Data

correlator

Data

collector

Start measurement

Start capture

Pre−
buffering

Send event stream

Send correlated
event stream

Result

Stop measurement
Stop capture

Figure 4.1: Sequence diagram

51

52 CHAPTER 4. SOFTWARE MODEL

4.2 Software deployment

Figure 4.2 shows the deployment of the software on different nodes: the
measurement point, which does the packet capture, and the analysis computer,
responsible for correlation and analysis of the event stream. The number of
data collector nodes is not limited, but there is only one correlator / analysator
node which handles all the event streams generated.

Measurement
point

Analysis

Data
collector

Data
correlator

Data
analysator

<<generate event stream>>

1

1..*

Figure 4.2: Deployment diagram

4.3. EVENTS AND CONTEXT 53

4.3 Events and context

Figure 4.3 details the concept of event streams. An event stream is a composi-
tion of events. Context is modeled as an association class.

Context

Event stream

Event

1

1..*

Figure 4.3: Event streams

Figure 4.4 shows the event classes that were discussed in section 3.2. The
interface defines all the externally accessible operations: creating a new event,
and getting / setting its timestamp and ID attribute. The IPEvent and
TCPEvent class, which implement the operations defined by the interface class,
have a number of additional protocol-specific attributes which are needed by
the correlation process.

<<uses>>

set_timestamp()
get_ID()
set_ID()
create()

<<interface>>

Event

operations

IP Event TCP Event

ScrIP
DestIP

SrcIP
DestIP
SrcPort
DestPort
SeqNr
AckNr
Flags

Flags

<<uses>>

get_timestamp()

Figure 4.4: Event classes

54 CHAPTER 4. SOFTWARE MODEL

Figure 4.5 shows the context class. The CPU load, the current error esti-
mation, the freshness (total processing time) and buffer sizes of the analysator
and correlator (sampling buf size) are attributes of the context. Two methods,
get context and set context can be used to interact with the context object.

Context

CPU_load: int
error_est: int
freshness: int
sampling_buf_size: int
analysator_buf_size: int

get_context()
set_context()

Figure 4.5: Context

4.4 Collector, correlator and analysator

Figure 4.6 shows the class diagramm and the interaction of the collector,
correlator and analysator. The correlator is an active class; as detailed in figure
4.1, it starts and stops the captures of the collector and provides a correlated
event stream to the analysator.

Data correlator Data AnalysatorData collector

Event stream

Event

Context

1..*

1..* 1 1 1

1..*

1

is generated by

ID

is correlated with

Figure 4.6: Class diagramm

Figure 4.7 shows an instantiated object diagramm of the class diagramm
previously shown. Two collectors, Coll01 and Coll02, produce each an event
stream. which are correlated. There are only one instance of a correlator and
an analysator.

4.4. COLLECTOR, CORRELATOR AND ANALYSATOR 55

: Data Correlator

Coll1: Data Collector

Coll2: Data Collector

Event02: Event Stream

Event01: Event Stream

: Data Analysator

is correlated with

generates

generates

Figure 4.7: Object diagramm

56 CHAPTER 4. SOFTWARE MODEL

Chapter 5

Implementation aspects

After presenting the architectural framework in chapter 3 and its realization
as a UML software model in chapter 4, this chapter will discuss the details
of the implementation. Section 5.2 discusses the different possibilities of the
experimental setup. Section 5.3 discusses the technical constraints likely to be
encountered during the implementation: timing considerations, limitations of
the implementation, the problem of calibration etc. Finally, section 5.4 presents
a prototypical implementation with reduced feature set that was written to
assess the feasibility of certain architectural ideas and find problematic issues
that had been overlooked.

5.1 General considerations

In section 2.3.1, a number of requirements for the QoS measurement and mon-
itoring architecture and its implementation were identified. The following re-
quirements are relevant to the implementation:

• The collector and the correlator / analysator should be implemented as
separate programs in such a way that they can run on separate computers.
Otherwise, analyzing data streams from separate measurement stations
would not be possible.

• A serialization of non-correlated event streams should be possible in order
to permit a delayed traffic analysis

• Both the collector and the correlator / analysator should be modular,
maybe even plugin-capable, to facilitate the handling of new protocols.
Adding a new event type and rules for the correlation / analysis of that
event type should be as easy and straightforward as possible.

• A long latency between the measurement and the actual result output is
not problematic, but the delay should be quantifiable.

• A good error approximation is preferable to a low error rate without error
approximation.

57

58 CHAPTER 5. IMPLEMENTATION ASPECTS

• The impact on system performance should be minimized and, if possible,
quantifiable.

5.2 Experimental setup

5.2.1 Introduction

Before the software implementation can be started, the experimental setup
to be used during measurement has to be clarified. This covers questions
such as: how many measurement points shall be used, how many streams
shall be captured, will an active or a passive measurement be used etc. The
measurement framework does not specify those points: an arbitrary number of
streams can be captured and, as long as a correlation rule set exists, the event
streams generated from those data streams can be correlated and analyzed.
Also, the measurement method is not specified: any kind of interaction between
network entities can serve as a starting point for further analysis - whether this
interaction is passively observed or actively injected traffic is irrelevant from
the viewpoint of the measurement framework.

While the flexibility of the measurement framework might make such ques-
tions look trivial and irrelevant, they are indeed quite fundamental and should
be examined in depth before the measurement framework is implemented.
After clarifying some of the terms and concepts used here, I will discuss the
details of the experimental setup.

Network

End system 1 End system 2

Probe Probe

Probe

Probe

Figure 5.1: Different measurement points

As discussed in chapter 3, the measurement can take place across the
protocol interface or across the service interface. The first case refers to
a situation where a (possibly dedicated) machine is placed on the network
between the endpoints of a communication and records the traffic; the latter
implies the use of a specially instrumented protocol stack in the operating
system’s kernel on the target machine, enabling the user to generate an event
stream based on the actual data exchanged between layers of the protocol
stack. Figure 5.1 details those possibilities.

For reasons of practicability, only the former case will be considered here.
A measurement point designates a machine which intercepts the traffic at a

5.2. EXPERIMENTAL SETUP 59

- +
One measurement
point

Capture of one stream
for each traffic direc-
tion adds server re-
sponse latency times

Easy to set up, collec-
tor and correlator on
one computer

Two measurement
points

Correlator does not
run on same computer
as collector. Latency
between event stream
generation and analy-
sis.

Two data streams,
more information
available through data
analysis

Table 5.1: Comparison between a one-point and a two-point measurement setup

- +
Passive measurement Very small choice of

analyzable traffic when
using with one meas.
point

No falsifying of obser-
vations by traffic injec-
tion

Active measurement Packet injection falsi-
fies observation

Very customizable.
Widely used.

Table 5.2: Comparison between passive and active measurement

designated point in the network. Of course, more than one event stream can
be generated at the measurement point. Possible placements of measurement
points in the networks and the implications will be discussed next. Since the
proof-of-concept implementation will operate on IP networks, the following
considerations will be limited to unicast traffic in IP networks.

5.2.2 Comparing the different approaches

The first decision to take is the numbers of measurement points to arrange
in the network. Using one measurement point has the clear advantage
of an easy set-up: there is no need to place another measurement point
in a possibly geographically remote location to arrange for another cap-
ture. Also, the correlator and analysator can run on the same machine, thus
reducing networking overhead and providing the user with possibly fresher data.

