
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

ARM Virtualization Using

VMware ESXi Hypervisor

For Embedded Devices

Caroline Frank

Draft vom March 17, 2020





INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelorarbeit

ARM Virtualization Using

VMware ESXi Hypervisor

For Embedded Devices

Caroline Frank

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Jan Schmidt, MSc
Dr. Tobias Lindinger (VMware)

Abgabetermin: 04. März 2020





Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München,
March 17, 2020

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift des Kandidaten)





Abstract

One of the fastest-growing sectors in the digital technology market is the embedded
device domain. Embedded devices are simple computing devices that form the basis of
nearly all complex systems. However, embedded device development is limited by issues
such as system complexity, security vulnerabilities, and resource constraints. Virtual-
ization has been used since the 1970s to solve these same issues in mainframes and later
servers and personal computers. This paper aims to answer whether hardware virtual-
ization is a practical solution to the problems embedded devices currently face. First,
the constraints that an embedded hypervisor would need to adhere to are elucidated
and use cases examined for virtualization on embedded devices. A feasibility study was
performed using a modified version of the server domain VMware ESXi hypervisor. The
ESXi hypervisor, initially only capable of running on x86 processors, was modified to
run on ARM processors, referred to as ESXi-ARM in this work to differentiate from
ESXi for x86.

The ESXi-ARM hypervisor used for testing in this paper is a in-development, pre-
release version with minimal performance optimization work done. This prototype
ESXi-ARM hypervisor was found to be suitable for some embedded devices. Using
the benchmarking suites LMbench3 and MiBench, it was found that the ESXi-ARM
hypervisor on the MACCHIATObin Single Shot development board equipped with an
ARMv8 processor has only modest virtualization overhead compared to native execu-
tion. Additionally, ESXi-ARM was able to host up to five virtual machines, with variable
virtualization overhead depending on the application. Using Linux’s cyclictest, it was
determined that ESXi-ARM increased the scheduling latency, which lowered the deter-
ministic behavior of the system and increased the worst-case execution time, both crucial
characteristics of real-time devices. Future work on the prototype ESXi-ARM hypervisor
should focus on improving the scheduling policy for devices that have real-time needs.

vii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Structure of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Virtualization Definitions and Notations . . . . . . . . . . . . . . . . . . . 3

2.2 Popek and Goldberg Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Functions of a Hypervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Context Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Processor Mode Switching . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Interrupt Controller Management . . . . . . . . . . . . . . . . . . . 11

2.3.5 Scheduling and Core Management . . . . . . . . . . . . . . . . . . 12

2.3.6 Device Emulation and Assignment . . . . . . . . . . . . . . . . . . 12

2.3.7 Memory Virtualization and Management . . . . . . . . . . . . . . 13

2.3.8 Energy Management . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Virtualization for Embedded Devices 17

3.1 What Are Embedded Devices? . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Embedded System Design Requirements . . . . . . . . . . . . . . . . . . . 17

3.2.1 Criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Real Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Requirements and Challenges of an Embedded Hypervisor . . . . . . . . . 19

3.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Secure Communication and Isolation . . . . . . . . . . . . . . . . . 20

3.3.3 Real-time Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Virtualization Use Cases for Embedded Devices . . . . . . . . . . . . . . . 22

3.4.1 Coexisting Operating Systems . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Dynamic Resource Management . . . . . . . . . . . . . . . . . . . 24

3.4.3 Sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Contents

4 Research Design and Methodology 31
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 ESXi Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Operating System Configuration . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Virtual Machine Configuration . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Results and Analysis 39
5.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Scheduling Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Microbenchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Local Communication Bandwidth . . . . . . . . . . . . . . . . . . 49

5.4 MiBench Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.1 Automotive and Industrial Control . . . . . . . . . . . . . . . . . . 50
5.4.2 Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.4 Office . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.6 Telecommunications . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion 59
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

