
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Streaming Multicast
Authentication with TESLA and

ESP on Linux

Jonas Dellinger

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

Streaming Multicast
Authentication with TESLA and

ESP on Linux

Jonas Dellinger

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Dr. Nils gentschen Felde
Tobias Guggemos

Abgabetermin: 12. November 2018

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 12. November 2018

. .
(Unterschrift des Kandidaten)

Abstract

The Internet of Things (IoT) connects devices of different sizes, including very small-scale
and constrained devices. While certain resource-intensive tasks can be outsourced to more
powerful devices, establishing and maintaining an authenticated communication will always
be a requirement for nodes of the IoT ecosystem. Achieving multicast origin authentication
is a particular and perpetual challenge in the present time. A proposed solution is the
usage of the Timed Efficient Stream Loss-Tolerant Authentication (TESLA) protocol. It is
based exclusively on symmetric cryptography and provides multicast origin authentication
to receivers in a delayed manner. Within the scope of this thesis, TESLA was implemented
and integrated with the IPsec transport protocol Encapsulating Security Payload (ESP) on
a Linux based platform. In addition, possible bootstrap processes were designed with the
help of existing IPsec protocols, including IKEv2 and G-IKEv2. It was tested and evaluated
based on different scenarios with the help of the FIT IoT-LAB. As a result, two prototype
TESLA and ESP libraries have emerged and can be used in future projects.

vii

AEAD Authenticated Encryption with Associated Data

AH Authentication Header

DoS Denial of Service

EMSS Efficient Multi-chained Stream Signature

ESP Encapsulating Security Payload

HMAC Keyed-Hash Message Authentication Codes

IANA Internet Assigned Numbers Authority

IBS Identity-Based Signatures

ICV Integrity Check Value

IETF Internet Engineering Task Force

IKE Internet Key Exchange Protocol

IKEv2 Internet Key Exchange Protocol V2

G-IKEv2 Group Internet Key Exchange Protocol V2

IKE Internet Key Exchange

IoT Internet of Things

IPsec Security Architecture for the Internet Protocol

IV Initialization Vector

MAC Message Authentication Code

µTESLA µTESLA

PKCS#5 Password-based Encryption Standard

SA Security Association

SAD Security Association Database

SNEP Secure Network Encryption Protocol

SPD Security Policy Database

SPI Security Parameters Index

TESLA Timed Efficient Stream Loss-Tolerant Authentication

TS Traffic Selector

TTP Trusted Third Party

SHA Secure Hash Algorithm

viii

NIST National Institute of Standards and Technology

PRF pseudo-random function

FOSS Free Open-Source Software

API Application Programming Interface

PSK pre-shared key

RTT Round Trip Time

ECDSA Elliptic Curve Digital Signature Algorithm

GCKS Group Controller / Key Server

GSA Group Security Association

KD Key Download

TEK Data Security Key

DH Diffie–Hellman key exchange

ix

Contents

1 Introduction 1
1.1 Timed Efficient Streaming Loss-Tolerant Authentication 2
1.2 Outline . 2

2 Background 5
2.1 Hash Functions . 5
2.2 Hash Chains . 6
2.3 Authentication . 6
2.4 Multicast Authentication . 8
2.5 Internet Protocol Security . 9

2.5.1 Transport Modes . 9
2.5.2 Encapsulating Security Payload . 9
2.5.3 Encapsulating Security Payload Algorithms 11
2.5.4 Authentication Header . 12
2.5.5 Security Association and operating IPsec 12
2.5.6 Internet Key Exchange Protocol V2 13
2.5.7 Group Internet Key Exchange Protocol V2 14

3 TESLA 15
3.1 Sender Configuration . 15
3.2 Bootstrapping Receivers . 17
3.3 Broadcasting Authenticated Packets . 18
3.4 Verifying Packets . 18
3.5 Packet Loss Support . 20
3.6 Scalability . 20
3.7 Denial of Service Attack Vector . 21

4 Related Work 23
4.1 Efficient Multi-chained Stream Signature . 23
4.2 µTESLA (µTESLA) . 23
4.3 inf -TESLA . 24
4.4 TESLA++ . 25
4.5 RIOT TESLA . 26
4.6 Axiom . 26
4.7 Identity-Based Signatures . 26
4.8 Summary . 27

5 Design 29
5.1 Architecture . 29
5.2 Bootstrapping Phase . 30

5.2.1 IKEv2 and ESP . 32

xi

Contents

5.2.2 Group IKEv2 . 32
5.3 Streaming Phase . 34

6 Implementation 37
6.1 Platform and Dependencies . 37

6.1.1 Linux . 37
6.1.2 OpenSSL . 38

6.2 TESLA Library . 39
6.2.1 Configuration and Initialization . 39
6.2.2 Sign and Verify Operations . 41
6.2.3 Buffering packets . 43

6.3 ESP Library . 44
6.3.1 Configuration and Initialization . 45
6.3.2 Create and Process Packets . 45
6.3.3 Registering Algorithms . 46
6.3.4 Test Results . 47

6.4 Test Application . 47
6.4.1 TESLA ESP Extension . 49
6.4.2 Sending IPv6 packets . 49

6.5 Evaluation . 51
6.5.1 IoT-Lab Test . 51
6.5.2 RIOT Implementation Test . 54
6.5.3 Hash Chain Performance . 55
6.5.4 Alternative Implementation Strategies 55

7 Conclusion and Future Work 57

List of Figures 59

Bibliography 61

xii

1 Introduction

Embedded Systems have an even bigger impact in our lives than ever before. While mo-
bile phones are getting more powerful every year, the Internet of Things (IoT) has different
demands for its systems. They should be energy-efficient, small-scale and able to commu-
nicate with other similar devices. Examples for such devices are smart home systems, which
include wireless light bulbs and heating, or smart assemble factories consisting of multiple
independently operating devices. To fulfill the above mentioned demands, devices are util-
ized, constrained in terms of memory size and compute power. Although it is possible to
offload heavy calculations to more powerful systems, the constrained device still has to per-
form tasks, like establishing a secure communication channel to other devices, using their
own resources.
Regarding the example of establishing a secure connection, one of the key components is
authentication. It makes sure a receiver can confirm that the data was sent by the correct,
trusted sender. There are several protocols ready to be used, but most of them are based
on complex asymmetric cryptographic functions and require unicast usage. In a multicast
environment, source authentication is even more important than in a unicast one, simply
because a single malicious packet can reach millions of devices instead of just one.

In traditional unicast authentication protocols, like IPSec and TLS, hybrid cryptosystems
are used to speed up the exchange of data [DR08] [KS05]. They utilize symmetric crypto-
graphy for fast authentication/encryption of the actual data and asymmetric cryptography
for the initial handshake and secret key exchange. When trying to apply a simplified version
of this kind of authentication to a multicast scenario, we clearly run into a problem: A single
packet from the server could reach multiple receivers, so every receiver needs to know the
secret key used to authenticate the data. As soon as that is the case, a receiver can easily
impersonate the sender and forge messages.

Another common way to achieve authentication is by using just digital signatures, which
for example are provided by the public-key cryptosystem RSA [RSA78]. The sender uses
its private key to generate the signature of the message. Every receiver then can verify the
message by verifying the signature against the senders public key. This would also work in
a broadcast scenario, but digital signatures have two notable drawbacks for the IoT World.
First of, they need a lot of computational overhead for signing and verifying. Furthermore,
the resulting signature adds a lot of overhead to the network. For example, a signature
generated with RSA2048 would be 256 bytes long, even if the message itself is just 2 bytes.
More modern algorithms, like Elliptic Curve Digital Signature Algorithm (ECDSA), are able
to produce shorter and equally secure signatures, but often implicate worse sign and verify
speeds [Cry]. Compared to a faster and similar secure symmetric Message Authentication
Code (MAC), which can be as short as 32 bytes, this is not feasible on a lot of smaller scale
embedded systems.

1

1 Introduction

1.1 Timed Efficient Streaming Loss-Tolerant Authentication

In June 2005, Adrian Perrig, Ran Canetti, Dawn Song, J. D. Tygar and Bob Briscoe pro-
posed a new authentication protocol called TESLA. Like the name suggests, it provides
delayed source-authentication and integrity-checking of each packet received by a multic-
ast/broadcast stream. To operate, it requires every receiver to be loosely time-synchronized
and bootstrapped by the sender once. However, the sender does not have to keep a per-client
state which makes it scaleable in large networks. Additionally, all operations in TESLA, in-
cluding signing and verifying, solely use symmetric cryptography, which makes it suitable
for small scale hardware. The basic authentication scheme follows the principle of delayed
disclosure: The sender calculates a MAC over a payload, attaches it and sends it. The secret
key used is not yet known to the receiver. Thus, it has to buffer all incoming packets first.
In a later packet, the secret key is disclosed and receivers are able to authenticate buffered
packets. This procedure is strictly tied to the underlying time synchronization, action as the
asymmetric factor. Nonetheless, TESLA is no silver bullet. It requires an external authen-
ticated bootstrap before its usage and at least for the sender, its memory size requirement
is rather high and maybe can not be fulfilled by very small IoT devices.

In the IoT and sensor network world, TESLA could be an interesting and considerable
choice as soon as a multicast streaming authentication protocol is needed. In the case of
a more powerful base station and multiple smaller scale receivers, TESLA’s full potential
can be utilized without drawbacks. Setups like this can be found frequently in the above
mentioned scenarios. For example, it can be found in the smart lighting system Phillips
Hue, where a Raspberry Pi sized bridge controller is used to communicate with smaller light
bulbs [Hol18]. While no further system specifications are publicly available, the rather small
scale of such light bulbs could indicate the impracticality of asymmetric cryptography. For
example, by creating a group of light bulbs for every room, the system could utilize TESLA
to efficiently and securely send instructions to each member of the group via an IP multicast
network. To further require a continuous stream of data in such a setup, one can add the
functionality of multiple quick light changes in a short time to the feature list. This allows
the lightning system to be used for music- or TV-based light visualizations.
Currently, however, there is no public TESLA library or application implementation avail-
able.

1.2 Outline

As part of this thesis, the integration of the TESLA protocol into the transport protocol
ESP is designed, implemented and evaluated. The integration and implementation is based
on the Linux operating system. Raspberry Pis Version 2 and ARM based A8 nodes running
on the FIT IoT-LAB[IL18b] act as the underlying testing platform. While these devices are
more powerful than standard small scale embedded IoT devices, they can be seen as high
performance control nodes.

The thesis starts with a small introduction of hash functions, asymmetric and symmetric
authentication and the Security Architecture for the Internet Protocol (IPsec) suite. This
will setup fundamental knowledge for the underlying techniques used by TESLA and ESP.
Following up, the TESLA protocol will be explained in detail, including it’s authentication
operations, general properties and requirements. Additionally, a list of related multicast au-

2

1.2 Outline

thentication protocols is presented to the reader. Based on this knowledge, the next chapter
serves as an introduction into the design of the upcoming implementation, covering all roles,
components and the overall communication between them, followed by a presentation of the
actual implementation, including the explanation of important code parts, testing against
other implementations and relevant analysis. The thesis closes with proposals for additional
and future work on the implementation and topics related to multicast authentication.

3

2 Background

To establish a solid background knowledge required for the thesis, this chapter will first
introduce into basic cryptographic hash operations. With this knowhow, an overview of a
hash based data structure, called hash chains, is provided. It continues with an explanation
of how basic symmetric and asymmetric authentication can work in unicast and multicast
networks. The chapter ends with a detailed look at the protocol suite IPsec, which includes
but is not limited to the IP transport protocol ESP.

2.1 Hash Functions

A hash function is used to compute a fixed size hash/digest from a message of arbitrary
length. It can be as simple as a modulo operation. Considering x mod 10, one can input any
positive number and will receive a number in the range from 0 to 9. Complex hash functions
on the contrary use a combination of multiple operations, like AND, XOR, ROT, ADD and
NOT. Hashes are used in various domains of computer science. They enable fast database
lookups and collision detection. Furthermore, hash functions are also important elements of
multiple cryptographic algorithms, for example when generating MACs or digital signatures.
However, not every hash function can be used in cryptography. Cryptographic hash functions
have to satisfy additional properties where the most common are the following [TK05]:

• Collision Resistance: Finding two messages which yield the same digest should be
infeasible

• Preimage Resistance: Knowing a digest, it should be infeasible to compute a mes-
sage yielding the same digest.

• Second-Preimage Resistance: Knowing a message and its hash, it should be in-
feasible to compute a different message yielding the same hash.

• Fast: cryptographic hash functions are often used in symmetric authentication, they
should be able to calculate a digest rather fast.

Referring to our x mod 10 hash function example, it becomes clear that it is not suitable
as a cryptographic hash function.

Secure Hash Algorithm (SHA) is an example for a family of cryptographic hash functions,
published by the National Institute of Standards and Technology (NIST). It contains com-
monly known secure hash algorithms, like SHA2 and its latest member SHA3. By now,
some of the older functions, like MD5 and SHA1, are considered insecure, since collisions
have been found [SBK+17][Ste06].

5

2 Background

2.2 Hash Chains

A cryptographic hash function can also be used to construct a chain of hashes. To set up
a hash chain K of length n, a seed s and a hash function F needs to be chosen. s will be
the first input to F and its resulting digest will be recursively put into the hash function n
times.

K0 = s

K1 = F (s)

K2 = F (K1)

...

Kn = F (Kn−1)

(2.1)

Due to the one-way (injective) property of F , it is infeasible to guess or calculate Ki−1
knowing Ki. However, it is easy to check whether Ki−1 is a member of the chain knowing
Ki by applying F on it and comparing the result. This property makes it also suitable for
one-time password systems, which can be used to authenticate users. An example for such
a system is shown by [Lam81]:

1. The seed s is randomly chosen by the user and a hash chain K of length n is generated
based on it. n determines how many authentications are possible. A counter i = n is
required as well.

2. The last element of the chain, Kn is sent securely to the server and is persistently
stored.

3. Once the user wants to authenticate himself, he sends Ki−1 to the server, which can
check whether its a valid hash chain element by applying F and comparing the result
with the stored value. After successful authentication, the server stores the new value
Ki−1 instead of Ki

4. The client decrements its counter i = i − 1 and continues with step 3, once he wants
to authenticate again.

2.3 Authentication

One of the key requirements in every secure network is to make sure that the message re-
ceived originally has been sent by a specific trusted sender. This act of confirming the
truth is called origin authentication. There are many levels of authentication, for example
single-factor and two-factor authentication. These levels specify the amount of knowledge
needed to completely confirm the process of authentication. For example, a single-factor
level requires a single shared secret key or password, whereas a two-factor level requires
an additional property, e.g. a One-Time password [MMPR11]. When trying to secure a
communication across a network, commonly a single-factor level with either symmetric or
asymmetric cryptography is used. Both types of algorithms ensure integrity and authentic-
ation.
When using symmetric based authentication, sender and receiver need to have access and
agree to the same shared key k. With this key k, the sender is able to generate a Message
Authentication Code (MAC) mac over the message msg using a previously chosen algorithm:

6

2.3 Authentication

symmetric authentication
k

MAC

msg
msg

calc

calc

compare

asymmetric authentication

pub_key

signature

msg

priv_key

msg

hash

hash

verifysign

Figure 2.1: Visualization of asymmetric and symmetric authentication

e.g. Keyed-Hashing for Message Authentication (HMAC)[KBC97] in combination with the
hashing function Secure Hash Algorithm 256 (SHA-256). Concatenating msg and mac will
result in a packet which can be sent to the client. Upon receiving the packet, the client
deconstructs msg and mac and checks whether his calculation using k and msg yields the
same mac as the one received. This method in comparison to asymmetric authentication
allows fast verifying and signing but requires a pre-shared key.
On the contrary, asymmetric authentication requires each sender of the communication to
have a public and private key (respectively pubkey and privkey). These can be generated
by algorithms like RSA[JK03]. Since asymmetrically signing large data is expensive, the
sender first generates a hash over the original message msg. This hash then gets signed with
the senders private key privkey, resulting in a signature. Both, msg and signature will be
concatenated and sent to the receiver, who is then able to verify the message by first hashing
the msg and then using this hash and the senders public key pubkey to completely validate
the message. Whereas asymmetric signing and verifying processes are more expensive than
symmetric ones, they provide an additional safety-property called non-repudiation as long
as the secret keys are not exposed. This is not the case for symmetric authentication since
the other participant is also able to generate authentic messages using the shared secret key
k.
Figure 2.1 shows a side-by-side visualization of both methods. To eliminate each protocols’
disadvantages and combine their advantages, authentication and encryption protocols like
TLS use a hybrid approach[DR08]. The initial session setup and symmetric key exchange
will be done with asymmetric cryptography and further session communication will be ex-
changed with a symmetric algorithm. This also allows to incorporate a certificate authority,

7

2 Background

which will act as a Trusted Third Party (TTP) and permits participants to validate the
ownership of public keys.

2.4 Multicast Authentication

symmetric authentication

k_1

MAC_1

msg
msg

calc

asymmetric authentication

pub_key

signature

msg

priv_key

msg

hash

hash

verifysign

k_2

k_3

MAC_1

MAC_2

MAC_3
calc

calc
k_3

calc & compare

calc & compare

calc & compare

k_2

k_1

Figure 2.2: Visualization of asymmetric and symmetric multicast authentication

The last chapter introduced into basic unicast authentication using asymmetric and sym-
metric cryptography. Using the same cryptographic operations, the basic scheme can also
be applied to multicast communication, which allows multiple receivers to take part:

Symmetric based authentication works in a similar manner. However, a single secret key
shared between receivers and sender is not sufficient any more. Any receiver could make use
of the shared key to send authentic messages to other receivers. Instead, the sender must
share a unique shared key with every receiver and furthermore, a message by the sender
now has to contain a MAC for every receiver. This required change introduces a linear
dependency between overall size per message, shared keys and the number of receivers.
Thus, this approach does not scale very well for a large amount of receivers.