The drawback is a certain limitation concerning the type of traffic that
can be captured and, later, analyzed. A two-point-setup enables the user to
capture the same traffic before and after its trip through the network and thus
make a ”snapshot” of the same data at different moments in time. A one-
point-setup capturing two streams (the incoming and outgoing data streams,
for example) will never catch the same packet twice. Here, vertical correlation
(as discussed in chapter 3.5.2) will probably be used, in contrast to the much
simpler horizonal correlation which can be used with two-point-setups when
capturing packets that are uniquely IDed. Also, the latency of the server’s (or

60 CHAPTER 5. IMPLEMENTATION ASPECTS

client’s) reaction time might falsify the results and has to be taken into account.

In the literature, one-point-setups are often used with active measurement
techniques: that is, a special packet stream is injected into the network to
serve as an active probe. One example can be found in [24], where specially
prepared ICMP packets are used as probe stream. Finding correlation rules for
that type of event streams is straightforward, as obviously every ICMP echo
request should be paired to it’s corresponding ICMP echo reply.

Active measurement can be problematic because it has the potential to
falsify the measurement results by putting undue load on the network. Thus,
when using active measurement, special care has to be taken to ensure the
injected packet stream does not disrupt normal network operation. [23]
proposes a mechanism for the calibration of active delay measurement systems
by a passive measurement system. Also, a specially crafted traffic stream has
to be designed in order to be able to use active measurement. Simple probe
packets like ICMP echo requests and replies do not always provide a complex
enough probe stream to gather the required data for analysis. Using a badly
designed probe stream can be very limiting, and by doing passive measurement,
one can easily circumvent this difficulty.

[39] proposes a very interesting implementation of a passive measurement
technique which shows how implicit attributes of a network stream can be used
for measurement. By examining the behavior of loss pairs - that is, a pair of
packets which travel the same path and close together in time such that exactly
one of the packets is loss - the authors show that they can discover network
properties such as packet dropping behaviors of routers on the network path.
This shows that passive measurement techniques should not be underestimated,
and can offer valuable insights.

The proof-of-concept implementation will use a passive measurement
technique and one or two measurement points, as well as the capture of an
arbitrary number of streams, thus combining the advantages of a non-invasive,
no-impact passive measurement with the powerful correlation possibilities
of a larger choice of streams. Tables 5.1 and 5.2 provide a summary of the
advantages and drawbacks of one- and two-point-setups and of active versus
passive measurement techniques.

5.3 Technical constraints

5.3.1 Sampling methodology

Using a full trace for traffic analysis can be very time- and resource-consuming,
especially when considering real-world networks where users and applications
cause a lot of traffic. The solution to this problem is to use only a fraction of
the network traffic, that is, use a suitable sampling methodology to record only
chosen parts of the network traffic. Of course, using the full packet population
for analysis yields better and more exact results, but each instance of sampling

5.3. TECHNICAL CONSTRAINTS 61

uses resources such as CPU time, buffer space etc. It is necessary here to weigh
the sampling frequency against the accuracy requirements.

In [19], different sampling methodologies were evaluated in the context of
network traffic analysis. Both timer- and packet-driven sampling methodologies
were considered. The former make use of a timer to trigger the selection
of a packet: when the timer expires, the next packet to arrive is selected.
Packet-driven sampling methodologies, on the other hand, use a packet counter
to trigger the selection of a packet. Furthermore, three sampling algorithms
were considered: systematic (take the first member out of n buckets), stratified
random (take a random member out of n buckets) or simple random (take n
random members out of the whole set).

Time-triggered techniques were found to perform not as well as packet-
triggered ones. The performance differences within each class (time- or
packet-based techniques) were found to be small, contrary to what one might
have expected. Random sampling is less efficient than stratified random or sys-
tematic sampling only when considering populations with a linear trend. Also,
the exactitude of the results quickly declines with bucket sizes over 1024 packets.

5.3.2 Computer clocks

As stated in [47],

Measurements of time lie at the heart of many Internet metrics.

It is important to consider the technical constraints imposed upon any
computer-based measurement setup by the errors and uncertainties of imper-
fect clocks. The following issues regarding computer clock precision have to be
considered:

• Offset: A clock’s offset at a particular moment is defined as the difference
between the time reported by the clock and the ”true” time, defined by
UTC1. The offset can be subject to jitter, due for example to time-keeping
algorithms of the kernel trying to ”catch-up” the clock too fast, to hard-
ware problems or to the time-keeping algorithms of NTP. See [22] for a
practical examination of clock offset variation.

• Skew: The frequency difference (first derivative of its offset with respect
to UTC) between the clock and UTC. Real clocks show some variation in
skew: the second derivative of the clock’s offset to UTC is non-zero. This
is defined as the clock’s drift. A quartz crystal clock typically has a drift
rate of 10−6, a high-precision quartz clock has a drift of 10−7 to 10−8.

The Network Time Protocol cannot be used for clock synchronization in
this context, as its goal is to provide accurate timekeeping over long time
scales, i.e. minutes to days, while precise measurements call for short-term

1Universal Time Coordinated; uniform atomic time system kept very closely to UT2, that
is, the universal time deduced directly from observations of stars, and corrected for polar
motion and seasonal variation in the earth’s rotation rate

62 CHAPTER 5. IMPLEMENTATION ASPECTS

accuracy. NTP clients use fairly complicated algorithms to slowly adjust the
local computer’s time to NTP time, in order not to hurt the assumption that
timestamps always increase monotonously over time.

Using a radio controlled precision clock (which, themselves, are not without
problems - see [44]) for timekeeping is not a practical option for the exper-
imental setup discussed here, as it is both expensive and, as will be shown,
superfluous. Instead of relying on absolute time and time synchronization
across all measurement points, it is possible to either measure time only at one
point (which is trivial to do in a one-point-setup as discussed in section 5.2.2)
or measure only relative time differences.

In [18], it is discussed how measurements targeting not absolute time values
but fluctuations of values (here, the variation in, rather than the absolute value
of, one-way-delays) can ignore the problem of tight clock synchronization.
Furthermore, even using radio-controlled precision clocks does not solve
some of the other timing problems that are likely to come up when doing
computer-based measurements: the system load, system tuning parameters
(for example, the use of optimization switch in the compilation of the operating
system kernel) etc. will influence the accuracy of any measurement.

For the implementation purposes of this thesis, the measurement setup
focuses on relative time differences, not absolute time values; and the skew and
drift of computer clocks are ignored, as the implementation proposed serves
only as a proof of concept to demonstrate the practicability of the architectural
framework. Any real-world implementation should, of course, pay attention to
this problem.

5.3.3 Libpcap interface

The BSD packet filter provides a facility for user-level packet capture. Network
monitors normally run as user-level processes, thus making a copy of network
packets from kernel to user space necessary. This copying is time- as well as
resource-consuming. In order to minimize this overhead, a kernel agent called
”packet filter” can be used to discard unwanted packets early on, as long as
they are still in kernel space. This way, the application or network monitor
is furnished only with the part of the traffic capture it considers relevant.
Figure 5.2 gives a schematic view of the BSD packet filter. [42] discusses the
architecture of the BSD packet filter in more detail.

Today, implementations of the BSD packet filter have been ported to almost
every flavor of *NIX. A more user-friendly interface to the BPF can be found
in the pcap library ([4]). The pcap library provides functionality to capture
packets at network interface level, and to execute a predefined function call
for every packet captured. Using the filter syntax known from the tcpdump
utility ([3]), packet filters can be compiled and set, so that the BPF can discard
unwanted traffic.