List of Figures 63

Bibliography 67

Bash Script 73

x



1 Introduction

1.1 Motivation

Many embedded systems are striving to become more intelligent and offer greater func-
tionality due to pressures such as market competition and resource constraints. As these
systems become smarter and integrate better with their environment, they require more
complex embedded devices to support this functionality. Market Research Future pre-
dicts the embedded software market to grow from $10 Billion in 2016 to $19 Billion by
2022, at an estimated compound annual growth rate of 9% [Fut19]. However, according
to this same report, growth is constrained by processing power, battery usage, memory,
safety, security, real-time constraints, and growing hardware and software complexity
[Fut19]. Several studies on embedded systems have proposed virtualization to miti-
gate these constraints as this technology has been used since the 1970s to encapsulate
functionality in the server and computer domains [Hei08, LX15, IDC14]. Nevertheless,
embedded systems have fundamental differences to servers and computers in their pur-
poses, design, and goals. A more in-depth analysis of requirements of embedded systems
is warranted to define constraints that an embedded hypervisor must adhere to and
evaluate use cases for virtualization [LX15].

1.2 Scope of this Work

The x86 processors are based on a complex instruction set computer architecture (CISC)
and were first virtualized in 1998 by VMware. Virtualization had an enormous impact
in the server space, such as lowering cost, increasing security, and simplifying manage-
ment [VMw07]. Although the x86 is still the leading processor of today’s servers and
personal computers, reduced instruction set computer (RISC) based architectures lead
the embedded and mobile devices market due to higher efficiency and lower energy con-
sumption, leading to less heat generation [Sch19]. Recent changes in the instruction
set architecture (ISA) and increases in memory and processing power for RISC-based
processors have opened up the possibility of virtualizing embedded devices.

Of particular interest are processors that have built-in virtualization support, which
increases the prospect of an efficient virtualization solution. ARM Holdings released
its first core, the ARMv7, with virtualization extensions in 2010. Promising results
have been published based on XEN/ARM and KVM/ARM hypervisors with modest
performance and power costs compared to x86-based Linux virtualization on multicore
hardware [BNT17]. The newer ARMv8 ISA processors have additional hardware virtu-
alization extensions with relatively fewer performance studies compared to ARMv7.

1



1 Introduction

Problem
statement and
contributions

This work aims to determine whether hardware virtualization is a potential solution
to the problems faced by embedded devices. Contributions of this work are to better
define the requirements, use cases, and limitations of virtualization for embedded devices.
Further, to examine the viability of an embedded hypervisor, this work evaluates the
performance of a prototype version of VMware’s ESXi hypervisor modified to run on
an ARMv8 ISA CPU. Finally, potential areas of work that are required to implement
ESXi-ARM as an embedded hypervisor are identified.

1.3 Structure of this Work

Chapter 2 begins by providing an introduction to virtualization definitions and nota-
tions, defining the fundamental differences of hypervisors and the basics of hardware
virtualization. Thereafter, the chapter discusses the principal functions of a hypervi-
sor and potential areas of overhead. Chapter 3 provides an overview of the embedded
devices landscape by defining the different embedded domains and the design demands
of different subdomains. Further in this chapter, the requirements and challenges of
an embedded hypervisor are surveyed, and use cases of virtualization in the embedded
domain are discussed.

These introductory chapters are meant to give the background necessary to evaluate
an embedded hypervisor. Chapter 4 provides the methodology and configurations of
benchmarking the prototype ESXi-ARM hypervisor on the MACCHIATObin Single Shot
development board. Results from the benchmarks are found in chapter 5. The final
chapter 6 evaluates ESXi-ARM as an embedded hypervisor and identifies future research
areas.

2



2 Background

The following chapter reviews virtualization fundamentals with focus given to hardware
virtualization. First, section 2.1 introduces the basic virtualization techniques and type
1 and type 2 hypervisor architectures. The Popek and Goldberg requirements of a
virtual machine are defined next in section 2.2. Section 2.3 then focuses on the functions
of a type 1 hypervisor and ARMv8-A hardware extensions to clarify hypervisor design
choices and how these design choices can affect system performance.

2.1 Virtualization Definitions and Notations

Virtualization is the separation of a service request from the underlying physical delivery
of that service [VMw07]. Virtualization technology can be implemented at different
abstraction levels, such as memory, operating system, or network virtualization, and
within different domains, such as desktop or server virtualization. However, almost all
virtualization solutions are based on three basic techniques: multiplexing, aggregation,
and emulation [BNT17].