Asymmetric authentication, on the contrary, does neither require any message size changes,
nor more public or private keys. Receivers simply need to have access to the sender’s pub-
lic key. Since there is no dependency between number of receivers and number of keys or
message size, this approach scales very well for a large amount of receivers.

Similar to figure 2.1, figure 2.2 shows the same process, but in case of an authenticated
multicast broadcast with 3 receivers.

8

2.5 Internet Protocol Security

2.5 Internet Protocol Security

When considering a secure network message exchange, authentication is just one part of
it. A primarily key exchange, encryption and replay protection are often required as well.
IPsec is an open standard developed by the Internet Engineering Task Force (IETF)[KS05].
It defines two primary traffic security protocols, Authentication Header (AH) and ESP, for
secure layer-3 IP based network communication. Both protocols utilize the security services
and secret keys provided by a Security Association (SA), which in turn is stored in a Security
Association Database (SAD).

2.5.1 Transport Modes

Internet

Internet

Transport Mode

Tunnel Mode

Figure 2.3: Transport Mode and Tunnel Mode

AH and ESP can be operated in two different modes: Tunnel Mode and Transport Mode.
Which mode is used for a connection depends on the entry in the corresponding SA.

When operating in Tunnel Mode, no changes to the original IP packet are made. Instead,
the original packet is embedded in a newly created protocol header, AH or ESP, which then
in turn gets embedded in an IP packet. This packet has the next header value of 50 for ESP
and 51 for AH. Because the original packet can be restored at the destination, this mode is
suitable for Gateway-to-Gateway communication (Figure 2.3).

In Transport Mode, the original IP Header is reused with a single modification to the Next
Header field. It is changed according to the used protocol. The original IP payload is then
exchanged by the chosen protocol header which includes the original IP payload respectively.
This mode is typically used in end-to-end communication (Figure 2.3)

2.5.2 Encapsulating Security Payload

IPsec provides ESP, an IPv4 and IPv6 traffic protocol, which is defined in [Ken05b]. It
provides various security services:

• Origin authentication

• Confidentiality

• Stateless integrity

9

2 Background

• Replay protection

• Traffic flow confidentiality

However, the actual used security services depend on the underlying SA. It determines how
the ESP header will be generated/processed for incoming/outgoing packets. With a single
restriction, explained in 2.5.3, one would be able to use the header without any security
service. Figure 2.4 shows a detailed view of the header with all of its fields, which will be
explained below.

Security Parameters Index - Since the header does not contain any information re-
garding used security services, this index is required to make sure the receiver knows how to
process an incoming header. The triplet, consisting of the Security Parameters Index (SPI),
the destination IP address and the traffic protocol ESP, result in a unique index and can
be used to identify the corresponding SA. In this way, the receiver is able to look up the
algorithms and secret keys which were involved when the header was generated. This allows
for further processing, like performing authentication or decryption.

Sequence Number - To achieve replay protection, ESP uses a sequence number. Once
the corresponding SA is negotiated, both sides have to initialize it. During this initialization,
the sequence number field has to be set to 0. Depending on whether the SA was configured
to support replay protection, the sender needs to make sure that he increases the sequence
number field every time he sends a packet and checks that he does not use the same number
twice. On behalf of the receiver, one needs to check whether the sequence number fits into
a sliding window and has not been received already. If replay protection is disabled, the
receiver should ignore the field. Once the sequence number reaches its maximum, a new SA
needs to be negotiated. This incidentally also makes sure that authentication and encryption
keys are replaced periodically.

Payload Data - This field contains the payload data which is secured by ESP. For
example, it could be a TCP or UDP Header. The header has no dedicated Initialization
Vector (IV) field but supports encryption algorithms which depend on one, which is the
reason why the first x bytes of the payload data are often interpreted as the current IV.
This depends on the configuration of the underlying SA. It is first field in the header, which
is covered by optional confidentiality.

Padding - The next header field has to be aligned correctly, not depending on the size
of the payload data. Therefore, a special padding field is needed. This field is not always
required and can have a length of zero, for example if the payload size is divisible by 6 bytes.
Furthermore, this field is also necessary for various encryption algorithms, which need the
payload size to be a multiple of some size (This is the case for block cipher algorithms). Most
encryption algorithm implementations already support padding, but not in a standardized
way. OpenSSL uses Password-based Encryption Standard (PKCS#5) padding, which will
assign each padded byte the value of the overall padding length [Opea]. To bypass imple-
mentation differences and to get correctly aligned fields, ESP specifies that padding needs
to be implemented utilizing the padding and padding length field. This can be achieved by
correctly applying ESP padding before feeding the payload into the encryption algorithm
implementation.

Padding Length - To differentiate between actual payload and padding data, the padding
length field is used. It holds a 2 byte value specifying how many padding bytes have been
added.

10

2.5 Internet Protocol Security

Next Header - After processing the packet, the receiver needs to know which type
of payload he received and how to further process it. The next header field stores the
number value of the next header, which is standardized by the Internet Assigned Numbers
Authority (IANA) and published in [Int]. In the case of TCP or UDP, the number would be
6 or 17.

Integrity Check Value - ESP has to support stateless integrity and origin authentica-
tion. This is achieved with a Integrity Check Value (ICV) field, which often contains a MAC
or Keyed-Hash Message Authentication Codes (HMAC), depending on the SA configura-
tion. When authentication is disabled, this field must be empty and will be ignored by the
receiver.

4 8 12 16 20 24 28 320
bit

Security Parameter Index (SPI)

Sequence Number

Payload Data (variable)

Padding (0-255 bytes)

Padding
length Next Header

Integrity Check Value - ICV (variable)
A

u
th

e
n
tica

te
d

E
n
cry

p
te

d

Figure 2.4: ESP Header

2.5.3 Encapsulating Security Payload Algorithms

ESP specifies which algorithms need to be supported by an implementation and if they can
be used in combination [WMM+17]. As mentioned above, this opens up the possibility to
use only a subset of security services, depending on the use case. A SA which specifies
the use of ESP with HMAC-SHA1-96 authentication and NULL encryption would yield in
authenticated packets without any encryption. However, the standard also forbids certain
combinations, for example using ESP with NULL encryption and NULL authentication,
which would yield no security service at all. [WMM+17] also specifies and encourages the
usage of combined mode algorithms, which support Authenticated Encryption with Associ-
ated Data (AEAD). Instead of separating encryption and authentication, a single algorithm
is used to provide both security services.

11

2 Background

2.5.4 Authentication Header

AH is specified by [Ken05a] and is a traffic protocol which provides data integrity, origin
authentication and optional replay protection by utilizing a sliding window. Since it does
not provide any confidentiality, it is inferior to ESP regarding its overall security services.
While its header structure is similar to the ESP one, in transport mode it is also providing
authentication for some immutable fields of the surrounding IP header, which ESP is not
capable of.

2.5.5 Security Association and operating IPsec

To create and process ESP or AH headers, IPsec uses SAs to describe which algorithms and
which secret keys need to be used. A SA is always mapped to one unidirectional connection,
which implies that as soon as ESP or AH is used, a bidirectional communication requires a
minimum of two SAs per host. The following notable properties are contained inside a SA:

SPI - An 32 bit sequence which loosely identifies a SA. It is considered loosely because
on single hosts, they are able to uniquely identify a SA, but not on (NAT-)Gateways: ”In
particular, simply storing the (remote tunnel header IP address, remote SPI) pair in the SPD
cache is not sufficient since the pair does not always uniquely identify a single SAD entry.
For instance, two hosts behind the same NAT could choose the same SPI value.”[KS05]

Sequence Number Counter - A counter used for generating outgoing sequence num-
bers.

AH - A list of properties regarding AH, for example if it is enabled, which authentication
algorithm is used and which secret key.

ESP - Contains values similar to the AH properties, but also includes possible encryption
and AEAD properties.

Lifetime - A field specifying how long the SA can be used. It also contains information
on what happens once it expires, like negotiating a new SA or destroying it completely.

Mode - Whether Transport or Tunnel Mode is used when sending or receiving packets.

IP Source and Destination - When Tunnel Mode is selected, both IP addresses must
be supplied, so that a new IP header can be constructed when tunneling IPsec packets. This
field is not used in Transport Mode.

However, the SA for Internet Key Exchange Protocol V2 (IKEv2) is an exception: It
stores configuration for a bidirectional communication and therefore contains, for example,
two SPIs. Since a host should be capable of storing multiple SAs, they are stored in a special
database, called Security Association Database. Generally, there are two different ways to
add a new SA to it: First, using out of band negotiated protocols and secret keys, two hosts
can establish a secure channel via IPsec by adding four SAs in total, manually. However,
this has the disadvantage of not being able to automatically refresh secret keys once the SAs
lifetime is exceeded. Secondly, Internet Key Exchange Protocol (IKE), a key management
protocol, can be used to negotiate protocols and secret keys (SA) between two hosts. It
also supports the usage of pre-shared keys for the negotiation. This allows an automatic
exchange of new keys once the lifetime of the negotiated SA expires.

To fully operate IPsec, another database, the Security Policy Database (SPD), is required.
Each of its entries is specifying a policy, containing at least one Traffic Selector (TS), a
link to a SAD entry, an on-match action, a corresponding traffic protocol and additional
optional parameters like its lifetime. Depending on the TS, a policy can match an outgoing

12

2.5 Internet Protocol Security

or incoming IP packet. The configuration can consist of source and destination addresses,
the next header protocol number or even fields of the next header. Every time a packet
is processed by the IPsec stack, the policy of the first TS which matches will be used as
further processing information. Its on-match action will be performed, which can be one of
the following:

• DISCARD: Discard the packet and abort further processing.

• PROTECT: Use the linked SA to protect the packet with certain security services

• BYPASS: Bypass IPsec security but continue processing the packet

Figure 2.5 gives a rough overview regarding the processing of incoming and outgoing packets.

Inbound traffic/packets

IPSec Protocol & Address Check

SAD

SPD

SAD Query

Process AH/ESP

SPD Confirm Query

Forward

SPD Query

Found

IPsec: Found IPsec: Not Found

Not Found

DISCARD or PROTECT

BYPASS

Outbound traffic/packets

SPD Query

SAD Query

Forward

Apply AH/ESP

BYPASS

Found

Not Found*

* - If a key management protocol is being used, a new SA will be negotiated and the packet will be reprocessed
instead of being discarded

PROTECT

PROTECT

DISCARD

Figure 2.5: IPsec Inbound and Outbound Traffic Processing Overview

2.5.6 Internet Key Exchange Protocol V2

Instead of manually securing the communication between two hosts by statically configured
SAs, a key exchange protocol like IKE can be used. Its latest version is specified by [KHN+14]
and is referred to as IKEv2. Its key tasks are the secure negotiation, establishing and rekeying
of ESP or AH SAs (child SAs) between a client and a server. This is achieved with 3 major
exchange types, which always consist of a request and a response message:

• IKE SA INIT: The client sends this message, showing interest in a new IKEv2
exchange. Together with the response of the server, both parties negotiated cryp-
tographic algorithms, exchanged nonces and made a Diffie–Hellman key exchange
(DH) [KHN+14].

13

2 Background

• IKE AUTH: By sending the IKE AUTH message, the client authenticates itself and
the previously sent IKE SA INIT message. Among others, this can be achieved via
digital certificates or pre-shared keys (PSKs). Similar, the host is able to authenticate
itself in the response. As a result, a special IKE SA and a first optional child SA are
established.

• CREATE CHILD SA: While a first child SA may already be created in the IKE AUTH
exchange, the exchange type CREATE CHILD SA can be used to create additional
child SAs. Furthermore, this exchange is used to rekey the original IKE SA, or pos-
sible child SAs. Any required keying material for further child SAs is derived from the
random nonces and DH in the first IKE SA INIT exchange.
This message exchange is also automatically protected by the properties of the nego-
tiated IKE SA.

2.5.7 Group Internet Key Exchange Protocol V2

Group Internet Key Exchange Protocol V2 (G-IKEv2) solves the same problem as IKEv2
does, however, not for a single secure connection between two hosts, but for a secure connec-
tion between a group of hosts [WS18]. Thus, the roles now consist of multiple group members
and a Group Controller / Key Server (GCKS), which is responsible for their authentication,
authorization and bootstrap of utilized security policies (ESP, AH) and its secret keys. The
G-IKEv2 scheme follows the same request and response message model as IKEv2 and even
uses the same initital message exchange IKE SA INIT. After that, IKE AUTH is replaced
with GSA AUTH, still allowing the client to authenticate itself via PSKs or a digital certific-
ate. Despite that, the response from the GCKS is quite different. It contains two important
payloads:

• Group Security Association: This payload specifies the SAs used in the group
communication (Data Security Key (TEK)). This includes the transport protocol,
security algorithms and other SA related properties. However, it does not contain any
secret keys. These values are also not based on the inital exchange between a group
member and the GCKS, but rather on the underlying group specification. Additionally,
the payload may include another SA for future group rekeying processes.

• Key Download: The Key Download (KD) payload contains every secret key needed
for the SAs defined in the Group Security Association (GSA) payload. These keys are
also based on the group specification and not on the initial exchange.

Generally, due to the well-defined and flexible header formats, the protocol allows a lot of
customization. In fact, adding support for new authentication or encryption algorithm often
only requires a protocol number assignment. The original specification [WS18] is still a draft
and is not yet approved by the IETF, hence, there are no approved implementations yet.

14

3 TESLA

This chapter provides an overview over the TESLA protocol. Instead of relying on asymmet-
ric cryptography, it provides a unique way of achieving origin authentication using primarily
symmetric cryptography. However, its authentication is delayed and requires its receivers to
buffer packets.

TESLA allows all receivers to check the integrity and authenticate the source of
each packet in multicast or broadcast data streams. TESLA requires no trust
between receivers, uses low-cost operations per packet at both sender and re-
ceiver, can tolerate any level of loss without retransmissions, and requires no
per-receiver state at the sender. TESLA can protect receivers against denial of
service attacks in certain circumstances. Each receiver must be loosely time-
synchronized with the source in order to verify messages, but otherwise receivers
do not have to send any messages. TESLA alone cannot support non-repudiation
of the data source to third parties. ([PSC+05])

First, a detailed overview of how TESLA can be configured is given. Once the sender is
configured, each client needs to be bootstrapped as well. After this procedure, TESLA is
ready to be used to send and verify authenticated messages. To summarize this chapter, a
small protocol analysis and possible deployment scenarios are given.

3.1 Sender Configuration

Each network of (IoT) devices has different properties regarding its network speed, device
resources or connectivity. Thus, TESLA provides a way to configure the core protocol to
different scenarios. Before the sender can start sending authenticated messages, it has to
determine and prepare the following variables:

Hash Chain K with length n: The sender needs to generate a hash chain H based
on a random seed with length n and a pseudo-random function (PRF) F . Since the seed is
already chosen randomly, a secure cryptographic hash function can also act as a PRF. The
length of n will be one of the two factors specifying the last point of transmission before
rekeying is needed and discussed in the next paragraph. For simplicity in the current and
upcoming paragraphs, we will set the actual hash chain K to the reverse of H, which implies
K0 = Hn, Kn = H0 and generally Ki = Hn−i. 3.1 shows an example of a resulting hash
chain K. In contrary to the one-time password system explained in 2.2, TESLA uses its
hash chain in the exact opposite: As soon as the first element K0 is known, it’s possible to
check whether a value is an element of the hash chain at index i. As a concrete example, if
one wants to know a received key is hash chain element 5, he can recursively apply F exactly
5 times on it and compare the result to K0. It can be generalized in the following formula:

K0 == F i(x) (3.1)

15

3 TESLA

where F i(x) means i recursive calls to F using x as the first value. The ability to check and
recalculate chain elements is also the foundation of TESLAs packet loss support which will
be explained in detail in 3.5. Due to the fact, that each hash chain element will be used as
a secret key when signing messages, it can also be called a key chain.

random seed
34962933087441940

96294EABC7718BDCAD8E73E91B19CAD5
3CFAC3C73F1E968356B3C1085663E5BE

Figure 3.1: A reversed Hash Chain example K

Interval Duration Tint: The second factor regarding total transmission time is the
interval duration time Tint. This value divides time into equally long time spans and specifies
how long a hash chain element Ki is used. For simplicity, we will use milliseconds as its unit.
The last point of transmission can be calculated by using n ·Tint. This is also a critical value
regarding the delayed authentication: ”A Tint that is too short will cause the keys to run out
too soon. A Tint that is too long will cause excessive delay in authentication for some of the
packets (those that were sent at the beginning of a time period).”[PSC+05] Furthermore, the
original RFC [PSC+05] also provides a suggestion on how to calculate a reasonable value for
Tint: Tint = max(n,m) where n is the estimated delay between packets in milliseconds and
m is the estimated upper bound regarding network delay in milliseconds (”[...] This (delay)
includes any delay expected in the stack [...]”[PSC+05]).

Key Disclosure Delay d: The key disclosure delay d states, how many time intervals
have to pass until a key chain element gets disclosed. In particular, a key chain element
which was used in interval i will be disclosed in interval i+ d. The combination of Tint and
d specify the maximum delay a receiver has to go through when authenticating packets. For
example, a Tint of 1 second in combination with a disclosure delay of 4 could result in an
authentication delay of up to 5 seconds. The initial packet could arrive early in the interval
i, and the disclosed key could arrive very late in interval i + 4. Since this value is critical
regarding TESLAs performance as well, a formula for finding a reasonable value is given
by the RFC: d = ceil(2m/Tint) + 1 where 2m is an upper bound for the round trip time of
packets [PSC+05]. This results in a d larger than 1, which eliminates the following cases:

• d == 0: If d is zero, no security is provided due to instantly disclosed keys and the

16

3.2 Bootstrapping Receivers

possibility to forge authentic messages in the same time interval.