To capture packets using the pcap library, first a packet capture descriptor

5.3. TECHNICAL CONSTRAINTS 63

Kernel

Kernel

User

Network

Protocol
stack

Link level driver

Network
monitor

Filter

Buffer

BPF

Figure 5.2: The BSD packet filter

has to be obtained using, for example, the pcap open live function. This
function takes a network device (i.e., eth0), the maximum number of bytes to
capture from each packet, a read timeout and a flag indicating whether the
network device should be put into promiscuous mode as arguments and returns
a packet capture descriptor.

After initializing the capture device, capture filters using the tcpdump syn-
tax can be compiled, and information about the configuration of the network
interface can be gained using pcap lookupnet. The function pcap loop keeps
reading packets from the interface until an error occurs. This function takes a
callback function as an argument. The callback function is executed every time
a packet is read. This function takes a pointer to a user-specified structure (so
that the user can pass arguments), a pointer to the pcap pkthdr structure (which
contains information such as the capture time) and a pointer to the packet data.

The BSD packet filter and the pcap library are used as part of the data
collector implementation, as their functionality is more than sufficient here,
and a reimplementation would be not only unnecessary, but also need a massive
programming effort.

5.3.4 Calibration

Assessing the error level introduced by the measurement process is not an
easy task. Measuring the application’s resource usage or the degradation of
the measurement computer’s activity do not give information about the level
of precision which can be guaranteed by the measurement point. In order to
get detailed information about the error level, a calibration process can be used.

The idea behind this is to use a generated packet stream with well-defined

64 CHAPTER 5. IMPLEMENTATION ASPECTS

characteristics as a calibration device. Ideally, the calibration stream would be
injected into the network at such a point that it suffers as little modification
as possible before it is captured by the measurement station. By comparing
the original characteristics of the stream to those of the captured streams,
the error level introduced by the measurement process can be more accu-
rately estimated. A very simple calibration stream could be, for example, a ping.

Characteristics that can be compared and give an indication of the error
level introduced by the measurement process include, for example, the arrival
distribution of the packets compared to the distribution of the generated
events. A large discrepancy here might indicate efficiency problems.

5.3.5 Other technical limitations

Further technical limitations to the implementation have to be considered.
Not all ideas presented in chapter 3 are practical and easy to implement. Any
measurement to be done across the service interface of the OSI stack requires an
operating system’s protocol stack to be modified in a way that measurements
can easily be obtained. Consider for example the TCP/IP protocol stack of
a typical Unix system like FreeBSD. The kernel source tree (including the
networking source) can be found in [5]. While not monolithical in design, the
sheer complexity of the source code makes it clear that modifying the kernel in
order to accommodate a measurement mechanism is no small task.

Even considering a specially instrumented protocol stack, the problem
of clock skew remains. When considering timing aspects of such minute
events as the passing of a service primitive between different layers of the
protocol stack, a clock skew of a few milliseconds - which, as was discussed in
section 5.3.2, is to be expected with modern computer hardware - is totally
unacceptable and falsifies the results. Considering those practical problems,
the proof-of-concept implementation presented with this thesis concerns itself
only with measurement across the protocol interface.

The problem of instrumentation techniques is currently being actively
researched. [32] presents an architecture for the automated management
instrumentation of component-based applications, underlying the importance
of such techniques especially in the field of QoS monitoring. The Open H323
project ([6]), which aims to create a full featured, interoperable, Open Source
implementation of the ITU H.323 teleconferencing protocol ([36]), also takes
this problems into consideration and offers detailed resources for monitoring.

Measuring across the protocol interface is also only an approximation,
as the measurement happens at the service access point, i.e., just after the
network card. The captured network trace has to be decoded in parallel in the
measurement software, but no information is available about the inner workings
of the operating system’s protocol stack. Thus, the generated event streams
can not be used as a base for correlation across the service interface, especially
when the correlation is done in order to analyze timing-related phenomena.

5.4. PROTOTYPE IMPLEMENTATION 65

A further question of interest is whether the use of a real-time operating
system and a measurement software obeying to hard real-time constraints
carries any advantages. Some of the correlation problems discussed in 3.5.2
might be averted. If the event generation is subjected to timing limits, and an
event has to be generated within a certain timeframe of its corresponding packet
or primitive capture, then two or more event streams could be kept tightly
synchronized, thus easing the correlation process. A complete discussion of this
problem is outside the scope of this thesis, but the approach might be promising.

5.4 Prototype implementation

To evaluate the feasibility of an implementation of the measurement framework
presented and prepare the ground for the proof-of-concept implementation (see
6), a prototype with a minimal feature set was implemented. Perl was chosen
as programming language because of its suitability as a rapid prototyping
language and because Perl’s data manipulation features make it an ideal choice
for event stream correlation and analysis.

The prototype was to have the following feature set:

• Support of IP and timer event streams

• One collector, one correlator / analysator

• Collection of maximum two event streams (one IP stream, one timer
stream)

• Measurement of bandwidth by counting packets

• Context realized as: percentage of captured packets, packet processing
time

Figure 5.3 details the experimental setup that was chosen for the prototype.

knoppix projekt7 meas

eth0
10.0.0.2 eth0 eth1 10.0.0.1

ed0

� �� ���
�� � �� �� �� �

� ��� �� �	 		 	

�

Figure 5.3: Experimental setup for the prototype

To produce test traffic, the measurement station meas was used to ping
knoppix with variable packet intervals. Using the ping utility had the added
benefit that the generated packet stream had a well-defined bandwidth usage,

66 CHAPTER 5. IMPLEMENTATION ASPECTS

as the number of packets to send per second can be specified on the command
line interface. The computer projekt7 serves as a bridge between both networks.
It runs a software written by Boris Lohner which disturbs the flow of traffic as
a WAN would do: it offers the capability to simulate packet loss, delays, delay
jitter and packet duplicates with a configurable interface. More details about
the WAN emulator can be found in [40]. Both the collector and the correlator
/ analysator were run on meas.

5.4.1 Prototype software

Two Perl programs were written to implement the prototype: collector.pl and
correlator.pl. To enable a distributed use and test this concept, they were both
given the capability to communicate using network sockets. In this scenario,
collector.pl acts as the server, correlator.pl as the client. The functionality and
realization of both programs will now be discussed in more detail.

collector.pl

In this scenario, the program collector.pl acts as a server. It accepts one control
connection and as many data connections as the client opens - each data
connection being equivalent to one event stream. The context is global to the
collector instance, which means that all event streams from one collector will
have one common context. This is due to the nature of the implementation.
Since the data collector runs on one machine, the context has to be global to
avoid conflict. If, for example, the user requires freshness from one stream and
completeness from the other, the collector process would have to satisfy two
conflicting goals: that of minimizing the packet processing time, for example
by using suitable sampling methods, and that of delivering a complete trace.
Furthermore, since all event streams are generated from one network trace, i.e.
one instance of the pcap driver, every context switch means that all captures
have to be restarted.

After some initialization at startup, the program opens a socket and waits
for connections. Once a control connection has been accepted, the pcap
interface is initialized, and the client can open a data connection. For every
event stream requested by the client, a child process is forked, starts a recording
loop on the pcap interface, and instantiates a callback function of the correct
type. For every packet that comes across the interface, the callback function
is triggered. After performing some context checks (i.e., do some sampling
and test whether the maximum processing time is likely to be exceeded), the
packet is decoded and an appropriate event is generated. Whenever a change
in context is requested by the client, all current event streams are re-initialized.

correlator.pl

The correlator.pl program contains both the correlator and the analysator
functionality. As the functionality of correlating event streams and later

5.4. PROTOTYPE IMPLEMENTATION 67

analyzing the correlated stream come together quite naturally, no effort was
made to separate the functionality into two distinct programs.