• Multiplexing is the process of exposing one resource multiple times. There are
two variants of multiplexing. The first occurs in space, such as by partitioning a
physical resource among virtual entities. The second variant occurs in time, by
scheduling the physical resource temporarily to virtual entities [BNT17].

• Aggregation is the process of combining multiple physical resources to appear as
a single resource or abstraction such as storage virtualization [BNT17].

• Emulation relies on software to expose a virtual resource that corresponds to a
physical device that may or may not be present. The virtual resource exposed may
also be different than the physical one [BNT17].

Hardware virtualization concerns itself with the creation of one or more virtual com-
puting environments directly on a physical device, known as the host device. The virtu-
alization software layer, known as the hypervisor, creates a simulated computer environ-
ment, known as a virtual machine (VM). The VM is capable of executing software such
as applications and complete operating systems (OS) [BNT17]. Each VM is managed
by a virtual machine monitor (VMM), which is a part of the hypervisor. The hypervisor
works together with the VMMs to partition and assign the physical resources such as
central processing unit (CPU) time, memory, and Input/Output (I/O) devices among
the VMs [VMw07].

3



2 Background

Figure 2.1: The three fundamental techniques to virtualization, adapted from [BNT17]
.

There is unavoidable overhead associated with hardware virtualization. The perfor-
mance of a virtualized environment compared to a native (non-virtualized) environment
depends strongly on the implementation and architecture of the hypervisor [VMw07].
There are two types of hypervisor architectures, classified on their location in the com-
puting system.

A type 1 hypervisor sits directly above the host’s hardware and is thus known as a Na-
tive or Bare Metal hypervisor. Type 1 hypervisors are in direct control of all hardware
resources and integrate essential components of the OS, such as the kernel [BNT17].
Type 2 hypervisors, also known as Hosted hypervisors, run on extended hosts, meaning
the host device has an OS on which the hypervisor software runs. For type 2 hypervisors,
the host OS has sole responsibility for loading the hypervisor and communication with
the hardware. However, the allocation of resources and the creation of virtual environ-
ments is typically performed by both the host OS and the type 2 hypervisor [BNT17].
The OS running in a VM on type 1 and type 2 hypervisors is known as the guest OS.

2.2 Popek and Goldberg Theorem

Popek and Goldberg defined the requirements of a VM as ”an efficient, isolated, du-
plicate of the real machine” in their 1974 paper, Formal Requirements for Virtualizable
Third Generation Architectures [PG74]. Popek and Goldberg further defined the three
characteristics of a VMM as providing an environment essentially identical to the origi-
nal machine, with only minimal decreases in speed and where the VMM is in full control
of system resources [PG74]. The last characteristic necessitates that a program in a VM
cannot access resources that are not explicitly allocated to it and that the VMM can
regain control of resources already allocated to a VM [PG74].

For a virtualized system to fulfill the isolation requirement, instructions from a VM
that could potentially interfere with another VM residing on the same host device need

4



2.2 Popek and Goldberg Theorem

Figure 2.2: Comparison of a system virtualized using a type 1 hypervisor and a type 2.
Arrows represent instruction flow.

to be modified to prevent unwanted interactions and unsafe operations. For a VM en-
vironment to be a duplicate of the real machine, instructions executed in a VM have
to have the same effect as when they are executed on a native system. Finally, for a
virtualized system to be efficient, a statistically dominate subset of the virtual proces-
sor’s instructions must be executed directly by the real processor without hypervisor
intervention [PG74].

To understand how a hypervisor achieves hardware virtualization, it is important to
understand how instructions are executed. The CPU is the hardware that carries out
instructions of a computer program by performing logic, controlling, and input/output
operations. In a native device, the OS is responsible for communicating directly with
the hardware, including scheduling instructions to execute on the CPU. A CPU executes
instructions in different protection domains to protect data from faults and malicious
behavior. Although most CPUs now have more than two execution modes, in essence,
the modes can be divided into Kernel and User mode. Kernel mode is reserved for OS
instructions and is the most privileged domain, allowing direct communication with the
underlying hardware. Application instructions execute in User mode but can request
OS services such as reading data from memory. In a virtualized device, the hypervisor
executes in Kernel mode so that it can directly control hardware and manage resources
for different VMs. All programs inside a VM, including the guest OS, is de-privileged
to run in User mode. However, certain OS instructions need to be executed in Kernel
mode to be executed properly, and often, a guest OS inside a VM does not know it is
virtualized. A mechanism needs to be in place for these instructions to result in a trap,
a type of synchronous interrupt which informs the hypervisor that it needs to intervene.