• d == 1: While a d of 1 theoretically still provides security, all packets sent close to the
boundary of the next interval will be dropped by receivers. In detail, upon receiving
a packet, the receiver has to make sure the sender is not yet in an interval where
the corresponding key has been disclosed. So a packet, which was sent close to the
boundary, could arrive in the next interval, which is also the disclosure phase for that
packet. The receiver would have to drop it.

With the above mentioned variables and structures set, a sender is now able to bootstrap
potential receivers.

3.2 Bootstrapping Receivers

Before a receiver is able to verify authenticated packets, it needs to be bootstrapped by the
server. This bootstrap includes establishing loosely time synchronization and the exchange
of some TESLA variables which where defined in the previous chapter. The draft itself
doesn’t specify on how one achieves this bootstrap, but requires that the receivers know the
following properties:[PSC+05]

Receivers need to set Dt, an upper bound regarding the clock difference between the local
and the sender clock. In particular, this requires the formula tsender < tlocal + Dt, where
tsender is the current time at the sender and tlocal is the current time at the receiver, to
always hold true. Note, that Dt can be different for each receiver and needs to be calculated
for each independently. The protocol does not specify how this time synchronization should
be established, but it provides an exemplary method to achieve it: ‘

• The receiver sends a (sync tr) message to the sender and records its local time, tr, at
the moment of sending.

• Upon receipt of the (sync tr) message, the sender records its local time, ts, and sends
(synch, tr,ts) to the receiver.

• Upon receiving (synch,tr,ts), the receiver sets Dt = ts− tr +S, where S is an estimated
bound on the clock drift throughout the duration of the session.

’ ([PSC+05]). This exchange needs to happen on an authenticated communication channel,
which can be achieved by using a session setup protocol.

Additionally, the following variables have to be transmitted, also in an authenticated
manner:

• K0: The first value of the used hash chain K. This value is also called commitment
to the key chain K, since it allows the receiver to check whether a value is an element
of the key chain K, which has been explained in 3.1. It’s also possible to send Ki,
where i is any index, instead of K0. However, due to the properties of hash chains, the
receiver then is only able to verify keys with an index equally or larger than i.

• Tint: The interval duration, which has been set by the sender in 3.1

• T0: The time at which interval 0 will start, i.e when the transmission will start.

17

3 TESLA

• n: The length of the utilized hash chain K.

• d: The specified key disclosure delay d.

• PRFs: Additionally, the receivers need to know which algorithm is used to derive the
hash chain values, the key for the message MAC and the message MAC itself.

Once these values are stored at the receiver, it is able to verify incoming authenticated
packets by this sender.

3.3 Broadcasting Authenticated Packets

Once T0 is reached, a sender is able to broadcast authenticated packets. Using its local
time, it calculates the current interval. Since each interval is mapped to one element of
the key chain K, there always is exactly one key available for each interval. Using this
key in a MAC operation could introduce a repeated use of a single secret key in different
cryptographic operations: It was used in generating the next hash chain element and the
upcoming MAC operation. Instead of using the key directly, TESLA performs an additional
operation: ‘Using a pseudo-random function (PRF), f ′, we construct the one-way function
F ′: F ′(k) = f ′k(1). We use F ′ to derive the key to compute the MAC of messages in each
interval. The sender derives the MAC key as follows: K ′i = F ′(Ki).’ ([PSC+05]) An example
for a function f ′ is a HMAC function like HMAC-SHA256. With this procedure, a sender
now is able to generate a secure and unused key K ′i for each interval i.

Using K ′i, the sender is able to construct packet Pj for each message Mj , which is sent in
interval i, by concatenating the following values:

• Mj : The original message to be be authenticated.

• i: The current interval, derived from the senders time reading and TESLA parameters.

• MAC(K ′i,Mj): A MAC over Mj , using the secret key K ′i.

• Ki−d: The disclosed key. In particular, the secret key used in interval i−d. This value
is determined by the key disclosure delay d and can be null (For example, a disclosure
delay of 2 will imply that all packets sent in interval 0 and 1 will carry no disclosed
key).

This also indicates that the sender is not limited by packets per interval, it is rather limited
by time. As soon as interval n− d+ 1 is reached, a receiver won’t be able to verify incoming
packets (See 3.4), which marks the end of transmission. The process of creating authenticated
packets is visualized by 3.2, wherein 4 packets over 3 intervals, using a key disclosure delay
of 2, are exemplarily sent.

3.4 Verifying Packets

By the end of the last chapter, a sender now is able to broadcast authenticated packets.
Following the steps listed below, any bootstrapped receiver is able to verify authenticated
packets.

18

3.4 Verifying Packets

Time

Keychain

Figure 3.2: A sender broadcasting 4 packets over 3 intervals with a key disclosure delay of 2

Upon receiving an authenticated packet Pj , containing the message Mj , an interval index
i, the MAC MAC(K ′i,Mj) and a disclosed key Ki−d, the receiver first records its local time
T . Before any further processing can be done, a receiver has to perform the ‘Safe packet
test’ ([PSC+05]). This test ensures that the sender did not yet disclose the key which was
used to authenticate Pj , i.e the key Ki. Using the previously set sender clock drift Dt,
the receiver is able to set an upper bound for the time at the sender: tj = T + Dt. The
receiver also knows the interval duration Tint and the start time T0, so it can use the formula
x = floor((tj −T0)/Tint) to calculate x, the highest possible interval the sender could be in.
By verifying x < i+ d, the packet passed the safe packet test and can be processed further.
If the verification fails, other possible malicious senders could have had access to the secret
key Ki and have used it to forge an authenticated packet. The packet has to be dropped by
the receiver.

The receiver is able to tell whether the packet was safe for further processing. However, it
is not able to verify Mj since the secret key Ki used in the MAC generation will be disclosed
by a packet in interval i+d. It has to buffer (i,Mj ,MAC(K ′i,Mj)) and authenticate it later.

The last step is the processing of the disclosed key Ki−d. The receiver checks whether it
already has a key Kv where v = i− d:

A key Kv exists: This implies the receiver already knows the key of interval i− d. This
can be either by a previously received packet of the same interval i or through the key chain

19

3 TESLA

commitment received in the bootstrap phase (e.g. the key K0). The receiver compares the
received Ki−d with the stored Kv and drops the packet including the buffered triplet upon
mismatch.

A key Kv does not exist: The receiver does not know about a key for interval i − d
yet. However, it certainly knows about a previous key Km where m < i− d, either through
a previous interval’s packets or the initial bootstrap phase (e.g. the key K0). Utilizing the
recursive hash chain property, it verifies that the received key Ki−d is indeed a member of
the hash chain:

Km = F i−d−m(Ki−d) (3.2)

If this equation holds true, the disclosed key is a confirmed member of the hash chain
and the receiver can continue to verify buffered packet of interval i − d. By calculating
K ′i−d = F ′(Ki−d), the MACs of every buffered packet can be re-calculated and compared.
If the comparison succeeds, the packet’s integrity is verified and can be further processed.

3.5 Packet Loss Support

Depending on the network size, a packet can travel long distances. On this journey, a lot of
factors affect the reliable arrival of packets. For example, a packet may be dropped at some
point due to too many hops. Even in small scale networks, the outage of a single node can
lead to impossible packet routing. As the original TESLA draft specifies, ‘Strong robustness
to packet loss’ ([PSC+05]) is an important property of TESLA. It is achieved due to the
properties of the internal hash chain. As we’ve already seen in Figure 3.1, the hash chain
K can be completely reconstructed or build by knowing Kn. It also can be reconstructed
partially, from K0 to Ki, by knowing Ki. With this property applied to TESLA, a receiver
is still able to authenticate buffered packets although all packets from the respective key
disclosure interval have been lost in transit. All packets from interval i − d can not only
be verified by a packet from interval i, but also from any packet of an interval > i: As
an example, a packet of interval i + 1 carries the disclosed key Ki+1−d. In the process of
checking the hash chain membership of Ki+1−d, one also calculates and verifies Ki−d, which
was not known to the receiver due to packet loss in interval i. This allows the receiver to
also verify buffered packets of interval i − d without ever having received the disclosed key
Ki−d. This is visualized in Figure 3.3 with an example disclosure delay of 2.

3.6 Scalability

In a lot of scenarios, the ability to scale is a key requirement. As seen in 2.4, a simple
multicast authentication scheme can lead to an extensive overhead for a large amount of
receivers. For TESLA, the following statements regarding scalability can be made:

• The sender does not have to keep a state per receiver. The overall resource utilization
is the same for 1 and 1 million receivers.

• The authentication overhead per message does not depend on the amount of receivers,
it merely depends on the chosen MAC algorithm and its length.

20

3.7 Denial of Service Attack Vector

LOST

verify key

Figure 3.3: Packet Loss Support with a disclosure delay of 2

• TESLA requires every receiver to be bootstrapped. While this bootstrap process is
not part of the TESLA protocol, its a strict requirement and its scalability depends
on the underlying session setup protocol. For example, an asymmetric based protocol
may be inappropriate for small scale receivers. An alternative is given in 4.2, which
utilizes a symmetric based bootstrap. However, the sender has to share a unique secret
with every possible receiver.

3.7 Denial of Service Attack Vector

Due to its delayed authentication mechanism, TESLA receivers are vulnerable to Denial of
Service (DoS) attacks. This can be illustrated using the following example: A receiver R1

receives a legitimate packet Pj in interval i. Now it is able to craft a fake packet Pfake with
the following contents:

• Mfake: A fake message. Its length has an impact on the victims buffer, so a large
message can lead to DoS more quickly.

• i: The interval i

• MAC(X1, X2): A MAC with an arbitrary secret X1 and payload X2. However, the
length should be equal to the received MAC of Pj . This can also be replaced with a
random string.

• Ki−d: The disclosed key which was in the original packet Pj .

R1 is now able to send multiple Pfake packets to another receiver R2. Upon packet receipt,
R2 will buffer the packet as long as Ki is not disclosed yet (‘Safe packet test’ ([PSC+05])).
Depending on the size and amount of fake packets, this can lead to a DoS, since at some
point R2’s memory will overflow.

The original draft specifies 2 methods to prevent DoS attacks [PSC+05]. The first method
checks whether the source IP is valid and the packet size is not unusual. This, however, re-
quires a controlled network and a rather constant packet size, which is not always achievable.
The second option introduces a misordering test:

21

3 TESLA

Reasonable misordering test: Before the key verification test (Step 3), check
whether the disclosed key index i − d of the arriving packet is within g of the
previous highest disclosed key index v; thus, for example, i − d − v ≤ g. g
sets the threshold beyond which an out-of-order key index is assumed to be
malicious rather than just misordered. Without this test, an attacker could
exploit the iterated test in Step 3 to make receivers consume inordinate CPU
time checking along the hash chain for what appear to be extremely misordered
packets. ([PSC+05])

Another prevention is provided by a TESLA derivative in 4.4, which for one removes the
oldest packets once the buffer becomes too large.

In summary, one can take some precautions against DoS attacks, but the delayed authen-
tication buffer always bears a risk of potential packet flooding.

22

4 Related Work

Multicast authentication is a challenging problem and TESLA is not the only solution avail-
able. Efficient Multi-chained Stream Signature (EMSS) is another streaming authentica-
tion protocol, which also depends on hash chains and provides similar security services like
TESLA does. Furthermore, instead of reinventing the wheel, a lot of TESLA variations
have been proposed, providing solutions for different use cases and environments. The next
chapters deal with the introduction into this TESLA related work.

4.1 Efficient Multi-chained Stream Signature

With [PCTS00], EMSS was proposed by the same authors who created the TESLA draft
[PSC+05]. It’s an alternative protocol for streaming multicast authentication, with some
minor differences to TESLA. The basic scheme looks like the following:

At the sender, a MAC of each outgoing packet will be calculated and appended to the next
outgoing packet. In this way, a linked list of packets is created. So that the receiver is able to
verify a packet, the sender periodically sends a special signature packet, which contains the
asymmetrically signed MAC of the packet sent before. By verifying this signature packet,
the receiver is now able to verify the last packet with its containing MAC. Due to the linked
list property, the receiver is able to traverse the previously received packets and verify each
packet based on the successor packet.

With the use of an asymmetric algorithm, this protocol also provides non-repudiation
for each packet. However, its properties also include a delayed authentication, since the
receiver has to wait for the signature packet to arrive, similar to TESLAs disclosure delay.
Increasing the number of previous MACs in a packet results in packet loss support with the
disadvantage of a larger total size per packet.

4.2 µTESLA

As explained in chapter 3.4, TESLA is not suitable for very small and limited devices due
its buffering requirement. µTESLA provides various changes to the protocol, so it can be
used in such environments, especially sensor networks [PST+02]:

Symmetric based bootstrap - To support symmetric based bootstrapping, the protocol
requires that every receiver shares a unique secret key X between itself and the sender. A
receiver is now able to send a nonce Nr to the sender, which in return responds with the
payload

TS |Ki|Ti|Tint|δ (4.1)

MAC(X,Nr|TS |Ki|Ti|Tint|δ) (4.2)

where

23

4 Related Work

• TS is the current time of the sender

• Ki is a key of the hash chain, used in a past interval i

• Ti is the start time of interval i

• Tint is the interval duration

• δ is the disclosure delay

So a receiver can be fully bootstrapped at any time, using only symmetric algorithms.

Disclosure packets - Instead of sending the disclosure key for the current interval in
each packet, µTESLA uses dedicated disclosure packets. This change however could cause
worse packet loss handling and increased authentication delay, depending on the amount of
disclosure packets per interval.

Restricting the number of senders - To send messages, hash chains are required.
These can become very long and thus are very expensive memory-wise, which makes them
not applicable to small devices. µTESLA provides two methods to solve this problem.
The first one uses the regular, more powerful sender host as a broadcast proxy, requiring
an authenticated unicast message from the small node to the sender node. The second
method uses the node as the actual broadcaster, utilizing a one-time hash chain element.
This chain element has to be delivered to the node in a confidential manner, which can
be utilized by using another protocol Secure Network Encryption Protocol (SNEP), also
proposed in [PST+02].

4.3 inf-TESLA

The original TESLA RFC did not specify what procedure should be performed once the hash
chain is exhausted. However, without any further protocol changes, a new session bootstrap
is required, which most likely implies the use of asymmetric cryptography. inf -TESLA, a
modification to the original protocol, tries to solve this problem by implementing Dual Offset
Key Chains [CAPC16]. The sender has to manage and store two hash chains, instead of
just one. Both hash chains have a specific offset to each other, which is also shown in Figure
4.1. To utilize both hash chains, the bootstrap and packet sending/receiving process need

}

d

Keychainm-1
Keychainm

Keychainm+1
Keychainm+2

...

...

}

d Time

Figure 4.1: Dual Offset Key Chains [CAPC16]

to be adapted: In the bootstrap phase, the sender has to send two hash chain commitments
instead of just one, in respect to the currently active hash chains. Furthermore, two keys
are now disclosed in each packet and the secret, to generate a packet’s MAC, consists of
two hash chain values. In the original TESLA protocol, the bootstrap was required to get
a commitment to the current hash chain. Now, the question may arise on how inf -TESLA

24

4.4 TESLA++

solves this problem with multiple hash chains and no intermediate bootstrap messages. This
is solved by the above mentioned required offset between hash chains. Thus, it makes sure
that at least one active hash chain can be used to verify the first disclosed key of a recently
switched second hash chain, allowing the sender to seamlessly switch hash chains.

4.4 TESLA++

Due to the delayed authentication method, DoS attacks can be a quite serious problem
for TESLA. The receiver has to store messages and their MACs, so it can verify them
later once the secret key for this message has been disclosed. Especially on receivers with
a small memory footprint, this procedure allows attackers to overflow a receivers memory
very quickly. TESLA++ was first proposed in [SBBP09] and aims to weaken this attack
vector by requiring less storage and better DoS handling on behalf of the receiver. Figure
4.2 shows how packets are sent over the wire and how receivers are able to authenticate
messages. Instead of sending the triplet (Message M , MAC MACS and i), the message M

Sender Receiver

Disclosure Delay

80b 32b

200b 80b 32b

24b

24b 32b

Figure 4.2: TESLA++ Communication Overview, adapted and modified from [SBBP09]

will be not sent and instead, is stored. Once the packet arrives, the receiver calculates a new
MAC MACR over the received MAC MACS and shortens it. A secret KRecv is used in this
process, which is just known to the receiver itself. Combined with the index i, the MACR is
stored in memory until the necessary keys are disclosed. Once this disclosure phase starts,
the sender sends out a packet containing the actual message M , the disclosed key Ki and the
index i. The receiver is now able to verify M by calculating MACR once again and checking
whether the combination of MACR and i exists in the store. Instead of using the MACS

for the calculation of MACR, it will use the disclosed key Ki and the actual message M .
This alternate procedure uses less storage on the receiver side. Especially, its storage is

now independent of the message size, since just the MAC and the index are stored. However,
the sender now has to store the hash chain and additionally every outgoing message until
its disclosure phase.