The QoS to be measured here was capacity, in the form of packets per
second. The measurement was done using a timer- and a packet-based
sampling. In the first form, the bandwidth usage was measured by counting
the number of packets in sampling bins of five seconds length, marking the
beginning and end of a bin by timer events; in the second form, a buffer of
5 packets was used to determine the time elapsed between the first and the
fifth packet. Both results where then converted to packets per seconds. Due to
a methodical error, the results of the timer-based approach were wrong and,
thus, not comparable to the results of the packet-based approach.

The details of the correlator / analysator implementation will now be
detailed. After some initialization at startup, the program connects to the
collector server and requests a timer event stream and an IP event stream.
A buffer size of 10 events is used for correlation. The program starts with
filling the IP event buffer with 5 events before any correlation and analysis is
done. After the prebuffering phase, the time- and the packet-based bandwidth
computation is performed and printed on the standard output.

Figure 5.4 shows a screenshot of the prototype collector program. Figure 5.5
and 5.6 show the collector program. ”pps1” is the bandwidth computed with
a packet-based sampling, ”pps2” the bandwidth computer with a timer-based
sampling. In both screenshots, the traffic measured consisted of a simple ping.

Figure 5.4: Screenshot of the prototype collector

5.4.2 Conclusion

The prototype software clearly showed that an implementation of the QoS
measurement architecture proposed in this thesis is feasible. It also helped
to clear up the concept of context when viewed from the implementation
side and prepare the ground for the proof-of-concept implementation. The

68 CHAPTER 5. IMPLEMENTATION ASPECTS

Figure 5.5: Screenshot of the prototype correlator - 1 packet / second ping

Figure 5.6: Screenshot of the prototype correlator - 2 packets / second ping

5.5. CONCLUSION 69

proof-of-concept implementation will have a very system- and implementation-
oriented concept of context, which covers things such as CPU load, event
processing time, buffer size etc. That context here is collector-specific and
cannot be broken down to be event-stream-specific is due to the specifics
of the implementation. This was discussed in section 5.4.1. The prototype
implementation also helped to gain a better definition of event streams. A
question which has yet to be answered and will be considered more carefully
for the proof-of-concept implementation is whether the correlator process can
correlate smoothly over context switches, or whether the correlation has to be
restarted whenever the collector process restarts the event streams.

5.5 Conclusion

In this chapter, varied aspects of the implementation and the experimental
setup were discussed. Different kinds of measurement setups were presented:
one-point-setups, which are very easy to realise but quite limiting for the
traffic analysis and two-point-setups, which are more difficult to realize as
both endpoints of a connection have to be instrumented with a data collector,
but offer a wider range of subsequent traffic analysis possibilities through the
capture of two trace files. The advantages and drawbacks of active and passive
measurement techniques were discussed. Active measurement techniques
involve the injection of a probe packet stream into the network and can thus
possibly influence network performance and falsify measurement results.

Technical constraints of the implementation were discussed. Since computer
clocks are very inaccurate and difficult to synchronize, it is necessary to take
that into consideration and use analysis techniques that do not rely on absolute
time. The possible influence of the correlator / analysator and the collector
program on system performance also have to be taken into account. A special
calibration process can be used to estimate the error introduced.

After having discussion the fundamentals of the implementation work in
this chapter, chapter 6 will present the proof-of-concept implementation and
discuss the code and algorithms used.

70 CHAPTER 5. IMPLEMENTATION ASPECTS

Chapter 6

Proof of concept
implementation

After the prototype model presented in chapter 5, this chapter will discuss the
proof-of-concept implementation. This implementation covers a larger feature
set and shows that the QoS measurement framework proposed can be imple-
mented and that the implementation fulfills the requirements outlined in section
2.3.1. The proof-of-concept implementation supports IP, TCP, UDP, ICMP,
FTP and timer event types. Horizontal and semantic correlation illustrate the
concept of event correlation discussed in section 3.5.2. The analysator can
process IP, TCP and ICMP event types, and features an exemplary mapping of
protocol-specific measurands onto QoS base dimensions. Both the collector and
the correlator / analysator programs show how the core program can be kept
generic by a modular approach, cleanly encapsulating the protocol-specific code.

The client-server model, which had proved itself useful in the prototype
model, was reused for the proof-of-concept implementation. Also, the proof-of-
concept implementation was realized in Perl and PerlTk, as the Perl language
is very powerful for rapid software prototyping and for string evaluation and
supports complex data structures. This features were very helpful for the
correlation and analysis processes.

The collector and correlator / analysator implementation will now be
discussed with special attention to the event trace format used by the collector
and the details of the correlation and analysis process.

6.1 Collector

coll-poc.pl is the data collector. It acts as an event stream server and waits for
the client (the data correlator) to open a TCP/IP connection to the server and
start the measurement.

The event generation functions are cleanly separated from the core code.
The file events.pl contains event generation functions for IP, TCP, ICMP,

71

72 CHAPTER 6. PROOF OF CONCEPT IMPLEMENTATION

UDP and FTP event streams. The pcap library is used for packet capture,
as detailed in section 5.3.3. The choice of event types was motivated by the
availability of the Perl NetPacket package which provides a very easy-to-use
interface for parsing the libpcap output into Perl objects, and supports IP,
TCP, UDP, ARP, and ICMP. Other protocols have to be parsed by hand or
using other libraries to produce events.

The core code is mainly protocol-independent and generic. Setting the
appropriate pcap filters for the capture has not been encapsulated into a
separate function, but this would be rather straightforward. Adding support
for new event types to the core code is very easy: a new event generation
function and an appropriate pcap filter have to be added.

6.1.1 Event trace format

To simplify the usage of the collector and the implementation, a simple ASCII
format was used for the event streams. All event streams have a few common
characteristics: a single character indicating the event type, a stream number
to differentiate simultaneous streams of the same event type, a sequential
counter providing a unique ID, and a timestamp indicating when the capture
occurred. This timestamp is taken from the pcap pkthdr structure, not from
the packet header itself and denotes the time of capture at the service access
point. All event types except the timer event also feature the packet checksum,
which is not used during further processing but included as an example.

The TCP event stream format is the following: stream type, stream number,
sequential counter, processing time in the collector, capture timestamp, source
IP:source port, destination IP:destination port, sequence number, acknowledg-
ment number, checksum. Here a trace file example:

t 0 1 0000000000.009308 1034956430.222131 192.168.66.1:22 192.168.66.10:2032 1161751207 582185694 24441
t 0 2 0000000000.005549 1034956430.242704 192.168.66.1:22 192.168.66.10:2032 1161751208 582185694 40744
t 0 3 0000000000.005278 1034956430.251550 192.168.66.1:22 192.168.66.10:2032 1161751262 582185716 20061
t 0 4 0000000000.011882 1034956430.344180 192.168.66.1:22 192.168.66.10:2032 1161751814 582186180 34537
t 0 5 0000000000.011915 1034956430.444118 192.168.66.1:22 192.168.66.10:2032 1161751814 582186196 34501
t 0 6 0000000000.010918 1034956432.695591 192.168.66.1:22 192.168.66.10:2032 1161751814 582186196 50250
t 0 7 0000000000.012380 1034956432.973722 192.168.66.1:22 192.168.66.10:2032 1161752094 582186468 33443
t 0 8 0000000000.009834 1034956436.126960 192.168.66.1:22 192.168.66.10:2032 1161752094 582186468 31577