The set of instructions, O, in a instruction set architecture (ISA) can be divided into
three sets of classes, O = P ∪ S ∪ I [PG74, Xia16] where P, S, and I are defined as:

• Privileged instructions are those that can only be executed in Kernel mode,

5



2 Background

thus always trap when executed in guest mode [Xia16].

• Sensitive instructions are those that may threaten the correctness of a vir-
tual environment if they do not result in a trap. These are further divided into (1)
control-sensitive instruction, which manipulate the processor or memory configura-
tions and (2) behavior-sensitive instruction, whose results depend on the processor
mode [Xia16].

• Innocuous instructions are those that can be executed in any mode without
concern to correctness [Xia16].

According to Popek and Goldberg’s Theorem, if all sensitive instructions are also priv-
ileged, then a system is classically virtualizable by trapping all privileged instructions,
see Figure 2.3. Trapping all privileged instructions will also trap all sensitive instructions
since S ⊆ P [PG74]. However, this criterion is rarely met for most ISAs, necessitating
additional handling of sensitive instructions that are not privileged. Three techniques
have been developed to support efficient virtualization.

Figure 2.3: Popek and Goldberg’s Definition of Classically Virtualizable and Non-
Virtualizable ISAs

Technique 1 - Full Virtualization with Binary Translation

Full virtualization of a system requires that the complete underlying hardware is simu-
lated, including the entire instruction set, input/output operations, interrupts, memory
access, etc. Direct binary translation (DBT) uses emulation to translate from the source
to the target instruction set through recompilation. In a system virtualized using DBT,
the hypervisor examines all instructions from a guest OS instructions for sensitive in-
structions and translates them into safe, equivalent instructions before scheduling them
to be executed by the CPU [Dan18].

The first successful virtualization of the x86 architecture used a combination of binary
translation and direct execution, known as trap-and-emulate [VMw07]. In this approach,
non-sensitive instructions are scheduled directly to be executed by the CPU while all

6



2.3 Functions of a Hypervisor

sensitive instructions must be examined by the hypervisor. This approach enforces
encapsulation of the VM and enables any unmodified guest OS that runs on the bare
metal hardware to execute in a VM. However, analyzing and translating VM instructions
requires significant software complexity, processing time, and energy [SGB+16]. The
slowdown, Sv, of a system using direct execution with binary translation is related to the
fraction of privileged instructions executed by a VM, fp, and the number of instructions
needed to emulate a privileged instruction, Ne [Men05].

Sv = fp(Ne–1) + 1 (2.1)

Technique 2 - Paravirtualization

Paravirtualization was developed to avoid the overhead from analyzing and translating
instructions required by binary translation. Paravirtualization is based on the modifica-
tion of the guest OS source code to replace the sensitive non-privileged instructions with
special hooks to directly interface with the hypervisor, known as hypercalls (hypervisor
calls) [VMw07]. The hypervisor provides an interface for communication with the guest
OS that includes information on how to execute the instructions [BKL10]. Like binary
translation, paravirtualization requires no specialized hardware to virtualize an ISA. It
also has significant performance benefits over binary translation since instructions no
longer need to be analyzed prior to execution. However, modifying the guest OS source
code is often problematic since any changes to OS source code requires recertification
that no errors or vulnerabilities occurred through the modifications [Xia16]. Also, most
OS vendors do not publicize their source code, significantly limiting which OSs can be
virtualized.

Technique 3 - Hardware-Assisted Full Virtualization

Hardware-assisted full virtualization evolved to promote faster VM execution without the
need for guest OS modification. This approach uses a computer’s physical components to
support a hypervisor’s virtualization tasks. Hardware extensions are usually built into
the CPU and simplify virtualization by enabling nested paging, additional execution
modes, and additional instructions [Dan18].