To provide even more DoS protection, TESLA++ considers the case of low remaining
memory on the receiver and provides two procedures:
Remove all shortened MACs, which are older than the last authentic message and ‘If more
space is needed, the message whose verification is furthest out in the future is discarded’
([SBBP09])

25

4 Related Work

4.5 RIOT TESLA

At the time of writing, another thesis about TESLA is published by a fellow student Chris-
topher Schütze. In [Sch], he likewise analyzes TESLA and provides an implementation with
a focus on small scale, IoT devices. The implementation is based on the RIOT operating
system. Due to the focus on small scale devices, he proposes different solutions to minimize
resource usages. For example, instead of storing the whole sender hash chain in memory,
he analyzes the usage of a so called way point system, where just every n-th hash chain
value is stored. If required, missing hash chain values can be recalculated from the nearest
way point. In chapter 6.5.2, a cross-platform test between the Linux and RIOT TESLA
implementations is realized.

4.6 Axiom

Another protocol for securing multicast group communication is Axiom, a DTLS-based ap-
proach [TNR17]. Axiom similarly uses symmetric cryptography and provides integrity and
even confidentiality to the multicast receivers. Additionally, it allows receivers to securely
send a unicast response back to the sender. The basic scheme looks like the following:

Based on a single pre-shared group SA, the sender is able to create authenticated and
encrypted multicast messages. Similar, every receiver, which has access to the group SA, is
able to authenticate and decrypt the message. Furthermore, utilizing a PRF, receivers are
able to derive new keying material based on the group SA, its IP and its unique SenderID.
Based on this material, it is able to send a secure response to the sender. The sender is able to
derive the same keying material used in this response, making the message authenticatable.
While this allows a secure group communication, it does not provide end-to-end security
between receiver and sender, due to the transparent and not random values used in the key
derivation process [PP18]. In summary, while Axiom provides a process for secure unicast
responses, it does not provide source authentication and requires a group SA to be present
on all participants.

4.7 Identity-Based Signatures

Identity-Based Signatures (IBS), introduced by Adi Shamir in 1984, is also able to provide
multicast authentication and even non-repudiation [Sha85]. However, it relies on asymmetric
cryptography. The authentication scheme starts with requiring a TTP, which is able to
generate a node’s private cryptographic parameters based on the node’s identity. These
parameters have to be sent to the node on a secure, confidential channel. The node is then
able to sign messages using its own private parameters. Another node can verify signatures
using the public parameters of the TTP and the node’s identity.

In another thesis [Mel], Andrian Melnikov designed and evaluated a testbed for IBS. It
shows interesting results regarding signing and verifying performance and signature length
using different message sizes and two different elliptic curve based algorithms:
Using BLMQ [BLMQ05], rather short signatures are generated, starting from 67 bytes. This
is close to TESLA’s overhead of approximately 68 bytes per message (Utilizing the SHA256
algorithm). However, BLMQ brings along a rather slow sign and verify process, starting
from 592ms and 1465ms on an IoT-Lab M3 node (72 Mhz CPU, 64kB RAM). Melnikov also

26

4.8 Summary

had a deeper look at an alternative algorithm, vBNN. It provides a faster sign and verify
process (100ms and 300ms), with the cost of larger signatures, starting from 100 bytes.
For a detailed statistic and background, refer to [Mel].

IBS is an interesting alternative in cases where non-repudiation is required. However, due
to the asymmetric performance requirements, it may not be suited for streaming purposes,
depending on the node’s capabilities.

4.8 Summary

To summarize this chapter, we analyze the possible usage of these related works in a con-
strained environment with streaming requirements:
The protocols EMSS and IBS require more computing power due to the asymmetric prop-
erty. However, if this power is available to all nodes, EMSS seems to be the better choice
for a continuous data stream. While it requires a buffer for the delayed authentication,
most of the packets are still symmetrically secured, leading to smaller packet sizes and less
computational overhead.
The TESLA derivatives µTESLA and TESLA++ add valuable additions to the protocol,
which should be included if either devices are very constrained or DoS poses a problem.
On the contrary, inf -TESLA solves one of biggest disadvantages of TESLA, the required
rekey after the chain is exhausted, very elegantly. The sender already has a larger memory
requirement, thus, running Dual Offset Key Chains can often be achievable. The addition
of another interval and disclosed key to each packet increases the overall size of the traffic
(another 36 bytes in case of SHA256 and an interval size of 4 bytes), but allows a source-
authenticated multicast data stream of infinite length and a single bootstrap process per
receiver.

27

5 Design

Within the last chapters, a thorough knowledge about ESP and TESLA has been built up.
TESLA, as an authentication protocol, can be used to generate ICVs and verify them in a
delayed manner. The original draft even specified a way to construct complete, authenticated
packets Pj based on a message Mj [PSC+05]:

Pj = Mj ||i||MAC(K ′i,Mj)||Ki−d (5.1)

where || denotes concatenation. While this allows source authentication at the receiver, it
does not eliminate all attack vectors. For example, an attacker is able to perform a replay
attack by duplicating a received packet and forwarding it to other receivers. Instead of
adding a sequence number to the TESLA protocol and ICV, the already existing transport
protocol ESP is used to provide additional security and features, including a well defined
specification and optional encryption. Hence, the following chapter designs a prototype
setup, which combines TESLA ICVs and ESP headers to create a source authenticated
IPv6-based multicast data stream.

5.1 Architecture

Sender Receiver 1 Receiver 2

Bootstrap Phase

Data Stream Phase

IP ESP
ESP

Trailer
Data

IP ESP
ESP

Trailer
Data

...

over IPv6 multicast address

Figure 5.1: Application Prototype Roles and Phases

To generally construct a multicast data stream, the following roles are proposed:

• Sender: A single sender node, which will broadcast TESLA authenticated ESP packets
in a multicast IPv6 group. In theory, TESLA can be utilized in a true multicast

29

5 Design

16 32 48 64 bit0

client_timestamp

16 32 48 64 bit0

timestamp_diff

start_date

chain_length

first_hash_chain_key (variable)

client_bootstrap_request_msg

server_bootstrap_response_msg

interval_duration

disclosure
delay

chain
algorithm

HMAC message
algorithm

HMAC message
 key algorithm

Supported Algorithms Enumeration

0 = SHA1

1 = SHA256

n - Receivers Sender

TESLA Setup

client_bootstrap_request_msg

server_boostrap_response_msg

Begin TESLA
Data Stream

Wait for TESLA
Data Stream

Secure Channel

Secure Channel

Figure 5.2: TESLA Bootstrap Messages and Exchange

scenario, consisting of multiple senders. However, for simplicity reasons, this design
will support only one sender.

• Receiver: n receiver nodes, which will listen on an IPv6 multicast address for incoming
ESP packets.

Before a sender now is able to send TESLA authenticated packets to multiple receivers,
it has to bootstrap every possible receiver with the parameters of the upcoming TESLA
stream. Therefor, the application’s lifetime is split into two phases: Bootstrap phase and
Streaming phase (Figure 5.1). In the following chapters, the network communication and
general application behavior for each phase are specified.

5.2 Bootstrapping Phase

Before a receiver application is able to process TESLA ESP packets, it needs to be boot-
strapped by an entity, which knows the parameters of the upcoming TESLA broadcast.
These parameters also define a TESLA-based SA. In addition to the parameters, the state
on the sender, consisting of a hash chain, and the state on the receiver, consisting of a hash
chain value and buffered packets, also are part of the SA (The SA struct is not specified
and is up for the implementation to decide). With the necessary parameters of chapter 3 in
mind, the following bootstrap messages are defined (Figure 5.2):

30

5.2 Bootstrapping Phase

client bootstrap request msg The message client bootstrap request msg is sent by a re-
ceiver to the sender, expressing interest in the upcoming TESLA data stream. It contains
the following fields:

• client timestamp - 8 byte The current timestamp at the receiver, which is encoded
as a unix millisecond timestamp since the Epoch (In the following, timestamp refers to
a unix epoch timestamp in milliseconds). While this value is not primarily necessary
for the TESLA bootstrap, it allows all receivers to loosely time synchronize with the
sender. Due to the 8 bytes, the field is large enough for all future timestamps in the
next hundred thousands of years. This would not be the case for a 4 byte field, which
would be too small already.

server bootstrap response msg As a response to a received client bootstrap request msg,
the sender can answer with a server bootstrap response msg, which contains all necessary
values for the upcoming TESLA stream. For the sake of simplicity, the message does not
contain any form of negative feedback, i.e it’s not used to deny access to the data stream.
In detail, the following values are defined:

• timestamp diff - 8 bytes The difference between the current sender timestamp
and the received client timestamp, which allows receivers to loosely time synchronize
themselves. This procedure slightly differs from the original procedure in 3.2. Instead
of sending both timestamps back to the receiver, the difference is calculated directly
at the sender, leading to a shorter message size with no additional drawbacks.

• start date - 8 bytes The start timestamp of the TESLA transmission.

• interval duration - 4 bytes The interval duration in milliseconds. unsigned 4 bytes
allow a maximum value of 4.294.967.295, which satisfies most common use cases.

• chain length - 4 bytes The overall hash chain length.

• disclosure delay - 2 bytes The disclosure delay, with a maximum of 65.535

• chain , hmac message and hmac message key algorithm - 2 bytes each To
support different algorithms, the 3 fields define the utilized algorithm. For the pro-
totype, two different values can be declared: 1 = SHA256 and 0 = SHA1. While a
1 byte field each would also suffice, the size of 2 bytes was chosen to better support
memory alignment on the hosts.

• first key - variable bytes The first key of the hash chain. The length is based on
the value of the chain algorithm field. In the case of this specification, it’s either 20
(SHA1) or 32 (SHA256) bytes long.

With the above messages defined, a receiver now can be bootstrapped by a sender. However,
as specified in the original draft [PSC+05], both messages have to be transferred on a secure
channel to allow no man-in-the-middle attack vector. The next chapters show two different
solutions using key exchange protocols of the IPsec suite, IKEv2 and G-IKEv2.

31

5 Design

n - Receivers Sender
 B

o
o
tstra

p
 P

h
a
se

client_bootstrap_request_msg

server_boostrap_response_msg_ikev2

Begin TESLA
Data Stream

Wait for TESLA
Data Stream

IKE_SA_INIT_RES

CREATE_CHILD_SA_REQ

IKE_AUTH_REQ

IKE_SA_INIT_REQ

IKE_AUTH_RES

CREATE_CHILD_SA_RES

ESP TESLA SA
Setup

ESP TESLA SA
Setup

ESP Protected

16 32 48 64 bit0

Traffic Selector List (variable)

server_bootstrap_response_msg (variable)

server_bootstrap_response_msg_ikev2

SPI

Figure 5.3: IKEv2-based Bootstrap

5.2.1 IKEv2 and ESP

IKEv2, as specified in [KHN+14], is able to create child SAs as soon as the Internet Key Ex-
change (IKE) SA has been negotiated and set. However, the specification bares one problem
for the creation of TESLA ESP child SAs: It is defined, that all further keying material for
child SAs are derived from nonces and Diffie-Helmann values from the initial ike message
exchange. In more detail, as soon as new keying material is needed, both values are fed to
a special PRF generator, which continuously is able to create new secret keys. In the case
of a TESLA SA, this is not feasible. A shared state would be required to deliver the same
TESLA ESP SA to every receiver, which is not specified in IKEv2. To avoid this problem,
the following approach is proposed:
Before the TESLA bootstrap is initiated, receiver and sender negotiate a normal ESP secured
tunnel via IKEv2 (Figure 5.3), utilizing standard authentication and encryption algorithms
(For example. AUTH HMAC SHA2 256 128 and ENCR AES CBC). Using this secure tun-
nel, the bootstrap messages can be exchanged in a secure manner. This approach, although,
has the disadvantage of having to manually create and manage the TESLA ESP SAs at the
application level on both sides. Additionally, the server bootstrap response msg has to be
adapted: A SPI and possible TSs have to be included, since the TESLA ESP SA requires
those values as well (The structure of these fields are not specified, but can be adopted from
[KHN+14]). On the other hand, it brings the advantage of needless protocol modifications
for IKEv2 and a end-to-end secure communication channel between both participants, which
can for example be used for unicast responses from the receiver.

5.2.2 Group IKEv2

To circumvent the IKEv2 issues with TESLA ESP SAs, a solution utilizing the G-IKEv2
protocol, which is especially designed to establish secure group communication channels, is

32

5.2 Bootstrapping Phase

4 8 12 16 20 24 28 320 bit

TEK ESP Policy Payload with TESLA

Next Payload

< Source Traffic Selector >

< Destination Traffic Selector >

RESERVEDLast Substruc? 8 (Transform Length)

RESERVED3
(Transform = Integrity Algo)

6
(Transform Algorithm ID = AUTH_TESLA)

4 8 12 16 20 24 28 320 bit

Key Download Payload with TESLA

TEK Key packet

SPI

RESERVEDC Length

Number of Key Packets RESERVED

1
(Key Download Type = TEK)

KD Length

SPI Size SPI (variable)

RESERVED

0 2
(Attribute Type = TEK_INTEGRITY_KEY)

Length

server_bootstrap_response_msg (variable)

TESLA Transform Substrcture

TESLA Key Packet Attribute

Figure 5.4: G-IKEv2 GSA AUTH Response Headers with TESLA Support

presented.
One of the important differences between G-IKEv2 and IKEv2 is the way how the keying
material for new SAs is generated. While IKEv2 relies on previously exchanged and random
values to generate new keys, G-IKEv2 allows to simply download existing group keying ma-
terial. With this change, every receiver is able to receive the same TESLA parameters for its
local ESP SA. With chapter 2.5.7 in mind, the following procedures add TESLA parameter
support for underlying ESP SAs:

• The TEK payload, which is part of the GSA payload and included in the GSA AUTH
response, needs to have support for the TESLA authentication algorithm. In detail, the
Transform Substructure List field of the TEK ESP policy needs to have a transform
entry, specifying the use of TESLA for integrity checks (As shown in Figure 5.4).
To achieve this support, the next available number/ID 6 in the ‘Transform Type 3
(Integrity Algorithm)’ ([KHN+14]) needs to be assigned to TESLA. At this point,
the transform entry may also contain some of the TESLA parameters as transform
attributes, like the utilized algorithms. Even so, for simplicity, all TESLA parameters
are combined in the KD payload, which is discussed in the next paragraph.

• By specifying the AUTH TESLA ID in the TEK payload, a receiver knows that

33

5 Design

4 8 12 16 20 24 28 320
bit

Security Parameter Index (SPI)

Sequence Number

Payload Data (variable)

Padding (0-255 bytes)

Padding
length Next Header

T
E
S
LA

 A
u
th

e
n
tica

te
d

E
n
cry

p
te

d

Interval

MAC (variable)

Disclosed Key (variable)

T
E
S
LA

 IC
V

Figure 5.5: TESLA ICV header and it’s use in ESP

TESLA is utilized. However, it did not receive any parameters yet. While the
parameters are also sent to the receiver in the GSA AUTH response, they are in-
side of the KD payload. The KD payload can consist of multiple key packets of
different types. Important for the TESLA parameters is the key packet type TEK,
since it contains keying material for the actual secure data tunnel. By adding a
key attribute of the type TEK INTEGRITY KEY, containing the previously defined
server bootstrap response msg, to the TEK key packet, the parameters can be trans-
ferred without defining new protocol numbers (As shown in Figure 5.4).

With the above design, a successful TESLA ESP SA can be setup. All advantages of the
protocol can be used, including a specified rekeying process once the TESLA parameters are
obsolete due the hash chain being exhausted. Despite that, the design has one flaw: G-IKEv2
uses the same IKE SA INIT as present in IKEv2 and does not offer any functionalities to
let the receiver send custom data alongside it. A suchlike receiver is not able to send the
client bootstrap request msg with it, making an in-process loosely time synchronization not
possible. An out of band time synchronization process has to be chosen.

5.3 Streaming Phase

After the bootstrap phase has ended, the sender and all receivers have established a TESLA
ESP SA, containing the correct TESLA parameters and necessary IPsec parameters. As
soon as the start time is reached, the sender can construct and send ESP packets, protected

34

5.3 Streaming Phase

with a TESLA ICV, over the specified IPv6 multicast address. Since a TESLA ICV consists
of multiple values and the original draft did not specify any header format, the following
header format is introduced for it (As shown in Figure 5.5):

• Interval - 4 bytes: The interval in which the sender was, when it sent the packet.
Unsigned 4 bytes allow a maximum value of 4.294.967.295, which satisfies most common
use cases.

• Payload MAC - variable: The MAC of the payload, as specified by chapter 2.5.2.
The length can be omitted since the client is able to derive the length of the payload
MAC using the TESLA ESP SA.

• Disclosed Key - variable: The disclosed key of a previous interval. Similar to the
above field, the length can also be derived from the TESLA ESP SA. If the packet
was sent in the first d intervals, where d is the key disclosure delay, it has to be filled
with zeros by the sender.

The sender is allowed to send an arbitrary amount of packets, as long as they are sent
between the start and end time of the TESLA transmission. However, if a certain packet
rate per interval is reached, receivers may drop additional packets due to limited buffering
capabilities. Once a transmission phase has ended, i.e the underlying hash chain is exhausted
and a rekeying operation is required. The sender calculates a new hash chain and possibly
new TESLA parameters and updates its TESLA ESP SA. Since all participants are able
to tell when this moment arrives, receivers can request a rekey or the server automatically
keeps track of all receivers and rekeys them automatically, depending on the implementation.
However, a simple rekey introduces a problem: All packets of the last d intervals can not
be authenticated by the receiver, since the disclosed keys were never transmitted (Figure
5.6). The new transmission will not carry any disclosed keys in the first d intervals. To
avoid this limitation, two SAs need to be used simultaneously. In detail, once the first
transmission ends, the TESLA ESP SA will not be swapped, but rather a second one will
be introduced. Then, all packets of the second transmission, which are sent in the first d
intervals, will contain the remaining disclosed keys of the first transmission (This assumes
that the value of d will not shrink between transmissions). As soon as all remaining keys
have been sent/received, the first TESLA ESP SA can be deleted and each packet contains
the disclosed keys of the second transmission as usual. (Figure 5.7)

35

5 Design

Sender n - Receivers
disclosed

key

IP/ESP Packet

IP/ESP Packet

...