The IP event stream format is the following: stream type, stream number,
sequential counter, processing time in the collector, capture timestamp, source
IP, destination IP, header flags, checksum. Here an example:

i 0 1 0000000000.011267 1034956304.595531 192.168.66.1 192.168.66.10 2 46494
i 0 2 0000000000.007164 1034956304.615260 192.168.66.1 192.168.66.10 2 46445
i 0 3 0000000000.008387 1034956304.624136 192.168.66.1 192.168.66.10 2 45946
i 0 4 0000000000.011444 1034956304.720855 192.168.66.1 192.168.66.10 2 46497
i 0 5 0000000000.001633 1034956304.820808 192.168.66.1 192.168.66.10 2 46496
i 0 6 0000000000.010155 1034956307.112412 192.168.66.1 192.168.66.10 2 46215
i 0 7 0000000000.001671 1034956307.380706 192.168.66.1 192.168.66.10 2 46494
i 0 8 0000000000.007013 1034956310.575713 192.168.66.1 192.168.66.10 2 45725
i 0 9 0000000000.010326 1034956310.672157 192.168.66.1 192.168.66.10 2 46476
i 0 10 0000000000.001796 1034956310.900692 192.168.66.1 192.168.66.10 2 46491
i 0 11 0000000000.004970 1034956310.947449 192.168.66.1 192.168.66.10 2 46442

6.1. COLLECTOR 73

The ICMP event stream format is the following: stream type, stream num-
ber, sequential counter, processing time in the collector, capture timestamp,
source IP, destination IP, ICMP type, ICMP code, ICMP sequence number,
checksum. The example features two different traces. The first capture
(sequence numbers 6 to 11) was a capture of ICMP echo request, which can
clearly be seen from the ICMP type which is 0. The second capture (sequence
numbers 1 to 6) was a capture of ICMP echo replies, where the ICMP type is
8:

p 0 6 0000000000.009004 1034956358.805915 192.168.66.1 192.168.66.10 0 0 0000 65345
p 0 7 0000000000.012140 1034956359.812671 192.168.66.1 192.168.66.10 0 0 0100 9256
p 0 8 0000000000.012110 1034956360.822718 192.168.66.1 192.168.66.10 0 0 0200 59904
p 0 9 0000000000.012097 1034956361.832751 192.168.66.1 192.168.66.10 0 0 0300 54233
p 0 10 0000000000.012060 1034956362.842789 192.168.66.1 192.168.66.10 0 0 0400 50098
p 0 11 0000000000.012064 1034956363.852830 192.168.66.1 192.168.66.10 0 0 0500 41867
p 0 1 0000000000.014830 1034956386.795612 192.168.66.10 192.168.66.1 8 0 0000 5991
p 0 2 0000000000.008062 1034956387.802177 192.168.66.10 192.168.66.1 8 0 0100 23117
p 0 3 0000000000.052036 1034956388.812179 192.168.66.10 192.168.66.1 8 0 0200 17702
p 0 4 0000000000.024002 1034956389.832215 192.168.66.10 192.168.66.1 8 0 0300 1496
p 0 5 0000000000.004688 1034956390.842225 192.168.66.10 192.168.66.1 8 0 0400 60848
p 0 6 0000000000.012623 1034956391.852232 192.168.66.10 192.168.66.1 8 0 0500 54409

Finally, the timer event stream, which is the simplest so far, features a
stream type, stream number, sequential count and a timestamp. Timer events
are used to indicate the time flow on a remote server, and have a reference time
for the analysis of packets produced by this server. For example, to count the
number of packet arrivals in the last 10 minutes, one has to know what ”the
last 10 minutes” meant in absolute time for the remote server.

h 1 0 1034956462.356046
h 1 1 1034956463.363309
h 1 2 1034956464.373256
h 1 3 1034956465.383262
h 1 4 1034956466.403276
h 1 5 1034956467.423348
h 1 6 1034956468.433316
h 1 7 1034956469.453321

Of course, a real event stream will be a mix of all those event types. When
the event streams are then parsed by the correlator, the stream type and
stream number are used to distinguish the individual event streams. While the
ASCII format has the advantage of being easily readable to a human operator,
a binary format would certainly be called for when dealing with large traces, to
reduce trace file size. Furthermore, using a remote procedure call architecture
might also be an interesting approach, as this would eliminate the need for
event parsing in the correlator, and support the distributed implementation of
this framework.

6.1.2 Code

The core program itself is rather simple, as the functionality lies mostly in the
event generation functions. The main routine is a while loop which waits for
user input on the control channel. The following commands are understood by
the collector:

74 CHAPTER 6. PROOF OF CONCEPT IMPLEMENTATION

• quit - quit the collector

• context - context switch

• start - start measurement

• stop - stop measurement

• stats - output capture statistics

1 while(!$exitflag){

2 if(/^quit/i){

3 ...

4 } elsif(/^context (...) (\d*)/i){

5 ...

6 } elsif(/^start (.*_evt) (\d*?\.\d*?\.\d*?\.\d*?) (\d*?\.\d*?\.\d*?\.\d*?);/i){

7 spawn(\&data_capture, $1, $2, $3);

8 } elsif(/^stop (\d*)/i){

9 ...

10 } elsif(/^stats/i){

11 ...

12 }

13 }

When the start command is received, the spawn function is called, taking
as arguments the callback function data capture, the event type and the source
and destination IP addresses. Event type source and destination are parsed
from user input, as can be seen in the regular expression from line 6. The spawn
function takes care of internal statistics (how many captures are running, what
arguments were they called with etc.) and then executes data capture, or
changes the coderef to the timer event generation function when a timer event
stream has been requested. In this case the data capture, which initializes a
pcap capture, does not have to be called.

1 sub data_capture {

2 my ($nr, $event, $src, $dst) = @_;

3 [...]

4 # Initialise capture device

5 my $dev = $user_dev || Net::Pcap::lookupdev(\$errbuf);

6

7 # snaplen 1024 byte, promisc = 1, timeout 10ms

8 my $p = Net::Pcap::open_live($dev, 1024, 1, 10, \$errbuf);

9 [...]

10 my $myf = "dst $dst and src $src and not port $port";

11 if($event =~ /tcp/){

12 $myf .= " and tcp";

13 } elsif($event =~ /icmp/){

14 $myf .= " and icmp";

15 }

16 [...]

17 if(Net::Pcap::compile($p, \$ft, $myf, 0, $net) != 0){

18 print STDERR "error compiling filter\n";

19 }

20 if(Net::Pcap::setfilter($p, $ft) != 0){

6.1. COLLECTOR 75

21 print STDERR "error setting filter\n";

22 }

23 [...]

24 Net::Pcap::loop($p, -1, \&event, $usr);

25

26 while(1){

27 # do nothing

28 }

29

30 return 1;

31 }

The data capture function opens a pcap capture device and prepares a
capture filter which makes sure that the internal traffic between the collector
and its client is not captured, and that only the traffic between the source and
destination IP address is captured. Furthermore, the protocol to be captured
can be specified. This is clearly protocol-specific code in the core program, but
it is easy to encapsulate it so that the core program remains generic.

Filtering the traffic between two IP-addresses is done for several reasons:
the measurement framework proposed concerns itself with end-to-end QoS,
so only the interaction between two communication endpoints is considered.
Furthermore, the less specific the event streams are, the more complicated the
correlation process is as it becomes necessary to differentiate between all the
endpoints involved in this communication. Since the implementation presented
here serves as a proof-of-concept, it is preferable to keep the code simple and
self-explanatory.

In line 24, the pcap capture loop is started with the callback function event
as an argument. It serves as a wrapper function for the actual event function
to be called. The $usr structure is used to pass the event type.

1 sub ip_evt {

2 my ($usr, $hdr, $pkt) = @_;

3

4 my $ip_obj = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt));

5

6 my ($t1, $mt1) = gettimeofday;

7 print DATA_OUT "i $usr->{’nr’} $cnt " .