A pure hardware-assisted virtualization approach typically involves a high degree of
VM traps, resulting in high CPU overhead and limited scalability [R19]. A hybrid
approach of hardware-assisted full-virtualization with paravirtualized device drivers has
achieved better performance [R19].

2.3 Functions of a Hypervisor

Type 2 hypervisors usually result in better hardware compatibility because the OS from
the host device is responsible for the device drivers. However, type 2 hypervisors require a
large codebase and suffer from high computational overhead, making them unsuitable for

7



2 Background

Figure 2.4: Taxonomy of Virtualization Techniques

Table 2.1: Advantages and disadvantages of the three basic virtualization techniques.
Virtualization Technique Advantage Disadvantage

Binary Translation - No special hardware needed - CPU intensive to translate OS code on-the-fly
Full Virtualization - Guest OS can remain unchanged - Introduces substantial software complexity

- No special hardware needed - Guest OS must be modified
Paravirtualization - Hypercall communication (usually) - OS (potentially) limited to open-source ones

has better performance than DBT - Modified OS must be re-certified

Hardware-Assisted - Guest OS can remain unchanged - Relies on specialized hardware
Full Virtualization - Hypervisor can be implemented

with less software complexity

embedded devices. For this reason, the remainder of this paper concerns itself exclusively
with type 1 hypervisors.

Hypervisors must simulate entire computing environments to fulfill Popek and Gold-
berg’s requirements. Apart from instruction trapping, discussed in section 2.2, functions
performed by type 1 hypervisors include, but are not limited to: context switching, ex-
ception handling, interrupt controller management, managing virtual exceptions, mem-
ory management, memory translation, and device emulation and assignment [ARM17a].

2.3.1 Context Switching

Context switching is the process of saving the currently executing task state so that it can
be resumed from the same point at a later time. Context switches are computationally
intensive, requiring a significant amount of administration work such as saving and
loading registers and memory maps, updating various tables and lists, etc. Additional
performance is lost due to running the task scheduler, TLB flushes, and indirectly sharing
the CPU cache between multiple tasks.

In a native environment (non-virtualized), context switches occur due to processor
mode switching, multitasking schemes, and interrupt handling. Virtualizing a system
leads to additional context switches, such as when a hypervisor must intervene during
normal VM execution or when switching the currently executing VM on a processor to
a different VM. A critical difference in hypervisor performance is how often a context
switch is required during normal VM execution and how long those context switches
take.

On ARMv8 systems, an optimistic lower bound is determined by the amount of time
required to perform 33 instructions that are responsible for saving and restoring 31x64-bit

8



2.3 Functions of a Hypervisor

general-purpose registers, 32x128-bit floating-point/SIMD registers, two stack pointers,
and the pending and active states of private interrupts on the core [ARM19, ARM17a].
In reality, the time required for a context switch is much higher due to the time required
for setting up a new context environment or finding a saved context.

2.3.2 Processor Mode Switching

The processor switches modes from User to Kernel when an illegal instruction is executed
or when an exception occurs, synchronous or asynchronous. The mechanism to switch
control to the kernel always follows the order: (1) change the processor to kernel mode;
(2) save and reload the memory management unit (MMU) to switch to the kernel address
space; and (3) save the program counter and reload it with the kernel entry point.
Returning to User mode occurs in the following order: (1) change mode from kernel
to user; (2) reload MMU state; and (3) load PC that was saved on entering. Not all
processor mode switches require a full context switch, so depending on the task, guest
OS, hypervisor, and hardware; processor mode switches can lead to varying amounts of
overhead.

Figure 2.5: Visualization of the instruction flow when an exception occurs. The proces-
sor must switch from User to Kernel mode to invoke the exception handler
routine (or interrupt handler). Once the exception has been handled, the
processor switches back to User mode.