...

Sent
within
last
d

intervals

IKEv2/GIKEv2 Rekey Process

Unable to authenticate
No disclosed key received

TESLA ESP
SA_1

TESLA ESP
SA_2

IP/ESP Packet

IP/ESP Packet

NULL

NULL

Sent
within
first
d

intervals

Figure 5.6: Simple TESLA Rekeying process

Sender n - Receivers
disclosed

key

IP/ESP Packet

IP/ESP Packet

...

...

Sent
within
last
d

intervals

IKEv2/GIKEv2 Rekey Process
TESLA

ESP
SA_1

TESLA
ESP
SA_2

IP/ESP Packet

IP/ESP Packet

Sent
within
first
d

intervals

...

...

...

...

MAC

Figure 5.7: Advanced TESLA Rekeying process - No packet loss36

6 Implementation

The last chapter designed a process for creating a TESLA-based multicast data stream,
utilizing protocols of the IPsec suite. Based on this, the upcoming chapter presents an
implementation written in the C programming language. The project is split into 3 sub-
projects (Figure 6.1): The first component is a user space TESLA Library, which allows
to generate and verify TESLA ICVs according to a specified TESLA configuration. Next
up, a user space ESP Library is implemented. It allows applications to manage a SAD
and create and process ESP headers. The last component is the actual Test Application.
It utilizes both libraries to bootstrap receivers and create an IPv6 multicast broadcast, on
which TESLA protected ESP headers are sent and received by multiple receivers. While
the libraries are distributed via statically linked C libraries, the Test Application provides a
sender and receiver binary. The chapter starts with an introduction into the Linux platform
and the project’s single dependency, OpenSSL. It then continues with a more detailed look
on some important and platform specific parts of each component.

6.1 Platform and Dependencies

The above introduction mentioned each component of the project. However, the mentioned
libraries and application require a platform to run on. While there are multiple different
operating systems available, the following chapters introduce Linux and the reasons why it
is the selected platform for the implementation. The only dependency, OpenSSL, for one a
general-purpose cryptography library, is presented in the last part.

6.1.1 Linux

In 1991, Linus Torvalds released an operating system kernel called Linux. By now, it’s
probably one of the most used kernels on the world, operating on hardware of completely
different sizes and field of industry. Additionally, Linux is distributed under the GPL2
license, making it Free Open-Source Software (FOSS). This allows vendors and operating
system developers to modify and adapt the source code to their needs, allowing custom, Linux
based kernels to be released to the community. While Linux per se is just a Kernel, the name
is also often used to describe a group of operating systems based on the Linux Kernel, i.e
Linux distributions. Besides its use in mobiles phones and server systems, according to [lin],
Linux is also the leading operating system used in IoT projects.

Linux is one of the most widespread operating systems, allows a straightforward low-level
network access utilizing the POSIX standard and works well with the programming language
C. This makes it a great choice as a platform for the above architecture.

37

6 Implementation

Test Network

Sender App

TESLA Library

ESP Library

OpenSSL

Host

Receiver App

TESLA Library

ESP Library

OpenSSL

Host

Receiver App

TESLA Library

ESP Library

OpenSSL

Host

Figure 6.1: Implementation Components and Architecture

6.1.2 OpenSSL

TESLA and ESP both require cryptographic functions to work properly. In the case of
TESLA, hash functions, like SHA256, and MAC functions, like HMAC, are needed to gener-
ate the hash chain and authenticate/verify packets. ESP likewise depends on MAC functions,
but furthermore requires encryption algorithms. Instead of implementing the above func-
tions in the project directly, a dependency to OpenSSL is added. ‘OpenSSL is a robust,
commercial-grade, and full-featured toolkit for the Transport Layer Security (TLS) and
Secure Sockets Layer (SSL) protocols. It is also a general-purpose cryptography library.’
([Opec]) Adopting this library has multiple advantages over an own implementation:

• The library is used in a widespread manner. Thus, more bugs are detected and fixed
faster.

• Various different cryptographic algorithms have been implemented. Supporting dif-
ferent algorithms can be solved by exchanging function names instead of writing new
ones.

• The code is thoroughly tested and its memory efficiency and performance is continu-
ously improved.

OpenSSL is available on most common Linux distributions and features a command line
interface and a C API.

A considered alternative is the Linux Crypto-API, introduced in kernel version 2.5.45 [Ekl].
The main difference shows up in the running context: The Crypto-API is running in the
kernel space, which is a privileged space for the kernel itself and its kernel modules. This
enables a faster calculation of ciphers and suchlike. Additionally, since the Crypto-API is
embedded into the kernel, no additional installation is required. However, due to a confusing
documentation and a more complex usage, the integration of OpenSSL is the preferred choice
for this project.

38

6.2 TESLA Library

tesla_core_state
config

tesla_core_config

chain

Start Date T_0: number

Interval Duration T_int: number

... additional config parameters ...

message_key_algorithm: const char[]

message_algorithm: const char[]

on_authenticated_package: function

1

tesla_auth_header
interval: number

mac: char[] + length

disclosed_key: char[] + length

1returns

on_dismisssed_package: function

tesla_chain_state
config

chain: char[][]

1

fill()

set(index, value)

get(index) : char[]

verify(value, index, start) : bool

tesla_chain_config
Random R: function

PRF Function F: function

1

Length n: number

buffer[][] tesla_buffered_package
interval: number

payload: char[] + length

n per
interval

mac: char[] + length

called with 1

get_auth_header(payload)

to_icv() : char[] + length

verify_auth_header(payload, header_icv)

OpenSSL

Figure 6.2: Structure of the TESLA Library (Some names may be shortened for brevity)

6.2 TESLA Library

The TESLA library provides applications with functions to create and verify TESLA ICVs.
For the sake of separation of concerns and an easier public API, the library is split into the
following modules (Figure 6.2):

• tesla core.{c | h}: This module contains the main data structures and operations for
the protocol. This includes a configuration struct tesla core config for defining TESLA
parameters, like the disclosed key length and used algorithms. Furthermore, a state
struct tesla core state is provided. This struct is used to manage internal state and
acts as a pointer to a configured and initialized TESLA instance.

• tesla chain.{c | h}: A module providing a operations to create and fill hash chains.
It follows the same approach as the tesla core module, it provides a configuration and
state struct: tesla chain config and tesla chain state.

6.2.1 Configuration and Initialization

Before the TESLA operations can be used, the application needs to configure and create a
hash chain TESLA instance.

Hash Chain

t y p ed e f s t r u c t t e s l a c h a i n c o n f i g {
vo i d (∗ r a nd f un c) (uns i gned char ∗ output) ;
i n t r a n d l e n ;
un s i gned char ∗ (∗ ha sh func) (con s t uns i gned char ∗ i nput , s i z e t n ,

un s i gned char ∗ output) ;
con s t cha r ∗ hash func name ;
i n t h a s h l e n g t h ;
un s i gned long c h a i n l e n g t h ;

39

6 Implementation

} t e s l a c h a i n c o n f i g ;

t y p ed e f s t r u c t t e s l a c h a i n s t a t e {
t e s l a c h a i n c o n f i g ∗ c o n f i g ;
un s i gned char ∗∗ cha i n ;

} t e s l a c h a i n s t a t e ;

The hash chain configuration is specified by the above struct and covers all possible con-
figuration values. The rand func and rand len provide a dynamic way of defining the seed
of the hash chain. It is left to the application to define this function, so different ran-
dom generators can be used. For example, an application may use the OpenSSL function
RAND bytes(output, len) or a hardware random generator.

Furthermore, the actual hash operation is also configured as a function hash func. The
signature of this function is compatible with the hash algorithm API of OpenSSL, which
allows applications to directly set the random function to an OpenSSL function. The overall
chain length is set by chain length, which is stored in an unsigned long, allowing a maximum
length of 4, 294, 967, 295.

Based on a configuration, a reference to a tesla chain state struct is used to keep track of
the actual state, i.e the list of hash chain values. For the storage of the hash chain values,
a simple array has been chosen. This allows the TESLA implementation a fast index-based
access to each value.

t e s l a c h a i n s t a t e ∗ cha i n ;
s t a t i c t e s l a c h a i n c o n f i g c h a i n c o n f i g = { . . . } ;

t e s l a c h a i n i n i t (&cha in , &c h a i n c o n f i g) ;
t e s l a c h a i n f i l l (cha i n) ;

The above shows how an actual chain state is created. Behind the scenes, the tesla chain init
call allocates memory for the tesla chain state struct, based on the passed configuration.
However, actual values are being filled in by the call to tesla chain fill. In a TESLA context,
this allows senders to fill the chain and receivers to just allocate the necessary amount of
memory.

TESLA Core

t y p ed e f s t r u c t t e s l a c o r e c o n f i g {
t e s l a c h a i n s t a t e ∗ t e s l a c h a i n ;
un s i gned long long s t a r t d a t e ;
un s i gned long i n t e r v a l d u r a t i o n ;
un s i gned i n t d i s c l o s u r e d e l a y ;
i n t c l o c k l a g ; // r e c e i v e r on l y

con s t cha r ∗ mes sage a l go r i t hm ;
con s t cha r ∗ mes s ag e k e y a l g o r i t hm ;

TESLA BUFFER METHOD bu f f e r me thod ;
un s i gned i n t b u f f e r p e r i n t e r v a l ;

v o i d (∗ on au t h en t i c a t e d pa c k ag e) (t e s l a b u f f e r e d p a c k a g e ∗ package) ; // r e c e i v e r s
vo i d (∗ on d i sm i s s e d pa ckag e) (t e s l a b u f f e r e d p a c k a g e ∗ package , i n t r e a son) ; // r e c e i v e r s
// some f i e l d s omi t t ed f o r b r e v i t y

40

6.2 TESLA Library

} t e s l a c o r e c o n f i g ;

t y p ed e f s t r u c t t e s l a c o r e s t a t e {
t e s l a c o r e c o n f i g ∗ c o n f i g ;
un s i gned i n t ∗ b u f f e r c o u n t e r ;
t e s l a b u f f e r e d p a c k a g e ∗∗∗ b u f f e r ;

// some f i e l d s omi t t ed f o r b r e v i t y
} t e s l a c o r e s t a t e ;

A TESLA instance can be configured in a similar manner. The first part of the configur-
ation covers timing related TESLA parameters and a configured hash chain instance. Re-
garding algorithms, the library internally forces the use of HMAC, but allows applications
to configure the underlying hash operation with OpenSSL’s EVP MD API: The application
just has to pass a name for the used algorithm, which internally is then fetched via the
EVP get digestbyname function. Following up, the way how the library buffers packets can
be configured, which is described in more detail in the upcoming chapter 6.2.3.

The state itself contains a reference to the configuration and a 2 dimensional array of
packet references. This array is used as a packet buffer. In detail, it stores a list of received
packet references per interval. To keep track of the number of received packets per interval,
an array of counters is also stored in the state. The allocation of those fields take place once
a call to tesla core init(state**, config*) is made.

6.2.2 Sign and Verify Operations

Once a TESLA state is created and allocated, it can be used to sign and verify arbitrary data.
The creation of a new ICV can be achieved with the function tesla core get auth header :

i n t t e s l a c o r e g e t a u t h h e a d e r (t e s l a c o r e s t a t e ∗ s t a t e , un s i gned char ∗ pay load ,
un s i gned i n t p a y l o ad l e n , t e s l a a u t h h e a d e r ∗∗ header) {

t e s l a c o r e c o n f i g ∗ c o n f i g = s t a t e−>c o n f i g ;
t e s l a c h a i n c o n f i g ∗ c h a i n c o n f i g = con f i g−>t e s l a c h a i n −>c o n f i g ;

t e s l a a u t h h e a d e r i n i t (header , c on f i g−>mes s ag e a l g o r i t hm l e ng t h ,
c h a i n c o n f i g−>ha s h l e n g t h) ; // a l l o c a t e memory f o r TESLA heade r

(∗ header)−> i n t e r v a l = t e s l a c o r e g e t c u r r i n t e r v a l (s t a t e) ;
un s i gned char ∗ key = ma l l oc (

s i z e o f (uns i gned char) ∗ con f i g−>mes s a g e k e y a l g o r i t hm l e n g t h) ;
t e s l a c o r e g e t c u r r m e s s a g e k e y (s t a t e , key , NULL) ; // d e r i v e key

HMAC(con f i g−>message a l go r i thm , key , c on f i g−>mes s a g e k e y a l g o r i t hm l e ng t h ,
pay load , p a y l o ad l e n , (∗ header)−>mac , &(∗ header)−>mac len) ;

un s i gned char ∗ d i s c l o s e d k e y = NULL ; // a t t a ch d i s c l o s e d key , i f a v a i l a b l e
i f (t e s l a c o r e g e t c u r r d i s c l o s e d k e y (s t a t e , &d i s c l o s e d k e y) == 0) {

memcpy ((∗ header)−>d i s c l o s e d k e y , d i s c l o s e d k e y , c h a i n c o n f i g−>ha s h l e n g t h) ;
}

f r e e (key) ;
r e t u r n 0 ;

}

41

6 Implementation

Based on the input payload and its length, the function allocates and fills a passed tesla auth header
struct, according to the original TESLA specification. It uses OpenSSL’s HMAC function
in combination with the config’s EVP MD algorithm to create the packet’s MAC. Addition-
ally, it checks whether a key is disclosed in the current interval. The output struct then
contains the current interval, the MAC with its length and an optional disclosed key with
its length. However, this struct is not meant to be serialized and sent over a network. A
call to the function tesla auth header to icv(header*, output**) would strip the lengths and
write a serialized version into the output buffer (The output is in the format of the designed
TESLA ICV of chapter 5.3).

Since the verify operation contains multiple steps, it will be split and explained in 4 parts:

i n t t e s l a c o r e v e r i f y (t e s l a c o r e s t a t e ∗ s t a t e , un s i gned char ∗ pay load ,
un s i gned i n t p a y l o ad l e n , un s i gned char ∗ auth heade r , un s i gned i n t a u t h h e a d e r l e n) {

t e s l a a u t h h e a d e r ∗ header ;
t e s l a a u t h h e a d e r i n i t (&header , c on f i g−>mes s ag e a l g o r i t hm l e ng t h ,

c h a i n c o n f i g−>ha s h l e n g t h) ;

t e s l a a u t h h e a d e r p a r s e (auth heade r , a u t h h e ad e r l e n , heade r) ;
// con t i nu e

Listing 6.1: 1. Part of Verification - Parse ICV header

The verify method is commonly used at the receiver side. Thus, instead of requiring an
already parsed tesla auth header struct, an ICV format is expected in auth header. With
the help of the configuration values, the first step then tries to parse the ICV format into a
well-known header format, failing if specific lengths do not match.

l ong l ong c u r r t im e = get t ime ms () ;
l ong l ong upper bound = cu r r t im e + con f i g−>c l o c k l a g ;
un s i gned long p o s s i b l e i n t e r v a l =

f l o o r ((upper bound − con f i g−>s t a r t d a t e) / con f i g−> i n t e r v a l d u r a t i o n) ;

i f (p o s s i b l e i n t e r v a l >= header−> i n t e r v a l + con f i g−>d i s c l o s u r e d e l a y) {
r e t u r n −2;

}
// con t i nu e

Listing 6.2: 2. Part of Verification - Upper Bound Check

Next is an upper-bound check as described in 3.4. Since the library uses millisecond
timestamps as a time unit, all time related variables have to be at least of type long long.
This ensures, that at least 64-bit are used to store the variable, which allows values up to
9, 223, 372, 036, 854, 775, 807. A variable of type long, i.e 32-bit, would not be sufficient:
Any current millisecond unix timestamp (e.g. 1, 540, 538, 952, 736) is already larger than the
available space (2, 147, 483, 647), which is also the case for unsigned long (4, 294, 967, 295).

An important part of the verifying process is handling the received disclosed key, which
can be divided into 3 different cases:

• No disclosed key expected: In the first d intervals, where d is the disclosure delay,
no disclosed keys are expected.