8 sprintf("%010d.%06d", ($t1 - $hdr->{tv_sec}), ($mt1 - $hdr->{tv_usec})) .

9 " $hdr->{tv_sec}." . sprintf("%06d",$hdr->{tv_usec}) .

10 " $ip_obj->{src_ip} $ip_obj->{dest_ip} $ip_obj->{flags} $ip_obj->{cksum}\n";

11

12 }

The event generation functions are in a separate file. Here, the ip evt
function will be discussed as an example. This function takes the $usr struc-
ture, the pcap header $hdr and the packet structure $pkt as arguments. The
packet is parsed using the NetPacket::Ethernet and NetPacket::IP modules.
Then, the event is output to the data channel using the output format that
was discussed in section 6.1.1. The NetPacket::ICMP module had to be

76 CHAPTER 6. PROOF OF CONCEPT IMPLEMENTATION

Reliability Capacity Integrity Timeliness
ICMP Every echo req

has echo reply
PPS – RTT

TCP Packet loss PPS Sequencing
errors

–

IP – PPS – –

Table 6.1: Measurands and QoS base dimensions

patched, since it did not parse the complete ICMP header. A patched version
of the NetPacket::ICMP module is included in the source file directory under
cecile/ICMP.pm .

6.2 Correlator - Analysator

In this implementation, the correlator and analysator were realized in one
program. There is no reason to separate the functionality, as no advantage is
to be gained by having the correlator and analysator run on separate machines.
The correlator-analysator features a user-friendly GUI and a text output to
the console. It can be used interactively to see the analysis in real-time or the
console output can be captured to a file.

Again, the core program is generic. The protocol-specific functions,
that is the event stream correlation and analysis, are separate from the core
code. The event parsing has not been modularized, but this would be easy to do.

6.2.1 Measurands

Table 6.1 illustrates the mapping from QoS base dimensions onto protocol-
specific measurands that was chosen for the proof-of-concept implementation.
The table is not exhaustive. The calculation of certain base dimensions
was omitted to keep the implementation simple and the code mostly self-
explanatory. A comparison with table 3.2 shows that the mapping discussed in
chapter 3.3.2 is usable for implementation purposes.

6.2.2 Code

The code for the GUI setup will not be discussed in this section, as it is
straightforward and does not contain any aspects relevant to the correlation
or analysis of event streams. The following code shows how the event stream
capture and processing are scheduled. fileevent is a Tk function which calls the
callback function it gets as third argument every time there is new data waiting
to be read on the socket. repeat is a Tk function which executes a callback
function some milliseconds later. The time interval to wait between execution
is given as first argument. Using the repeat and fileevent functions at the same

6.2. CORRELATOR - ANALYSATOR 77

time introduces a certain level of concurrency.

1 foreach(1..$C){

2 $M->fileevent("DATA".$C, ’readable’, \&${"read".$_});

3 }

4

5 $co_id = $M->repeat(($freshness || 500), \&correlate);

When the read function is called, it reads the next line from the data socket
and parses the event stream into a Perl data structure. The data structure
used is a buffer of fixed length. When the collector process starts delivering
data, the correlator fills up the buffer until the maximum length is reached.
After that, the buffer length is kept constant by pushing out the eldest event
every time a new event arrives. Furthermore, every event stream has its own
data structure: there is no mix between streams from different collectors, or
between different streams from the same collector.

The correlate function, which is called at fixed time intervals, first calls
the event-type specific correlation functions and then, accordingly, the analysis
functions. I will now discuss one correlation function and one analysis function
in detail to show how correlation and analysis are realized here.

1 sub icmp_correl_semantic {

2

3 if($pi1 < 1){ return; }

4

5 for(my $h = 0; $h <= $pi1; $h++){

6 if($p_1->[3]->[$h]->{’c_c’} ne ""){

7 next;

8 }

9 for(my $k = 0; $k <= $pi1; $k++){

10 if(($p_1->[3]->[$h]->{’seq’} eq $p_1->[4]->[$k]->{’seq’})

11 && ($p_1->[3]->[$h]->{’seq’} ne "")){

12 $p_1->[3]->[$h]->{’c_c’} = $p_1->[4]->[$k]->{’cnt’};

13 $p_1->[4]->[$k]->{’c_c’} = $p_1->[3]->[$h]->{’cnt’};

14 }

15 }

16 }

17

18 return;

19 }

icmp correl semantic tries to find a semantic correlation between two ICMP
event streams; that is, given two ICMP event streams recorded by the same
collector machine, it tries to find the corresponding ICMP echo reply to each
ICMP echo request. Since the collector uses a libpcap filter for each event
stream, one stream contains only the ICMP echo requests and the other only
the ICMP echo replies. The icmp correl semantic function iterates through
both event streams and, if a correlation is found - that is, if the ICMP echo
request sequence number of one event corresponds to the ICMP echo reply
sequence number of an event in the other stream, a pointer from one event

78 CHAPTER 6. PROOF OF CONCEPT IMPLEMENTATION

to each other is set. The event stream with the pointers forms the correlated
event stream.

1 sub icmp_rel {

2

3 $icmp_rel_c++;

4 my $b = $icmp_rel_c % $MC;

5

6 for(my $h = $pi1; $h > 0; $h--){

7 if($p_1->[3]->[$h]->{’c_c’} ne ""){

8 for(my $k = $pi1; $k > 0; $k--){

9 if($p_1->[3]->[$h]->{’c_c’} eq $p_1->[4]->[$k]->{’cnt’}){

10 dot("rel", $b, 20, "P");

11 return;

12 }

13 }

14 } else {

15 next;

16 }

17 }

18

19 return;

20 }

icmp rel is the function to measure the reliability of ICMP. The analysis is
very simple: an iteration cycles through the correlated event stream, beginning
with the oldest event. If the event has a pointer set to an event in another
stream, clearly the echo request was followed by an echo reply. Of course,
should the correlation fail, a false negative is be displayed.

6.2.3 Context

The only type of context available in the proof-of-concept implementation is
freshness. Here, freshness is not used to represent the total processing time,
but rather the time interval to wait before each successive call of the correlator
function. The more frequent the correlation is, the ”fresher” the results are.

The context switch is executed by canceling the last repeat call and
executing a new one, with a different interval. The correlation does not happen
over context switches, as the correlation is not a time-continuous process.

6.3 Application screenshots

This section presents some screenshots from the proof-of-concept implemen-
tation. The measurements were executed using collector servers on two
computers, and one correlator / analysator. A ping and an ssh-session were
used to produce test traffic.

6.3. APPLICATION SCREENSHOTS 79

Figure 6.1: Analysator screenshot

Figure 6.2: Analysator screenshot during measurement

Figure 6.1 shows a screenshot of the correlator / analysator at startup. In
the lower left-hand-side, the collector server IP addresses and the IP addresses
of the two clients between which the traffic is captured are displayed.

Figure 6.2 shows a screenshot of the correlator / analysator during a
measurement. The display of the QoS base dimensions is color-coded: blue for
IP events, yellow for ICMP events and green for TCP events. The ”reliability”
display shows many false negatives for the TCP packet loss; this is due to errors
in the correlation. The ”capacity” display shows first the capture of a ping
(yellow line) and then some additional TCP traffic. It is quite visible how the
total IP traffic is the sum of the ICMP and the TCP traffic. The ”integrity”
display shows TCP sequencing errors (none happened during that capture).
The ”timeliness” display shows the round-trip-delay of the ICMP packets.