ARMv8 processors simplify processor mode switching by the introduction of additional
execution modes, renamed exception levels (EL), see Figure 2.6. EL3 is the most secure
mode and is reserved for the secure monitor. The secure monitor is an additional security
feature available on certain ARM processors and is responsible for requesting processor
mode switches. It allows the implementation of TrustZones that divides the world into
secure and normal world. Each physical processor core provides a secure and non-secure
processing element (PE), covering the processor, memory, and peripherals. In the normal
world, EL2 is reserved for a hypervisor while EL1 is reserved for OSs. All other software
and applications run in EL0. Virtualization extensions can only be accessed from EL2
or EL3 [ARM17a, ARM19].

9



2 Background

Figure 2.6: Exception levels in AArch64, adapted from [ARM16].

2.3.3 Exception Handling

Exception handling is the process of responding to anomalous conditions that require
special processing, disrupting the normal flow of program execution. ARM defines ex-
ception handling as the process of handling synchronous exceptions, those that are raised
internally by the processor during instruction execution. Synchronous exceptions always
trigger a processor mode switch to handle the exception, see figure 2.7.

Figure 2.7: Synchronous exception handling in a non-virtualized system call for ARMv8
ISA. Application executing in User mode (EL0) initiates a system call re-
questing memory using malloc(), which is used to allocate blocks of memory
on the heap. The processor switches to Kernel mode (EL1). Adapted from
[ARM17b].

Synchronous exception handling is especially relevant when applications try to invoke
system calls, which are a programmatic way that applications request services from the
kernel of an OS with well-defined, safe operations. In a native system, the OS would
request a processor mode switch directly from the processor and schedule these instruc-
tions to execute. In a virtualized system, system calls require hypervisor intervention.
The hypervisor invokes an exception handler that decides how to process or emulate the
instructions. System calls can be roughly grouped into six categories: process control,
file management, device management, information maintenance, communication, and
protection.

When an application executing in EL0 needs to request services from the OS in a
native system, it performs a supervisor call (SVC). The OS then requests a processor
mode switch from the secure monitor using a secure monitor call (SMC). In a virtualized

10



2.3 Functions of a Hypervisor

system, the guest OS cannot directly request a processor mode switch from the secure
monitor. The guest OS must first address the hypervisor using a hypervisor call (HVC),
which then invokes an SMC, see Figure 2.8. The required redirection to the hypervisor
in a virtualized system results in execution time overhead compared to native execution.

Figure 2.8: In a native system, applications executing in EL0 request services from the
OS using a supervisor call (SVC). The OS can then directly request services
from the secure monitor using a secure monitor call (SMC). In a virtualized
system the OS must first request services from the hypervisor using a hy-
pervisor call (HVC) which then addresses the secure monitor using an SMC.
Adapted from [ARM17b].

2.3.4 Interrupt Controller Management

In contrast to the previously discussed synchronous exceptions, asynchronous exceptions
come from external sources such as sensors or keyboards. These exceptions are known
as interrupts and typically use a signal to the processor emitted by hardware or soft-
ware, indicating an event that needs immediate attention. The processor responds by
suspending the executing task, saving task-related data, and transferring control to the
interrupt controller. The interrupt controller interprets the interrupt to determine what
actions should be taken and calls the corresponding interrupt service routine (ISR). Once
the ISR has finished executing, the processor clears the interrupt hardware for the next
interrupt and determines which task should continue executing. Once a task is chosen,
the processor retrieves the selected task information and transfers control to the task.

There are many different types of interrupts, and each has an associated priority level
allowing the interrupt controller to rank them. In virtualized systems, there can be
multiple external sources of interrupts that can have different priority levels for different
VMs. Interrupt handling is further complicated when an interrupt needs to be handled
by software within a VM. The targeted VM may not be running on a core when the
interrupt is received and thus would require the hypervisor to perform a context switch
before handling the interrupt. Other interrupts may need to be handled directly by the
hypervisor [ARM13]. The hypervisor plays a crucial role in managing interrupts and
can be the source of significant overhead if not appropriately handled.

11



2 Background

To aid virtualization, ARMv8 processors have virtualization extensions such as virtual
interrupts and the Generic Interrupt Controller (GIC). The GIC provides registers for
managing interrupt sources, interrupt behavior, and interrupt routing to one or more
processors [ARM16] and enables interrupts to be handled more effectively within a spe-
cific VM according to the source of the exception and execution state. See [ARM13] for
more information regarding ARMv8 interrupt handling.