42

6.2 TESLA Library

• Disclosed key already received: When multiple packets are sent in the same in-
terval, they carry the same disclosed key. If a disclosed key was already received, the
new one will be compared to the old one and the packet is only kept if they match.
Comparing cryptographic values with standard functions, like memcmp, can open the
application to timing attacks. Therefore, the dependency to OpenSSL is utilized and
its constant time comparison function CRYPTO memcmp is called instead.

uns i gned long d i s c l o s e d i n t e r v a l = header−> i n t e r v a l − con f i g−>d i s c l o s u r e d e l a y ;
i f (s t a t e−> l a t e s t d i s c l o s e d r e c e i v e d >= d i s c l o s e d i n t e r v a l) {

// We a l r e a d y r e c e i v e d the key , l e t ’ s compare and check v a l i d i t y
uns i gned char ∗ r e c e i v e d k e y =

t e s l a c h a i n g e t (con f i g−>t e s l a c h a i n , d i s c l o s e d i n t e r v a l) ;

i f (CRYPTO memcmp(r e c e i v e d k e y ,
header−>d i s c l o s e d k e y , c h a i n c o n f i g−>ha s h l e n g t h) != 0) {

r e t u r n −3;
} ;

}

Listing 6.3: 3.a Part of Verification - Disclosed key already received

• New disclosed key: Upon receiving a packet from a new interval, it contains a
new disclosed key. By storing the interval of the last received disclosed key, we’re
able to efficiently check whether the disclosed key is part of the key chain. If the
key is valid, it will be saved into the key chain at the specific index. together with
re-calculated keys of previous intervals. Due to time constraints, the implementation
does not clear old received keys. In fact, it currently requires the receiver to also have
a hash chain allocated, with the size of the sender’s one. The last step of this part
is the call to tesla core unbuffer packages, which will check the MACs of all buffered
packets since the last disclosed interval to the newly disclosed interval and calls the
callback functions if applicable.

e l s e i f (s t a t e−> l a t e s t d i s c l o s e d r e c e i v e d < d i s c l o s e d i n t e r v a l) {
i n t good key = t e s l a c h a i n c h e c k (con f i g−>t e s l a c h a i n ,

header−>d i s c l o s e d k e y , header−>d i s c l o s e d k e y l e n ,
d i s c l o s e d i n t e r v a l , s t a t e−> l a t e s t d i s c l o s e d r e c e i v e d) ;

i f (good key == 0) {
t e s l a c h a i n s e t (con f i g−>t e s l a c h a i n , d i s c l o s e d i n t e r v a l , header−>d i s c l o s e d k e y) ;
t e s l a c h a i n f i l l b e t w e e n (con f i g−>t e s l a c h a i n , s t a t e−> l a t e s t d i s c l o s e d r e c e i v e d ,

d i s c l o s e d i n t e r v a l) ;

t e s l a c o r e u n b u f f e r p a c k a g e s (s t a t e , d i s c l o s e d i n t e r v a l , s t a t e−> l a t e s t d i s c l o s e d r e c e i v e d) ;
s t a t e−> l a t e s t d i s c l o s e d r e c e i v e d = d i s c l o s e d i n t e r v a l ;

}
}

Listing 6.4: 3.b Part of Verification - New disclosed key

6.2.3 Buffering packets

As mentioned in the previous configuration chapter, the library’s packet buffer can be con-
figured via the buffer method configuration field in two ways:

43

6 Implementation

• TESLA BUFFER STATIC: The packet buffer will be initialized in a static manner.
In detail, the buffer allows every interval to receive a maximum of buffer per interval
packets. Once the buffer of an interval is full, no more packets will be buffered and are
lost. This approach is convenient for applications, which expect a constant number of
packets per interval throughout the entire stream.

• TESLA BUFFER GROW: The packet buffer will also be initialized in a static
manner, supporting up to buffer per interval packets per interval. However, once a
single interval buffer is full, it will dynamically double the size of all interval buffers.
This approach does not lose any packets, but can lead to a high memory allocation as
soon as a single interval contains a lot of packets.

i f (i nd e x + 1 >= con f i g−>b u f f e r p e r i n t e r v a l &&
con f i g−>bu f f e r me thod == TESLA BUFFER GROW) {

con f i g−>b u f f e r p e r i n t e r v a l ∗= 2 ;
f o r (i n t i = 0 ; i < s t a t e−>max i n t e r v a l s ; i++) {

s t a t e−>b u f f e r [i] = r e a l l o c (s t a t e−>b u f f e r [i] ,
s i z e o f (t e s l a b u f f e r e d p a c k a g e ∗) ∗ con f i g−>b u f f e r p e r i n t e r v a l) ;

}
}

Listing 6.5: Syllabus of the packet buffering grow logic

6.3 ESP Library

esp_state
routes[]

esp_route (SA)
spi: number

seq_number: number

encryption_algo

encryption_state: void*

authentication_algo

authentication_state: void*

on_hdr_processed: functionn

hdr_process(header)

hdr_init(route, next_hdr, data) esp_hdr
spi: number

seq_number: number

data: char[]

1returns

esp_auth_algo
name: char[]

length: number

sign: function

verify: function

esp_encr_algo
name: char[]

padding: number

additional_length: number

encrypt: function

decrypt: function

1

1

esp_algos

custom_auth_algos[10]

custom_encr_algos[10]

auth_algos[2]

static

encr_algos[2]

register_auth_algo(auth_algo*)

register_encr_algo(encr_algo*)

get_auth_algo(name) : auth_algo*

get_encr_algo(name) : encr_algo*

OpenSSL

decrypt_step(route, header)

Figure 6.3: Structure of the ESP Library (Some names may be shortened for brevity)

The ESP library provides applications with functions to create and process ESP packets.
It’s not responsible for network operations, nor does it implement all required algorithms
specified in [WMM+17]. However, it allows applications to register their own encryption
and authentication algorithms. It is structured in the following way (Figure 6.3):

44

6.3 ESP Library

• esp.{c | h}: A module providing the main entry point for processing and generating
ESP headers. Similar to the TESLA library, it consists of a state struct esp state,
which again holds a reference to a configuration. In this case, the configuration is just
a list of esp route structs, forming the SAD.

• esp algos.{c | h}: A module containing the encryption and authentication algorithm
abstraction and registration logic. In total, 4 algorithms have been implemented with
the help of OpenSSL and with [WMM+17] in mind:
ENCR NULL, ENCR AES CBC 128, AUTH NONE, AUTH HMAC SHA1 96.

6.3.1 Configuration and Initialization

t y p ed e f s t r u c t e s p r o u t e {
ESP TYPE type ;
un s i gned i n t s p i ;
un s i gned i n t seq number ;
e s p e n c r a l g o ∗ e n c r a l g o ;
vo i d ∗ e n c r d a t a ;
e s p a u t h a l g o ∗ au t h a l g o ;
vo i d ∗ au th da ta ;
v o i d (∗ on hd r p r o c e s s e d) (s t r u c t e s p r o u t e ∗ route , i n t nx t hdr ,

un s i gned char ∗ data , un s i gned i n t da t a l e n , vo i d ∗ add data) ;
} e s p r o u t e ;

t y p ed e f s t r u c t e s p s t a t e {
e s p r o u t e ∗∗ r o u t e s ;
un s i gned i n t r o u t e s l e n ;

} e s p s t a t e ;

Listing 6.6: ESP state and route structs

The setup and configuration is similar to the TESLA library. Each route consists of a
reference to one encryption and one authentication struct. Since most algorithms also require
some state, encr data and auth data are also supplied. By making both states of type void*,
not only static data is supported, but also references to more complex structs. By supplying
multiple esp routes to the esp state init call, an esp state is allocated and created.

6.3.2 Create and Process Packets

// e s p h d r c r e a t e (r ou t e ∗ , e s p hd r ∗∗ , n ex t hd r , data ∗ , d a t a l e n)
uns i gned i n t add space = route−>en c r a l g o−>a d d i t i o n a l s p a c e ;
(∗ hdr) = c a l l o c (1 , s i z e o f (e s p hd r) + temp da ta l e n + add space) ;
(∗ hdr)−> s p i = n t oh l (route−>s p i) ;
(∗ hdr)−>seq number = n t oh l (route−>seq number++);

i n t e n c r l e n = route−>en c r a l g o−>en c r yp t (route−>enc r da ta ,
(∗ hdr)−>data , temp data , t emp da ta l e n) ;

Listing 6.7: Encryption Step of creating a new ESP header

When creating an ESP header, the following obstacles require additional attention:

• The payload of the ESP header is not just meant for user data. For example, ENCR AES CBC 128
uses the first 16 bytes to store its ICV. Thus, the esp encr algo struct contains a field
additional space, specifying how much space of the payload field is required.

45

6 Implementation

• The necessary padding also depends on the utilized encryption algorithm, specified by
the padding field. While other implementations use the overall padding length as a
value for every padding byte, this implementation simply fills them with zeros.

• SPI and Sequence Number have to be converted to the network byte order using ntohl.

Due to the header being already allocated and shaped, the processing of received ESP headers
is easier and can be broken down into 3 steps:

• First, the SPI is parsed and a linear search for a matching esp route is performed.
While the SPI value is theoretically covered by the authentication, it has to be used
without validation to actually find the secret state which was associated when the ICV
was calculated.

• If a matching esp route has been found, its authentication algorithms verify function is
called. Standard authentication algorithms are able to tell whether the data’s integrity
is still valid, so it either returns ESP OK or ESP ERROR. However, there is also
support for delayed authentication algorithms by returning ESP MANUAL, which
indicates the decryption step esp decrypt step will be called manually by the algorithm
as soon as authentication is confirmed.

• The last function esp decrypt step is either called immediately or at a later point in
time, depending on the return value of the authentication algorithm. It decrypts the
payload according to the esp route, extracts the next header value and calls the callback
on hdr processed(route*, next header, data*, data len, ...) on success.

This parsing and creation process is not feature complete, nor does it follow every rule of
the original draft. It does not take any IPs into account and does not provide a sap! (sap!).
It allows user-space applications to independently create and process ESP headers with a
minimal configuration setup.

6.3.3 Registering Algorithms

t y p ed e f s t r u c t e s p a u t h a l g o {
con s t cha r ∗ name ;
uns i gned i n t l e n ;
i n t (∗ s i g n) (vo i d ∗ auth data , u8 ∗ dest , un s i gned char ∗ data ,

un s i gned i n t d a t a l e n) ;
ESP RESPONSE (∗ v e r i f y) (vo i d ∗ auth data , un s i gned char ∗ d i g e s t ,

un s i gned char ∗ data , un s i gned i n t d a t a l e n) ;
} e s p a u t h a l g o ;

Listing 6.8: ESP Authentication Algorithm Architecture

With the above abstraction, applications can initialize their own esp auth algo structs,
backed by self defined verify and sign functions. They will be added to a static array
with a call to the esp register auth algo(auth algo*) function. Every registered algorithm
can then be fetched by it’s unique name, for example esp get auth algo(”AUTH NONE”).
The encryption algorithms can be registered in the same manner, however, the encryption
algorithm struct contains two more fields for the required padding and a possible IV length.
2 of the 4 pre-existing algorithms have been implemented with the help of OpenSSL’s EVP
API, which is explained in detail in [Opeb].

46

6.4 Test Application

6.3.4 Test Results

Given the functionality to create and process ESP packets, the question arises whether the
library does it in the correct way. To ascertain correct functionality, two different methods
can be used:

The first method utilizes another IPsec implementation. By manually establishing bi-
directional SAs between a host, which runs this implementation, and another host, which
runs another well-tested implementation, one can test whether ESP packets can be success-
fully exchanged. As a reference implementation, the Linux Kernel’s IPsec implementation
is a good candidate for such tests.

The second test method utilizes a network protocol analyzer. For this test process, the
implementation creates a ESP packet and sends it over the wire. With the help of the
analyzer, the packet can be captured and analyzed in detail. An example for such analyzer
is Wireshark, which is also widely-used and features support for a lot of different protocols,
including the whole IPsec suite. It allows users to manually register SAs and once an IPsec
packet is captured, it will use the supplied SAs to verify and decrypt it. Since it also supports
all required and even optional algorithms, this can be seen as an IPsec implementation testing
as well.

Due to time constraints, just the second test method together with Wireshark is evaluated.
A small test application, utilizing the library and Wireshark both share the following SA:

• Outgoing and Incoming IP: ::1 (Just Wireshark)

• SPI: 10

• Encryption: ENCR AES CBC 128 (Key: 0x48afe6895e22d1187c45fc40f6b22e2e)

• Authentication: AUTH HMAC SHA1 96 (Key: 0xb5998f7f48041156c7c344026bf48e63fc28ce2d)

The test application then constructs a secured ESP packet, containing a sample UDP packet,
and sends it to the loopback interface, with ::1 being the destination and source address
(A more detailed explanation on how to send ESP packets is given in 6.4.2). Figure 6.4
shows how Wireshark is able to successfully interpret, authenticate and decrypt the captured
packet, which implies that the packet was correctly formed according to the specification.
While this theoretically just proves packets are correctly created, the test application in
chapter 6.4 will also process these packets, showing this is correctly working as well.

6.4 Test Application

The Test Application combines both libraries to create a prototype, TESLA based ESP IPv6
multicast stream between a single sender (server) and multiple receivers (clients). In detail,
the two phases of the design chapter are implemented the following way:
As soon as the sender application starts, it sets up a TESLA instance. While some para-
meters, like the utilized algorithm can be configured with environment variables, some are
predefined. After that, a 30 second long bootstrap phase starts. In this phase, every in-
terested receiver can send a ESP protected client bootstrap request msg to the sender. The
ESP packet is encrypted and authenticated by a unique pair of PSKs and identified by
a unique SPI, shared between the server and a single client. Thus, the server has to be

47

6 Implementation

Figure 6.4: Wireshark deconstructing the ESP packet

configured with the amount of possible receivers to correctly setup the required SAs. For
the sake of simplicity, the prototype’s bootstrap strategy does not involve any IKEv2 or
G-IKEv2 operations and only offers a one time bootstrap to the clients. Once it receives the
above mentioned bootstrap request, it answers with a similar encrypted and authenticated
server bootstrap response msg ESP packet, providing the client with all TESLA parameters
of the upcoming stream. After the 30 seconds elapsed, the data stream phase begins.
In this phase, the server starts sending out TESLA authenticated ESP packets. As payload
for each packet, we define the following test data: The server reads and process a file called
words.txt. It splits it into an array, each entry containing a line of this text file. For each
line, it then emulates a data stream by broadcasting the line contents as the payload of a
ESP packet. Instead of sending all packets in one TESLA interval, we will send one packet
in each interval. Thus, the hash chain at the sender must be at least the amount of lines in
the file. Additionally, to allow authenticating the last d packets, where d is the disclosure

48

6.4 Test Application

delay, the sender’s hash chain length n is calculated using this formula:

n = line count(”words.txt”) + d (6.1)

The last d packets simply include the payload ”NULL”. On the other side, the receivers
listen for the broadcasted TESLA packets and authenticate them using the previously re-
ceived TESLA parameters. For test purposes, they simply print the line contents upon
authentication.
Since the Test Application primarily consists of configuration and message parsing, it won’t
be presented as detailed as the libraries. An introduction into the important TESLA ESP
extension and IPv6 module is given below.

6.4.1 TESLA ESP Extension

i n t t e s l a s i g n (vo i d ∗ auth data , u8 ∗ dest , un s i gned char ∗ data ,
un s i gned i n t d a t a l e n) {
t e s l a c o r e s t a t e ∗ s t a t e = (t e s l a c o r e s t a t e ∗) au th da ta ;
t e s l a a u t h h e a d e r ∗ header ;
t e s l a c o r e g e t a u t h h e a d e r (s t a t e , data , d a t a l e n , &header) ;
i n t l e n = t e s l a a u t h h e a d e r t o i c v (header , d e s t) ;
t e s l a a u t h h e a d e r f r e e (heade r) ;
r e t u r n l e n ;

}
ESP RESPONSE t e s l a v e r i f y (vo i d ∗ auth data , un s i gned char ∗ d i g e s t ,

un s i gned char ∗ data , un s i gned i n t d a t a l e n) {
t e s l a c o r e s t a t e ∗ s t a t e = (t e s l a c o r e s t a t e ∗) au th da ta ;
t e s l a c o r e v e r i f y (s t a t e , data , d a t a l e n , d i g e s t) ;
r e t u r n ESP MANUAL; // TESLA w i l l c a l l nex t s t e p

}

// 44 by t e s − 4 by t e s i n t e r v a l | 20 by t e s MAC | 20 by t e s D i s c l o s e d Key
e s p a u t h a l g o t e s l a s h a 4 4 = { ”AUTH TESLA 44” , 44 , t e s l a s i g n , t e s l a v e r i f y } ;
// 68 by t e s − 4 by t e s i n t e r v a l | 32 by t e s MAC | 32 by t e s D i s c l o s e d Key
e s p a u t h a l g o t e s l a s h a 6 8 = { ”AUTH TESLA 68” , 68 , t e s l a s i g n , t e s l a v e r i f y } ;

At this point, the TESLA and ESP library are decoupled and TESLA authenticated ESP
packets are not generatable yet. The Test Application solves this problem by registering two
new ESP authentication algorithms: AUTH TESLA 44 (44 bytes ICV) and AUTH TESLA 68
(68 bytes ICV). While they are different regarding signature size, they both use the same
verify and sign functions. This can be achieved due to auth data being a pointer to a full
TESLA instance, knowing the size of the MAC and disclosed key.

6.4.2 Sending IPv6 packets

An important part of the Test Application is receiving and sending ESP packets in the
bootstrap and streaming phase. On Linux, sending network packets can be achieved using
various calls to the socket API, which is also defined by the POSIX standard. In the follow-
ing paragraph, an overview how user space applications can send and receive custom IPv6
packets is given:

49

6 Implementation

Sending Similar to normal TCP und UDP sockets, an application can create a so called
RAW SOCKET [Mic]:

i n t sock = sock e t (AF INET6 , SOCK RAW, IPPROTO ESP) ;

Listing 6.9: Opening a raw socket with protocol number 50 (IPPROTO ESP)

This type of socket allows applications to send arbitrary payloads (e.g ESP or AH headers),
wrapped by an automatically generated IP header. The last parameter hereby specifies the
protocol number, according to the internet protocol number list by the IANA [Int]. Once
this socket is opened and an ESP is generated by the library, a call to the sendto function
sends it:

s t r u c t s o c k add r i n 6 de s t ;
d e s t . s i n 6 f am i l y = AF INET6 ;
i n e t p t o n (AF INET6 , ” : : 1 ” , &(de s t . s i n 6 a d d r)) ;

e s p hd r ∗ hdr ; //253 = r e s e r v e d next heade r
i n t h d r l e n = e s p h d r i n i t (route , &hdr , 253 , data , d a t a l e n) ;
s endto (sock , hdr , hd r l e n , 0 , &dest , s i z e o f (s t r u c t s o c k add r i n 6)) ;

Listing 6.10: Sending ESP Headers to address ::1

Hereby, it uses the common sockaddr in6 struct to specify the destination IP. The source IP
is filled in automatically, which is not suited for node local tests, since all packets will have
the same source IP. Instead, we utilize the bind function to set it manually:

s t r u c t s o c k add r i n 6 s r c ;
s r c . s i n 6 f am i l y = AF INET6 ;
i n e t p t o n (AF INET6 , ” : : 2 ” , &(s r c . s i n 6 a d d r))
b ind (sock , &s rc , s i z e o f (s t r u c t s o c k add r i n 6)

Listing 6.11: Setting the source IP via bind

All outgoing packets are routed to the default network interface, which often is either eth0
for cable connections or wlp1s0 for wireless connections. To change this behavior, it can
either be changed on the Linux platform by using the ip tool or directly on the socket by
setting the SO BINDTODEVICE option to an interface name. Outgoing packets directed
to an multicast address even need to have the socket option IPV6 MULTICAST IF set
correctly.