Figure 6.3 shows a screenshot of the analysator output to the standard
output during a measurement. The leftmost column is a timestamp. The

80 CHAPTER 6. PROOF OF CONCEPT IMPLEMENTATION

Figure 6.3: Analysator output during measurement

measurement was executed with a freshness value of 500ms. Accordingly, the
trace file shows how each base dimension is computed twice per second.

Figure 6.4 shows a screenshot of one of the collector servers and shows how
the different captures are started. The collector output to the standard output
serves only diagnostic purposes.

6.4 Conclusion

The proof-of-concept implementation presented in this chapter has shown that
the QoS measurement framework can be implemented in a very generic way.
By using modular programming techniques, the core code is kept generic and
can be reused with any type of protocol. The protocol-specific code is cleanly

6.4. CONCLUSION 81

Figure 6.4: Collector screenshot

82 CHAPTER 6. PROOF OF CONCEPT IMPLEMENTATION

encapsulated in separate functions and easy to reimplement and replace.
Furthermore, by separating the collector from the correlator / analysator
functionality, it is easy to reuse the collector for other tasks.

An interesting option for the implementation would be to use the IPPM
framework to compute the QoS base dimensions, as this framework provides
a comprehensive overview of metrics for IP networks. The IPPM framework
defines a number of metrics that are relevant in the context of IP networks: for
measuring connectivity (RFC2678 [41]), one-way-delay (RFC2679 [7]) etc. and
was discussed in 2.2.2. Due to the modular composition of the implementation,
adding new metrics is only a matter of changing the relevant correlation and
analysis rules.

The collector and correlator exchange event streams in ASCII format and
communicate using network sockets. This design decision was made to ease the
implementation and make the debugging easier. Using remote procedure calls
would make the event stream parsing that is done in the correlator unnecessary.
Furthermore, the architecture could be implemented on a distributed platform
like the Mobile Agent System Architecture (MASA) ([38]).

Chapter 7

Summary and conclusion

With today’s networks becoming more and more service-oriented, a need for
predictable and accountable service quality has arisen. Quantifying service
quality is important not only to satisfy customer expectations, but also as a
mean to describe traffic characteristics. The heterogeneity of today’s networks
and the lack of a unified QoS framework complicate the task of measuring and
monitoring service quality. Existing approaches are too protocol-specific and
lacking a generic framework.

This thesis proposes a generic QoS measurement and monitoring ar-
chitecture, and presents a proof-of-concept implementation. The following
requirements have been identified for the architecture: use a high-level and
generic QoS definition instead of relying on technology-specific QoS concepts,
hide the underlying network heterogeneity with unified views, and use unified
methods and interfaces. Using a unified view on QoS is necessary to develop
a generic QoS measurement architecture, as then the QoS concepts used
are not limited to a specific networking technology and the architecture can
adequately reflect the heterogeneity of today’s networks. The implementation
requirements are: keep the core code as generic as possible and use modular
programming to make adding support for additional protocols as easy as
possible. Furthermore, the implementation should also use unified views and
unified methods to hide the underlying network heterogeneity from the end-user.

The QoS measurement and monitoring framework proposed consists of
three conceptual blocks, the data collector, the data correlator and the
data analysator. To model the interaction across the service or protocol
interface, the concept of events is introduced using an abstract event class.
Every protocol can then be modeled by constructing a suitable event class
inherited from the abstract event class. The event stream, which is modeled
as a composition of events, describes the interactions at the service access point.

Quality of service is modeled using four QoS base dimensions - reliability,
capacity, timeliness and integrity - which were derived from the OSI QoS
standard ([35]). Those base dimensions can be mapped onto protocol-specific
measurands, but are very generic themselves.

83

84 CHAPTER 7. SUMMARY AND CONCLUSION

The first of the three blocks, the data collector, captures the interaction at
the service or protocol interface and generates a number of event streams, one
for each protocol stack layer involved. Multiple instances of the data collector
can be used concurrently to generate event streams. The data correlator takes
those event streams and performs an event correlation to associate events from
one stream with events from another stream. The correlation can be vertical
(between protocol stack layers), horizontal (when correlating event streams
which model the same data stream at different moments in time) or semantic
(when correlating events according to protocol mechanisms, for example a TCP
handshake).

Finally, the data analysator uses the correlated event streams to compute
the QoS base dimensions, using, of course, the mapping onto network-specific
measurands. Furthermore, the concept of context is introduced to model the
interrelated conditions under which the measurement and analysis happen.
Context can be captured during any step of the measurement, and is propagated
to the data analysator, to provide the end user with context information.
Furthermore, the end user can specify the measurement context (for example
maximum error rates, sampling scheme to use etc.) which is then propagated
back to the analysator, correlator and collector.

To determine how well and how easily the QoS measurement and mon-
itoring architecture could be implemented, a prototypical implementation
with basic feature set has been realized. This laid the groundwork for the
proof-of-concept implementation which demonstrates the full possibilities of
the QoS measurement architecture. The proof-of-concept implementation can
be used in IP networks to generate event streams for IP, TCP and ICMP event
types. Examples of horizontal and semantical correlation are included, and a
mapping of the QoS base dimensions onto protocol-specific measurands is used
to compute service quality. The proof-of-concept implementation is realized as
a client-server application to be used as a distributed application, and features
a graphical user interface for the analysator.

Both the measurement architecture and the implementation meet the
requirements. The measurement architecture is generic, as its design is very
abstract and hides network heterogeneity. The concept of QoS base dimensions
provides a unified view on service quality by modeling service quality with
abstract dimensions which are mapped onto protocol-specific measurands
as needed. Events are derived from an abstract event class which defines a
minimal set of attributes an event should have. Suitable event classes can then
be defined for any protocol. Finally, the concept of event stream correlation
is not protocol-specific. As long as a suitable mapping can be defined, event
stream correlation is possible.

The core code of the proof-of-concept implementation is kept generic
through modular programming. All the protocol-specific code - the event
generation rules, the event correlation rules and the event stream analysis rules
- are cleanly separated from the core program and can easily be replaced to
support a different protocol set.

85

An interesting option for the implementation would be to use the IPPM
framework to compute the QoS base dimensions, as this framework provides a
comprehensive overview of metrics for IP networks. The IPPM metrics can be
easily integrated into the implementation as only the relevant correlation and
analysis rules have to be changed to accommodate another metric. Further-
more, since the three conceptual blocks of the measurement architecture can
be implemented in a distributed fashion, it would be possible to use the MASA
platform ([38]) as a foundation for the implementation.

Even though the proof-of-concept implementation consists of a very generic
core code, any functional extension to support new protocols needs program-
ming effort. Using a symbolic language to describe the protocol parameters to
be captured, the correlation rules and the analysis rules would enable the end
user to customize the QoS measuring tool very easily.

The set of four QoS base dimensions chosen is largely based on the OSI QoS
standard, and has shown itself to be quite proficient through the theoretical
as well as the more practical aspects of this thesis. It has yet to be seen
whether the QoS model presented can be mapped onto a generic user-level QoS
definition; but since the existing QoS frameworks lack a suitable definition of
user-level QoS, this could not be assessed.

The concept of context is discussed using a practical bottom-up approach
to identify a number of aspects relevant to the measurement architecture.
Here, a more theoretical approach is needed. The concept of ”context” has to
be discussed in its relevance to measuring and monitoring. By identifying all
parameters that contribute to measurement and error context and classifying
them adequately, a suitable representation of measurement context can be
gained. Furthermore, the interdependency of context parameters and the im-
pact of that interdependency on context backpropagation have to be considered.