2.3.5 Scheduling and Core Management

The OS scheduler is responsible for deciding on which CPU a task will run and for how
long. An OS inside a VM still schedules tasks but on the VM’s virtual CPUs. The
hypervisor schedules the ready tasks from all the VMs onto the physical CPUs. The
two layers of scheduling policies, one from the guest OS and one from the hypervisor, is
known as the double-scheduling property of virtualized systems.

Scheduling is a primary function of the hypervisor and can have significant perfor-
mance consequences. The scheduling policy of a hypervisor has to take into account
the processor architecture, such as if the CPU is a single-core or a multi-core processor.
On a single-core processor, there is only one unit to perform work, so the hypervisor
and VMs need to share the core. Multi-core systems can have several cores that are
capable of independent instruction execution facilitating faster execution in comparison
with a single-core processor. Multi-core processors can also permit different execution
configurations for virtualized systems. One or more cores can be dedicated to a single
VM or dynamically assigned according to the needs of each VM.

2.3.6 Device Emulation and Assignment

One of the most significant impacts on security and efficiency in virtualized systems
is the approach for managing I/O across the VMs. The traditional method for I/O
virtualization is emulation [KK13]. Device emulation requires that all guest OS accesses
to a I/O device must be intercepted, validated, and translated into hypervisor operations.
This method ensures that if a VM fails, other VMs are still able to use the physical I/O
device [KK13].

However, device emulation is expensive since all guest accesses to the device have to
be trapped and emulated in software [ARM17a]. Instead, a hypervisor can assign de-
vices to individual guests so that the guest operates the device without or with minimal
hypervisor intervention, known as the pass-through model [KK13]. The pass-through
model often still requires the hypervisor to hide from the guest that the device is at a
different physical address. This requires that the hypervisor handles interrupts as the
interrupt ID is different from what the guest is expecting [ARM17a]. Hardware exten-
sions such as transparent stage 2 mapping and interrupt virtualization can circumvent
these challenges [ARM17a].

A hypervisor can also assign a device to a single VM, which then provides a virtual
I/O interface to other VMs, enabling access to the device [KK13]. This method has the
downside that improper access by a guest can bring down other guests, applications, or

12



2.3 Functions of a Hypervisor

even the entire system [KK13]. It also violates the primary security concept of isolation
through virtualization.

2.3.7 Memory Virtualization and Management

There are different levels of memory that can be broken down into primary and secondary
storage. Primary storage consists of memory directly available to the CPU, such as the
random-access memory (RAM), processor registers, and processor caches. Secondary
storage is not directly accessible to the CPU and must be accessed over I/O channels
adding processing time overhead for each read/write. For this reason, primary storage
is the preferred medium during computing.

Memory management is the process of controlling and coordinating physical computer
memory to various running processes and abstracting the different levels of memory into
a contiguous address space. In a native system, memory management is performed at
three levels:

• The hardware-level involves components that physically access and store data,
such as random-access memory (RAM) chips, memory caches, and flash-based
solid-state drives.

• The OS-level involves the allocation and reallocation of continuous memory blocks,
called pages, to individual programs as demand changes. Most OS’s allow the
utilization of more primary storage than is available by using virtual memory,
called overallocation. The OS is responsible for the maintenance of page tables,
the data structure that saves the mapping from physical to virtual addresses.

• At the application level, memory management ensures the availability of adequate
memory for the objects and data structures of each program, which translates into
two separate tasks: allocation and recycling.

In a virtualized system, the hypervisor is responsible for managing all physical memory,
including dedicating a part of the physical memory for its own use and partitioning the
rest to be assigned to the VMs. The hypervisor is also responsible for enforcing protection
and redirecting access faults from VMs. Hardware virtualization introduces an extra
layer of memory mapping so that each guest OS is responsible for mapping its virtual
addresses to intermediate-physical addresses while each VMM maps the intermediate-
physical addresses to physical addresses, see Figure 2.10.