// L inux P la t fo rm l e v e l − IP CLI Tool
i p −6 r ou t e add f f 0 1 : : 1 dev l o
// or on so ck e t Leve l , where i f a c e i s ” eth0 ” or s i m i l a r
s e t s o c k op t (socke t , SOL SOCKET , SO BINDTODEVICE , i f a c e , s i z e o f (i f a c e)) ;
// Mu l t i c a s t a d d r e s s e s on l y : i f i n d e x i s the i n t e r f a c e i ndex o f e . g ” eth0 ”
s e t s o c k op t (socke t , IPPROTO IPV6 , IPV6 MULTICAST IF , &i f i n d e x , s i z e o f (i f i n d e x))

Receiving The logic to receive IPv6 packets follows the same principle:

i n t s o c k e t = sock e t (AF INET6 , SOCK RAW, IPPROTO ESP) ;
i n t e s p l e n = recv f r om (socket , b u f f e r , b u f f e r l e n , 0 , s r c add r , s r c a d d r l e n) ;

Listing 6.12: Opening a raw socket and receive a packet

50

6.5 Evaluation

This socket now will receive all ESP packets. However, especially in the bootstrap phase,
clients just want to receive packets from the server IP: A similar call to bind is required,
which constrains received packets to a specific destination IP. Unfortunately, this does not
seem to work for IPv6 multicast IPs. Generally speaking, receiving packets via multicast
IPs requires the socket to join the multicast group first:

s t r u c t ipv6 mreq command ;
command . i p v 6m r i n t e r f a c e = i f i n d e x ; // Network I n t e r f a c e i ndex
memcpy(&command . i p v6mr mu l t i add r , &addr−>s i n 6 add r , s i z e o f (s t r u c t i n 6 add r)) ;
s e t s o c k op t (socke t , IPPROTO IPV6 , IPV6 ADD MEMBERSHIP , &command , s i z e o f (command)) ;

Listing 6.13: Join an IPv6 multicast group

The Test Applications wraps this logic into a module ipv6.{c | h}, providing IPv6 receive
and send functions. It also contains additional logic, for example keeping the socket state
and setting specific timeouts for receive calls, which are not explained in more detail.

6.5 Evaluation

With the above mentioned implementations in place, this chapter focuses on the evaluation
of it. It starts with testing the Test Application on the FIT IoT-LAB[IL18b] platform.
In different scenarios, multiple A8 nodes (600 Mhz CPU and 256 MB RAM) are deployed
and setup to test the unicast-based bootstrap and the multicast-based TESLA data stream.
Following up, the hash chain performance is analyzed on A8 nodes regarding it’s overall
resource usage, including the creation time and required storage. The chapter is concluded
with an overview of possible different implementation strategies and opportunities.

6.5.1 IoT-Lab Test

A8 Node
Server/Client
<loopback>

IPV6 Unicast Bootstrap

IPV6 Multicast Stream

ff01::1

Single Node Test Node to Node Test

A8 Node
Server

<eth0>

A8 Node
Client

<eth0>

IPV6 Unicast Bootstrap

IPV6 M
ulticast Stream

A8 Node
Server

<eth0>

A8 Node
Client

<eth0>
...

A8 Node
Client

<eth0>

IPV6 Unicast BootstrapIP
V6

Uni
ca

st
 B

oo
ts

tra
p

IPv6

Multicast

Stream

Node to Multiple Nodes Test

Figure 6.5: Iot-LAB Test Setup

To verify that the Test Application, including the utilized libraries, work correctly, the FIT
Iot-LAB is used to create multiple different test scenarios. All test scenarios use A8 nodes,
which are based on the ARM architecture and feature a high-performance ARM Cortex-A8

51

6 Implementation

microprocessor, running at a clock speed of 600 Mhz, and 256 MB of RAM [IL18a]. In
general, these nodes are very powerful in comparison to some devices utilized in the IoT
world. They are even able to run a full sized Linux distribution. Thus, in a real world
example they would be seen as larger control nodes. In the Phillips Hue example of chapter
1.1, such node is a perfect candidate for a bridge controller, whereas the actual lights may
run on a light platform such as RIOT OS. If not mentioned otherwise, the following TESLA
parameters will be chosen for the tests:

• Interval Duration: 200ms

• Disclosure Delay: 4

• Algorithm: SHA256 (Message, Message Key and Hash Chain)

• Hash Chain length: Defined by amount of lines in words.txt

The test scenarios will consist of a single node test, a single node to single node test and a
larger single node to multiple nodes test, as shown in Figure 6.5.

Single Node Test The first test tries to eliminate any external routing or network problems
by running the sender and client application on the same node. Both applications are
configured to use the loopback interface, which makes sure the traffic does not leave the
node. Additionally, a link-local IPv6 multicast address and a localhost IPv6 address are
used for the bootstrap and data stream phase.
After the single node experiment started and the projects were compiled for the ARM
platform, the following setup has to be executed on the node:

i f c o n f i g l o mu l t i c a s t # Enab le mu l t i c a s t f o r Loopback
i p −6 addr add : : 2 dev l o # Add anothe r IPv6 add r e s s to Loopback
i p −6 r ou t e add f f 0 1 : : 1 dev l o # Add rou t e to LO f o r IPv6 mu l t i c a s t add r e s s

Listing 6.14: Linux Loopback Setup Process

While the first simply enables multicast support on the loopback interface, the next two lines
add a new address and route. The address is needed to identify and make the requesting
client addressable, since the server already uses the localhost IP ::1. The last line adds a
special route for the address ff01::1, leading to the loopback device (Surprisingly, this change
was necessary, although the underlying socket already specified lo as the outgoing/incoming
interface. Without this line, the client was not able to receive packets). After the setup,
both binaries are run on the same node:

IFACE=l o IP =: :1 BROADCAST IP=f f 0 1 : : 1 . / t e s l a s e r v e r
IFACE=l o IP =: :2 BROADCAST IP=f f 0 1 : : 1 SEVER IP=: :1 . / t e s l a c l i e n t

Listing 6.15: Test Application Runtime Configuration

The end results are very positive: The client could correctly be bootstraped by the server via
unicast messages. In the data streaming phase, the client was able to receive and authenticate
all packets, printing the whole content of the words.txt file.

s e r v e r − F i r s t packe t c o n t a i n s the l i n e ” He l l o ” :
15 : 01 : 06 INFO s r c / s e r v e r /main . c : 1 0 5 : [1541685666756] Send ing packe t 0
c l i e n t − F i r s t packe t a u t h e n t i c a t e d :

52

6.5 Evaluation

15 : 01 : 07 INFO s r c / c l i e n t /main . c : 2 9 : [1541685667589] Au then t i c a t ed L ine : He l l o

Listing 6.16: Application Log Syllabus

The above log syllabus shows, that the client authenticated the message at a correct point
in time: The server sent the first packet at Ts = 1541685666.756 and the client authentic-
ated it at Tr = 1541685667.589. The earliest point in time on which the packet would be
authenticable, is Tauth = Ts + (200 ∗ 4) = 1541685667.556, ignoring processing and transfer
delays. Due to Tr ≥ Tauth, a correct authentication process can be assumed.

Node to Node Test The next test happens between two A8 nodes. One is selected as the
server node and the other one is the client node. For this test, no setup is required: Every
A8 node has its own IP, so no additional IP has to be added to an interface. Additionally,
multicast traffic is already routed to eth0 by default, so no route has to be added. The
IPv6 multicast address is changed to ff0e::1, which is listed in the global address list and
allows the routing/forwarding of packets outside of the node/link [ian18]. After inspecting
the global IPs of both nodes, the applications are started with the following configuration:

IFACE=eth0 IP =2001 :660 :5307 :3000 : : 67 BROADCAST IP=f f 0 e : : 1 . / t e s l a s e r v e r
IFACE=eth0 IP =2001 :660 :5307 :3000 : : 68 BROADCAST IP=f f 0 e : : 1 \

SERVER IP=2001 :660 :5307 :3000 : : 67 . / t e s l a c l i e n t

Listing 6.17: Test Application Runtime Configuration

The results are equally positive. The bootstrap and data stream were successfull. A small
difference to the previous test result was the following: The previous link-local bootstrap
yielded a clock lag of 16ms for the client (While theoretically, the clock lag should be 0, it
includes the duration of the bootstrap packet’s sending, encryption and verifying process).
In this test, the bootstrap resulted in a clock drift of 24ms. This difference is due to the
small network delay between the nodes, which are already close to each other location-wise.
However, this had no impact on the authentication process and is expected.

Single Node to 7 Nodes Test The last test ensures the functionality of the IPv6 multicast
broadcast by running 7 clients in total. Furthermore, the test data size is increased: The
previous words.txt contained 12 lines with a single word per line. This amount is increased to
100 lines with one word per line, resulting in a longer hash chain and transmission duration.

IFACE=eth0 IP =2001 :660 :5307 :3000 : : 67 BROADCAST IP=f f 0 e : : 1 . / t e s l a s e r v e r
On 7 d i f f e r e n t c l i e n t s :
IFACE=eth0 IP=<node ip> BROADCAST IP=f f 0 e : : 1 \

SERVER IP=2001 :660 :5307 :3000 : : 67 . / t e s l a c l i e n t

Listing 6.18: Test Application Runtime Configuration

The test was also successful and every client authenticated all packets. Due to the longer
transmission, the following phenom occured: To emulate processing time, the Test Applica-
tion server simply sleeps Tint milliseconds after sending a packet, where Tint is the interval
duration. Due to additional timing overhead, this simple timer was not aligned correctly
anymore, which made the server skip an interval. Thus, the client did not receive a disclosed
key for a previous interval. However, with the help of a later disclosed key, it was able to
recalculate the lost disclosed key and authenticate as usual (Figure 6.6).

53

6 Implementation

Figure 6.6: Client Log File

With the above tests, the general functionality of both libraries has been successfully tested
and verified. As an additional safety test, the tool Valgrind was used to determine if any
memory leaks occur when running the application [val18]. Valgrind provides memory leak
detection by hooking into various functions of the standard library and is able to determine
when a pointer to some allocated space is lost or never freed. However, the usage of Valgrind
on an A8 node was not possible: Valgrind significantly slows down the code due its hooking
and analyzing system. Thus, the client application was not able to receive all the sent
packets. To circumvent this, the Valgrind test was run on a more powerful, conventional
laptop, where the slow down was not as significant. The test yielded no possible memory
leaks.

6.5.2 RIOT Implementation Test

As an additon, a cross-platform test between this and Christopher Schütze’s implemena-
tion [Sch] has been accomplished. The test occured on a single Linux machine, on which the
Linux implementation was started as the server and the RIOT implementation was started
as a native client. The communication between both processes was established with the help
of a TUN/TAP virtual network interface.
The bootstrap phase required some changes on behalf of both. While Schütze’s implement-
ation had a seperate two-way message exchange for the time synchronization, the Linux
one included this process in the two-way TESLA bootstrap exchange, as seen in Figure 5.2.
Additionally, the Linux version used an, generally optional, ESP encryption for the initital
bootstrap, which has been removed due to incompatability. After the bootstrap message
structs and the PSKs had been synchronized and exchanged, the bootstrap was success-
ful. The RIOT client was able to receive and parse all important parameters. Especially,
the time synchronization presented in chapter 5.2 was a success: While the Linux TESLA
implementation uses absolute unix timestamps for general timekeeping, RIOT uses elapsed
milliseconds since initital boot. Nevertheless, the client was able to correctly calculate an
upper-bound of the sender time.
After the initialization, the attempt to authenticate received packets at the client was not
successful. Both libraries implemented the TESLA ICV differently, resulting in incompat-
abile ESP packets. Due to time constraints, further test runs with compatible headers can
not be documented as part of this thesis.

54

6.5 Evaluation

6.5.3 Hash Chain Performance

On behalf of the sender, the creation and calculation of the hash chain can be considered
as one of the most expensive operations. Afterwards, just 2 cryptographic operations per
outgoing packet are required. To grasp the possibilities of the A8, 5 different hash algorithms
are tested together with 5 different hash chain lengths on a node. A special test program,
which benchmarks the allocation and filling process of a hash chain, is deployed to the
node and is run 3 times per algorithm/hash-chain combination. The test results include the
average creation duration (from memory allocation to a calculcated hash chain, not including
memory freeing), required memory and the theoretical TESLA ICV length (In the case of
the algorithm being used as a hash chain and message HMAC algorithm). The results are
presented in 6.1. For smaller chain lengths e.g 100,000, the algorithm choice seems to have
a rather unessential influence. Thus, if the network and receivers support slighly larger
ICVs, the usage of SHA256 should be preferred over SHA1 for security reasons mentioned
in 2.1. Depending on the RAM utilization, an A8 node is able to store a one million long
SHA256 hash chain (32 MB) and additionally generate and store a second one for the next
transmission in under 4 seconds. With an interval duration of 200ms, this would allow a
total transmission duration of 2 days, 7 hours and 33 minutes with a single bootstrap.
The combination of SHA384/SHA512 with a hash chain length of 5 million exceeded the
RAM capabilities of the A8 node and resulted in a program crash.
The overall results confirm, that an A8 node is a good candiate for a TESLA-based bridge
controller.

6.5.4 Alternative Implementation Strategies

For this prototype, the implementation was split into two user-space libraries and a user-
space application. However, there are some alternative implementation possibilities on
Linux, which are explained below: Besides implementing the TESLA protocol as a stan-
dalone user-space library, a kernel module providing a TESLA Crypto-API implementation
was also considered. When looking at different authentication algorithms, like HMAC, there
is quite a similarity regarding its operations to the TESLA ones. The first operation is
signing: Given an input and a state, an ICV can be calculated. In most of the algorithms,
the state is a secret key with a specific length. The second operation is verifying an input
with its ICV and the same state used to generate the ICV. While it seems like the oper-
ations are nearly identical, the following aspects made an implementation as Crypto-API
authentication algorithm impractical:

A more complex State: In comparison to a simple secret key, the TESLA state is more
complex. It contains multiple different values of different types, including a full size hash
chain for senders. Additionally, packets have to be cached at the receiver and accessed at a
later point in time, making the state bigger, mutable over time and hard to manage.

Delayed Verification required: The Crypto-API provides a well thought out Applic-
ation Programming Interface (API) to register new authentication algorithms. However, it
is unsuitable for TESLA because it requires an immediate verification result, which TESLA
is unable to provide. Thus, a larger internal API change would be necessary to add TESLA
support to the Crypto-API.

Another consideration was the implementation of a TESLA strongSwan plugin [str].
However, it would meet the same missing delayed authentication API problem as men-

55

6 Implementation

Algorithm Hash Size (TESLA ICV Size) Chain Length T̃ime in ms Size

SHA1 20B (44B)

100 7 2 kB
1,000 20 20 kB

100,000 465 2 MB
1,000,000 2,836 20 MB
5,000,000 13,435 100 MB

SHA224 28B (60B)

100 10 2.8 kB
1,000 22 28 kB

100,000 537 2.8 MB
1,000,000 3,620 28 MB
5,000,000 17,335 140 MB

SHA256 32B (68B)

100 10 3.2 kB
1,000 24 32 kB

100,000 539 3.2 MB
1,000,000 3,722 32 MB
5,000,000 18,045 160 MB

SHA384 48B (100B)

100 11 4.8 kB
1,000 43 48 kB

100,000 947 4.8 MB
1,000,000 7,788 48 MB
5,000,000 — 240 MB

SHA512 64B (132B)

100 11 6.4 kB
1,000 43 64 kB

100,000 983 6.4 MB
1,000,000 8,001 64 MB
5,000,000 — 320 MB

Table 6.1: Hash Chain Creation Test Results on an A8 Node

tioned with the Crypto-API. An advantage of a strongSwan plugin would be the support of
G-IKEv2 [Eng].

56

7 Conclusion and Future Work

With the last two chapters, we successfully presented and evaluated a Linux based TESLA
implementation. While it is still a prototype, its design as a library allows other, future
implementations to make use of it. In addition and to support the use of TESLA ICVs in
the ESP protocol, a minimal ESP library was developed, allowing applications to integrate
custom encryption and authentication algorithms. The prototype Test Application connec-
ted both libraries and with the help of raw sockets, a successful bootstrap and TESLA data
stream could be accomplished. Both libraries still have to be treated as prototypes and
should not be considered feature complete or bug free. In detail, the ESP library currently
does not have any kind of traffic selector nor SPD support. The memory usage of the TESLA
library has not been optimized yet: A TESLA receiver currently has to allocate a hash chain
of the same length as the sender’s one, although just a single key would suffice. In addition
to the TESLA data stream as such, two different bootstrap designs, including the possible
use of IKEv2 and G-IKEv2, were proposed. Thus, the thesis did not only combine TESLA
ICVs with ESP, but also presented a possible TESLA IPsec integration. Existing IPsec and
cryptographic suites unfortunately did not have the required extensibility for the addition
of a delayed authentication protocol. A larger API change was impractical for this thesis,
whereupon the standalone prototypes were the preferred approach.
Summarizing, the thesis successfully showed the integration of the TESLA protocol into the
ESP stack on the Linux platform.