Finally, the discussion of event stream correlation has also raised a number
of questions. Event stream correlation across the service interface is prob-
lematic, due to timing and synchronization considerations as well as technical
details of the instrumentation of a protocol stack. It has yet to be determined
how feasible an implementation of the proposed QoS measurement architecture
is in this case. Finally, the types of correlation discussed were chosen with
regard to their applicability and relevance. Other types of correlation might
offer interesting insights and simplify the analysis.

86 CHAPTER 7. SUMMARY AND CONCLUSION

Bibliography

[1] http://www.netsaint.org/.

[2] http://www.tinac.com.

[3] http://www.tcpdump.org/tcpdump man.html.

[4] http://www.tcpdump.org/pcap3 man.html.

[5] FreeBSD Kernel source tree, http://minnie.tuhs.org/FreeBSD-
srctree/FreeBSD.html.

[6] http://www.openh323.org/.

[7] G. Almes, S. Kalidindi, and M. Zekauskas. RFC 2679: A one-way delay
metric for IPPM, 1999.

[8] G. Almes, S. Kalidindi, and M. Zekauskas. RFC 2681: A round-trip delay
metric for IPPM, 1999.

[9] P. Almquist. RFC 1349: Type of service in the internet protocol suite,
1992.

[10] Uyless Black. ATM - foundation for broadband networks. Prentice-Hall,
1995.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. RFC
2475: An architecture for differentiated service., 1998.

[12] R. Braden. RFC 2205: Resource reservation protocol, 1997.

[13] R. Braden, D. Clark, and S. Shenker. RFC 1633: Integrated services in the
internet architecture: an overview, 1994.

[14] A. Campbell. A quality of service architecture. Ph.D. Thesis, Computing
Department Lancaster University, 1996.

[15] Andrew T. Campbell, Cristina Aurrecoechea, and Linda Hauw. A review of
qos architectures — invited paper. In Proceedings of the 4th International
Workshop on Quality of Service (IWQoS), 1996.

[16] Robert Carter and Mark Crovella. Measuring bottleneck link speed in
packet-switched networks. Technical Report 1996-006, 15, 1996.

87

88 BIBLIOGRAPHY

[17] D. Chalmers et al. A survey of quality of service in mobile computing
environments. IEEE Online communication Surveys, Vol.2, No.2, Second
Quarter 1999, http://www.comsoc.org/pubs/surveys, 1999.

[18] Kimberly C. Claffy, George C. Polyzos, and Hans-Wener Braun. Measure-
ment considerations for assessing unidirectional latencies. Technical report,
1993.

[19] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun. Appli-
cation of sampling methodologies to network traffic characterization. In
SIGCOMM, pages 194–203, 1993.

[20] Dave Clark. The quality management interface. Slides from IETF Meeting
31, Integrated service working group, 1994.

[21] A. Mauthe D. Hutchison and N. Yeadon. Quality of server architecture:
monitoring and control of multimedia communications. IEEE Electronics
and Communication Engineering Journal, 1997.

[22] Margaret A. Dietz, Carla Schlatter Ellis, and C. Frank Starmer. Clock
instability and its effect on time intervals in performance studies. Technical
Report Technical report DUKE–TR–1995–13, 1995.

[23] S. Donnelly. Passive calibration of an active measurement system, 2001.

[24] Andreas Fasbender. Messung und Modellierung der Dienstgte paketvermit-
telnder Netze. PhD thesis, RWTH Aachen, 1998.

[25] D. Ferrari. Client requirements for real-time communication services; RFC-
1193. Internet Request for Comments, (1193), 1990.

[26] ATM Forum. ATM user-network interface specification, version 3.0, 1993.

[27] L. Fuente, M. Kawanishi, M. Wakano, T. Walles, and C. Aurrecoechea.
Application of the TINA-C management architecture. In IFIP/IEEE Inter-
national Symposium on Integrated Network Management, IV (ISINM’95),
pages 424–435., 1995.

[28] K. Fukuda, N. Wakamiya, M. Murata, and H. Miyahara. Qos mapping
between user’s preference and bandwidth control for video transport. Proc.
5 th International Workshop on Quality of Service (IWQOS’97), Columbia
University, New York, USA, Pages 291-302., 1997.

[29] M. Garschhammer and C. Neu. Using unified properties of data-flows as a
generic basis to describe QoS parameters. Proceedings of the 9th workshop
of the HP OpenView University Association, 2002.

[30] D. Grossman. RFC 3260: New terminology and clarifications for diffserv,
2002.

[31] IPPM Working Group. IPPM working group charter,
http://www.ietf.org/html.charters/ippm-charter.html, 2002.

BIBLIOGRAPHY 89

[32] R. Hauck. Architecture for an Automated Management Instrumentation
of Component Based Applications. In Proceedings of the 12th Annual
IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM 2001), pages 231–242, Nancy, France, October 2001.
IFIP/IEEE, INRIA Press.

[33] Hegering, Abeck, and Neumair. Integriertes Management vernetzter Sys-
teme. Konzepte, Architekturen und deren betrieblicher Einsatz. Dpunkt-
Verlag, Heidelberg, 1999.

[34] ITU-T. General aspects of quality of service and network performance in
digital networks. ITU-T Recommendation X.350, 1993.

[35] ITU-T. Information Technology - Quality of Service: Framework. ITU-T
Recommendation X.641, 1997.

[36] ITU-T. Packet based multimedia communications systems. ITU-T Recom-
mendation X.323, 1998.

[37] M. Kara and M. Rahin. Comparison of service disciplines in ATM networks
using a unified QoS metric. Proceedings of the 16th International Teletraffic
Congress (ITC-16), volume 3B of Teletraffic Science and Engineering Series,
pages 1137–1146, Edinburgh, UK. Elsevier Publishers., June 1999.

[38] B. Kempter. Entwurf eines Java/CORBA-basierten Mobilen Agenten. Mas-
ter’s thesis, August 1998.

[39] Jun Liu and Mark Crovella. Using loss pairs to discover network properties.
In ACM SIGCOMM Internet Measurement Workshop 2001, San Francisco,
CA, November 2001. ACM SIGCOMM.

[40] B. Lohner. Entwurf und Implementierung eines Leitungssimulators auf
OSI-Schicht 2. Fopra, LMU, 2002.

[41] J. Mahdavi. RFC 2678: IPPM metrics for measuring connectivity, 1999.
Obsoletes: 2498.

[42] Steven McCanne and Van Jacobson. The BSD packet filter: A new archi-
tecture for user-level packet capture. In USENIX Winter, pages 259–270,
1993.

[43] Webster Merriam. Merriam-webster online, 2002.

[44] David L. Mills. On the accuracy and stability of clocks synchronized by the
network time protocol in the internet system. Computer Communication
Review, 20(1):65–75, 1990.

[45] K. Nichols, S. Blake, F. Baker, and D. Black. RFC 2474: Definition of the
differentiated services field (DS Field) in the IPv4 and IPv6 headers., 1998.

[46] V. Paxson. Towards a framework for defining internet performance metrics.
Proc. INET ’96, Montreal, 1996.

[47] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. RFC 2330: Framework
for IP performance metrics, 1998.

90 BIBLIOGRAPHY

[48] G. Quadros, E. Monteiro, and F. Boavida. A QoS metric for packet net-
works. Proceedings of SPIE International Symposium on Voice, Video,
and Data Communications, Conference 3529A, Hynes Convention Center,
Boston, Massachusetts, USA, 1-5 November 1998.

[49] A. Tanenbaum. Computer networks. Prentice Hall, 1996.

[50] TINA-C. Service architecture version: 2.0, 1995.