TESLA itself turns out to be a very flexible and adaptable authentication protocol. The
parameters allow users and applications to precisely calibrate TESLA to the underlying
scenario. However, one of its biggest disadvantages does not reside in the protocol itself
but rather in a requirement: The need of an initial and a subsequent bootstrap of TESLA
parameters. While this may not be a problem for large senders as seen in chapter 6.5.3, which
can broadcast for multiple days without the need for a re-key process, smaller senders would
suffer from frequently needed re-keying processes. Similar, the required receiver buffering
can also be seen as a rather large disadvantage. Thus, a possible future work could consist
of combining the best properties of some TESLA derivatives, like TESLA++ and inf -
TESLA, into a single one. In this example, the combination of TESLA++ and inf -TESLA
would feature a smaller required receiver buffer, an endless TESLA stream and a better DoS
protection with the drawback of a larger message size and a higher memory footprint at the
sender.
Additionally, future work may deal with a complete TESLA-based smart home scenario,
similar to the Phillips Hue example mentioned in chapter 1.1. This setup then could be used
to analyze and compare different multicast authentication solutions, including the related
work presented in chapter 4.
While the current IPsec and cryptographic backends do not support delayed authentication
protocols yet, it can be considered as future work. This would allow the integration of this
library and possible other protocols, like EMSS and TESLA derivatives.

57

List of Figures

2.1 Visualization of asymmetric and symmetric authentication 7
2.2 Visualization of asymmetric and symmetric multicast authentication 8
2.3 Transport Mode and Tunnel Mode . 9
2.4 ESP Header . 11
2.5 IPsec Inbound and Outbound Traffic Processing Overview 13

3.1 A reversed Hash Chain example K . 16
3.2 A sender broadcasting 4 packets over 3 intervals with a key disclosure delay

of 2 . 19
3.3 Packet Loss Support with a disclosure delay of 2 21

4.1 Dual Offset Key Chains [CAPC16] . 24
4.2 TESLA++ Communication Overview, adapted and modified from [SBBP09] 25

5.1 Application Prototype Roles and Phases . 29
5.2 TESLA Bootstrap Messages and Exchange 30
5.3 IKEv2-based Bootstrap . 32
5.4 G-IKEv2 GSA AUTH Response Headers with TESLA Support 33
5.5 TESLA ICV header and it’s use in ESP . 34
5.6 Simple TESLA Rekeying process . 36
5.7 Advanced TESLA Rekeying process - No packet loss 36

6.1 Implementation Components and Architecture 38
6.2 Structure of the TESLA Library (Some names may be shortened for brevity) 39
6.3 Structure of the ESP Library (Some names may be shortened for brevity) . . 44
6.4 Wireshark deconstructing the ESP packet . 48
6.5 Iot-LAB Test Setup . 51
6.6 Client Log File . 54

59

Bibliography

[BLMQ05] Barreto, Paulo S. L. M. ; Libert, Benôıt ; McCullagh, Noel ; Quisquater,
Jean-Jacques: Efficient and Provably-Secure Identity-Based Signatures and
Signcryption from Bilinear Maps. In: Roy, Bimal (Hrsg.): Advances in Crypto-
logy - ASIACRYPT 2005. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
– ISBN 978–3–540–32267–2, S. 515–532

[CAPC16] Câmara, Sérgio ; Anand, Dhananjay ; Pillitteri, Victoria ; Carmo, Luiz:
Multicast Delayed Authentication For Streaming Synchrophasor Data in the
Smart Grid. In: IFIP International Information Security and Privacy Confer-
ence Springer, 2016, S. 32–46

[Cry] Crypto++ community (Hrsg.): Crypto++ 6.0.0 Benchmarks. Speed
Comparison of Popular Crypto Algorithms: Crypto++ community, https:

//www.cryptopp.com/benchmarks.html

[DR08] Dierks, T. ; Rescorla, E.: The Transport Layer Security (TLS) Protocol
Version 1.2 / RFC Editor. Version: August 2008. http://www.rfc-editor.

org/rfc/rfc5246.txt. RFC Editor, August 2008 (5246). – RFC. – ISSN
2070–1721. – http://www.rfc-editor.org/rfc/rfc5246.txt

[Ekl] Eklektix, Inc. (Hrsg.): Kernel development. lwn: Eklektix, Inc., https:

//lwn.net/Articles/13587/

[Eng] Engelbrecht, Wolfgang: Group Key Management with Strongswan

[Hol18] Holding, Signify: Philips Hue Smart Home Lampen — Philips Hue. https:

//www2.meethue.com/de-de. Version: 2018. – Accessed on 24.10.2018

[ian18] Internet Assigned Numbers Authority: IPv6 Multicast Address Space Re-
gistry. https://www.iana.org/assignments/ipv6-multicast-addresses/

ipv6-multicast-addresses.xhtml. Version: 2018. – Accessed on 08.11.2018

[IL18a] IoT-Lab: A8 open node - FIT/IoT-LAB. https://www.iot-lab.info/

hardware/a8/. Version: 2018. – Accessed on 08.11.2018

[IL18b] IoT-Lab: IoT-LAB: a very large scale open testbed. https://www.iot-lab.

info/. Version: 2018. – Accessed on 24.08.2018

[Int] Internet Assigned Numbers Authority (Hrsg.): Protocol Numbers. IANA
Assignments: Internet Assigned Numbers Authority, https://www.iana.org/
assignments/protocol-numbers/protocol-numbers.xhtml

61

https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://lwn.net/Articles/13587/
https://lwn.net/Articles/13587/
https://www2.meethue.com/de-de
https://www2.meethue.com/de-de
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
https://www.iot-lab.info/hardware/a8/
https://www.iot-lab.info/hardware/a8/
https://www.iot-lab.info/
https://www.iot-lab.info/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Bibliography

[JK03] Jonsson, J. ; Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1 / RFC Editor. Version: February
2003. http://www.rfc-editor.org/rfc/rfc3447.txt. RFC Editor, February
2003 (3447). – RFC. – ISSN 2070–1721. – http://www.rfc-editor.org/rfc/

rfc3447.txt

[KBC97] Krawczyk, Hugo ; Bellare, Mihir ; Canetti, Ran: HMAC: Keyed-Hashing
for Message Authentication / RFC Editor. Version: February 1997. http://

www.rfc-editor.org/rfc/rfc2104.txt. RFC Editor, February 1997 (2104).
– RFC. – ISSN 2070–1721. – http://www.rfc-editor.org/rfc/rfc2104.txt

[Ken05a] Kent, S.: IP Authentication Header / RFC Editor. Version: December 2005.
http://www.rfc-editor.org/rfc/rfc4302.txt. RFC Editor, December 2005
(4302). – RFC. – ISSN 2070–1721. – http://www.rfc-editor.org/rfc/

rfc4302.txt

[Ken05b] Kent, S.: IP Encapsulating Security Payload (ESP) / RFC Editor.
Version: December 2005. http://www.rfc-editor.org/rfc/rfc4303.txt.
RFC Editor, December 2005 (4303). – RFC. – ISSN 2070–1721. – http:

//www.rfc-editor.org/rfc/rfc4303.txt

[KHN+14] Kaufman, C. ; Hoffman, P. ; Nir, Y. ; Eronen, P. ; Kivinen, T.: Internet
Key Exchange Protocol Version 2 (IKEv2) / RFC Editor. Version: October
2014. http://www.rfc-editor.org/rfc/rfc7296.txt. RFC Editor, October
2014 (79). – STD. – ISSN 2070–1721. – http://www.rfc-editor.org/rfc/

rfc7296.txt

[KS05] Kent, S. ; Seo, K.: Security Architecture for the Internet Protocol / RFC
Editor. Version: December 2005. http://www.rfc-editor.org/rfc/rfc4301.
txt. RFC Editor, December 2005 (4301). – RFC. – ISSN 2070–1721. – http:

//www.rfc-editor.org/rfc/rfc4301.txt

[Lam81] Lamport, Leslie: Password Authentication with Insecure Communication. In:
Commun. ACM 24 (1981), November, Nr. 11, 770–772. http://dx.doi.org/

10.1145/358790.358797. – DOI 10.1145/358790.358797. – ISSN 0001–0782

[lin] IoT Developer Survey 2016. https://www.slideshare.net/IanSkerrett/

iot-developer-survey-2016

[Mel] Melnikov, Andrian: A Testbed for Evaluating ID-based Authentication in
Constrained Networks

[Mic] Michael Kerrisk (Hrsg.): RAW(7) Linux Manual Page. Linux Manual Page:
Michael Kerrisk, http://man7.org/linux/man-pages/man7/raw.7.html

[MMPR11] M’Raihi, D. ; Machani, S. ; Pei, M. ; Rydell, J.: TOTP: Time-Based One-
Time Password Algorithm / RFC Editor. Version: May 2011. http://www.

rfc-editor.org/rfc/rfc6238.txt. RFC Editor, May 2011 (6238). – RFC. –
ISSN 2070–1721. – http://www.rfc-editor.org/rfc/rfc6238.txt

62

http://www.rfc-editor.org/rfc/rfc3447.txt
http://www.rfc-editor.org/rfc/rfc3447.txt
http://www.rfc-editor.org/rfc/rfc3447.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc4302.txt
http://www.rfc-editor.org/rfc/rfc4302.txt
http://www.rfc-editor.org/rfc/rfc4302.txt
http://www.rfc-editor.org/rfc/rfc4303.txt
http://www.rfc-editor.org/rfc/rfc4303.txt
http://www.rfc-editor.org/rfc/rfc4303.txt
http://www.rfc-editor.org/rfc/rfc7296.txt
http://www.rfc-editor.org/rfc/rfc7296.txt
http://www.rfc-editor.org/rfc/rfc7296.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
http://dx.doi.org/10.1145/358790.358797
http://dx.doi.org/10.1145/358790.358797
https://www.slideshare.net/IanSkerrett/iot-developer-survey-2016
https://www.slideshare.net/IanSkerrett/iot-developer-survey-2016
http://man7.org/linux/man-pages/man7/raw.7.html
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt
http://www.rfc-editor.org/rfc/rfc6238.txt

Bibliography

[Opea] OpenSSL Foundation, Inc (Hrsg.): /docs/manmaster/man1/enc.html.
OpenSSL Docs: OpenSSL Foundation, Inc, https://www.openssl.org/docs/
manmaster/man1/enc.html

[Opeb] OpenSSL Foundation, Inc (Hrsg.): EVP. OpenSSL Wiki: OpenSSL Found-
ation, Inc, https://wiki.openssl.org/index.php/EVP

[Opec] OpenSSL Foundation, Inc (Hrsg.): OpenSSL. OpenSSL: OpenSSL Found-
ation, Inc, https://www.openssl.org/

[PCTS00] Perrig, A. ; Canetti, R. ; Tygar, J. D. ; Song, Dawn: Efficient authentic-
ation and signing of multicast streams over lossy channels. In: Proceeding 2000
IEEE Symposium on Security and Privacy. S P 2000, 2000. – ISSN 1081–6011,
S. 56–73

[PP18] Park, C. ; Park, W.: A Group-Oriented DTLS Handshake for Secure IoT
Applications. In: IEEE Transactions on Automation Science and Engineering
15 (2018), Oct, Nr. 4, S. 1920–1929. http://dx.doi.org/10.1109/TASE.2018.
2855640. – DOI 10.1109/TASE.2018.2855640. – ISSN 1545–5955

[PSC+05] Perrig, A. ; Song, D. ; Canetti, R. ; Tygar, J. D. ; Briscoe, B.: Timed
Efficient Stream Loss-Tolerant Authentication (TESLA): Multicast Source Au-
thentication Transform Introduction / RFC Editor. RFC Editor, June 2005
(4082). – RFC. – ISSN 2070–1721

[PST+02] Perrig, Adrian ; Szewczyk, Robert ; Tygar, J.D. ; Wen, Victor ; Culler,
David E.: SPINS: Security Protocols for Sensor Networks. In: Wireless
Networks 8 (2002), Sep, Nr. 5, 521–534. http://dx.doi.org/10.1023/A:

1016598314198. – DOI 10.1023/A:1016598314198. – ISSN 1572–8196

[RSA78] Rivest, Ronald L. ; Shamir, Adi ; Adleman, Leonard: A method for ob-
taining digital signatures and public-key cryptosystems. In: Communications
of the ACM 21 (1978), Nr. 2, S. 120–126

[SBBP09] Studer, A. ; Bai, F. ; Bellur, B. ; Perrig, A.: Flexible, extensible, and
efficient VANET authentication. In: Journal of Communications and Networks
11 (2009), Dec, Nr. 6, S. 574–588. http://dx.doi.org/10.1109/JCN.2009.

6388411. – DOI 10.1109/JCN.2009.6388411. – ISSN 1229–2370

[SBK+17] Stevens, Marc ; Bursztein, Elie ; Karpman, Pierre ; Albertini, Ange ;
Markov, Yarik: The first collision for full SHA-1. In: Annual International
Cryptology Conference Springer, 2017, S. 570–596

[Sch] Schütze, Christopher: RIOT TESLA

[Sha85] Shamir, Adi: Identity-Based Cryptosystems and Signature Schemes. In:
Blakley, George R. (Hrsg.) ; Chaum, David (Hrsg.): Advances in Crypto-
logy. Berlin, Heidelberg : Springer Berlin Heidelberg, 1985. – ISBN 978–3–540–
39568–3, S. 47–53

[Ste06] Stevens, Marc: Fast Collision Attack on MD5. In: IACR Cryptology ePrint
Archive 2006 (2006), S. 104

63

https://www.openssl.org/docs/manmaster/man1/enc.html
https://www.openssl.org/docs/manmaster/man1/enc.html
https://wiki.openssl.org/index.php/EVP
https://www.openssl.org/
http://dx.doi.org/10.1109/TASE.2018.2855640
http://dx.doi.org/10.1109/TASE.2018.2855640
http://dx.doi.org/10.1023/A:1016598314198
http://dx.doi.org/10.1023/A:1016598314198
http://dx.doi.org/10.1109/JCN.2009.6388411
http://dx.doi.org/10.1109/JCN.2009.6388411

Bibliography

[str] strongSwan (Hrsg.): strongSwan - IPsec VPN for Linux, Android, FreeBSD,
Mac OS X, Windows. strongSwan Homepage: strongSwan, https://www.

strongswan.org/

[TK05] Thomsen, Søren S. ; Knudsen, Lars R.: Cryptographic hash functions, PhD
thesis, Technical University of Denmark, Diss., 2005

[TNR17] Tiloca, Marco ; Nikitin, Kirill ; Raza, Shahid: Axiom: Dtls-based secure iot
group communication. In: ACM Transactions on Embedded Computing Systems
(TECS) 16 (2017), Nr. 3, S. 66

[val18] Valgrind Home. http://www.valgrind.org/. Version: 2018. – Accessed on
08.11.2018

[WMM+17] Wouters, P. ; Migault, D. ; Mattsson, J. ; Nir, Y. ; Kivinen, T.: Crypto-
graphic Algorithm Implementation Requirements and Usage Guidance for En-
capsulating Security Payload (ESP) and Authentication Header (AH) / RFC
Editor. RFC Editor, October 2017 (8221). – RFC. – ISSN 2070–1721

[WS18] Weis, Brian ; Smyslov, Valery: Group Key Management using
IKEv2 / IETF Secretariat. Version: July 2018. http://www.ietf.

org/internet-drafts/draft-yeung-g-ikev2-14.txt. 2018 (draft-yeung-g-
ikev2-14). – Internet-Draft. – http://www.ietf.org/internet-drafts/

draft-yeung-g-ikev2-14.txt

64

https://www.strongswan.org/
https://www.strongswan.org/
http://www.valgrind.org/
http://www.ietf.org/internet-drafts/draft-yeung-g-ikev2-14.txt
http://www.ietf.org/internet-drafts/draft-yeung-g-ikev2-14.txt
http://www.ietf.org/internet-drafts/draft-yeung-g-ikev2-14.txt
http://www.ietf.org/internet-drafts/draft-yeung-g-ikev2-14.txt

	Introduction
	Timed Efficient Streaming Loss-Tolerant Authentication
	Outline

	Background
	Hash Functions
	Hash Chains
	Authentication
	Multicast Authentication
	Internet Protocol Security
	Transport Modes
	Encapsulating Security Payload
	Encapsulating Security Payload Algorithms
	Authentication Header
	Security Association and operating IPsec
	Internet Key Exchange Protocol V2
	Group Internet Key Exchange Protocol V2

	TESLA
	Sender Configuration
	Bootstrapping Receivers
	Broadcasting Authenticated Packets
	Verifying Packets
	Packet Loss Support
	Scalability
	Denial of Service Attack Vector

	Related Work
	Efficient Multi-chained Stream Signature
	TESLA
	inf-TESLA
	TESLA++
	RIOT TESLA
	Axiom
	Identity-Based Signatures
	Summary

	Design
	Architecture
	Bootstrapping Phase
	IKEv2 and ESP
	Group IKEv2

	Streaming Phase

	Implementation
	Platform and Dependencies
	Linux
	OpenSSL

	TESLA Library
	Configuration and Initialization
	Sign and Verify Operations
	Buffering packets

	ESP Library
	Configuration and Initialization
	Create and Process Packets
	Registering Algorithms
	Test Results

	Test Application
	TESLA ESP Extension
	Sending IPv6 packets

	Evaluation
	IoT-Lab Test
	RIOT Implementation Test
	Hash Chain Performance
	Alternative Implementation Strategies

	Conclusion and Future Work
	List of Figures
	Bibliography