The software-based approach to handle the two-stage address translations required by
memory virtualization relies on shadow page tables. Shadow page tables are a composite
set of page tables that rely on heuristics and memory tracing to keep track of changes to
page tables in memory [BNT17]. This process can have significant performance overhead
due to the hypervisor having to maintain synchronization of the shadow tables with the
guest page tables [VMw19]. Workloads that involve a small amount of page table activity,
such as process creation, memory mapping, and context switches do not incur significant
overhead [VMw19].

13



2 Background

Figure 2.9: Address Translation in a traditional and virtualized system [MN10]

Hardware-based memory virtualization eliminates the overhead associated with software-
managed shadow page tables through second-level address translation (SLAT), also
known as nested paging. SLAT enables VMs to manage their own virtual memory
structures without trapping to the hypervisor while still enabling the hypervisor to
control the physical memory resources [Dal18]. The first layer of page tables stores
guest virtual-to-physical translations, while the second layer of page tables stores guest
physical-to-machine translation. The translation look-aside buffer (TLB) is a cache of
translations maintained by the processor’s memory management unit (MMU) [VMw19].
The first layer of page tables is maintained directly by the guest OS while the VMM
maintains the second layer of page tables [VMw19].

Figure 2.10: Two layer address translation in a virtualized system, adapted from [MN10].

When using hardware-assisted memory virtualization, a TLB miss can lead to sig-
nificant overhead [VMw19]. Large pages in both the guest virtual to guest physical
and guest physical to machine address translations can reduce the cost of TLB misses
[VMw18b]. Workloads with a large amount of page table activity benefit the most from
hardware-based memory virtualization [VMw18b].

There are many different techniques that a hypervisor can implement to improve
memory usage, such as:

14



2.3 Functions of a Hypervisor

• Memory page sharing, also known as transparent page sharing, eliminates redun-
dant copies of memory pages and is based on the observation that several VMs
may be running instances of the same guest OS with common applications or com-
ponents. The amount of memory saved by memory sharing depends on whether
the workload consists of nearly identical machines [VMw18b].

• Memory ballooning is a reclamation technique that allows the hypervisor to retrieve
unused memory from a VM and reallocate it to another VM [VMw18b].

• Memory compression occurs when a VM approaches the level at which host-level
swapping will be required. The hypervisor will compress the memory to reduce
the number of memory pages needed to swap out. Compression takes place in
memory, whereas swapping takes place within the storage system, which is much
slower than memory. Therefore memory compression results in significantly lower
latency [VMw18b].

• Swap-to-host cache only occurs when the previous techniques are exhausted. The
hypervisor cache is configured to be on SSD storage, which is much faster than
regular swap files, which are typically on hard disk storage [VMw18b].

• Regular host-level swapping occurs when the host cache is full or not configured.
The hypervisor will reclaim memory from the VM by swapping out pages to a
regular swap file, some of which may still be active. This technique is typically
associated with the highest performance degradation due to high access latency
[VMw18b].

Refer to [Gan16] for a more detailed explanation of memory virtualization techniques
and performance implications and to [VMw19] for ESXi 1 specific techniques.

2.3.8 Energy Management

Energy management is another crucial aspect of virtualization, particularly within the
domains of battery-powered and heat-sensitive devices. Energy management entails
the consumption of energy and the heat produced during execution. Execution speeds,
energy consumption, and heat production are closely correlated, so optimizing one can
negatively impact another.

A hypervisor needs to implement an effective energy management policy and must
be able to consolidate different policies from guest OSs. Power management is typically
a ”private matter” of each OS, with different strategies to dynamically manage power
consumption, such as varying the voltage, frequency, or the number of active cores. The
hypervisor has to intercept hardware accesses from the guest OS power management
driver and amalgamate different policies for the most favorable performance.

Power management policies are closely related to the processor version. For example,
ARMv8 processors have several levels of power management, such as standby, retention,

1Virtualization techniques may differ in ESXi-ARM as it is a prototype based on ESXi for x86.

15



2 Background

power down, dormant mode, and hot-plug [ARM13]. There are also different power
state coordination architectures that enable the creation of power domains that are ar-
ranged in a logical hierarchy [ARM16]. There are two approaches to power management
that hypervisors can use to control the power state of ARM cores. Physical OS power
management, which comprises the software components that select the physical power
states and virtual OS power management, which selects virtual rather than physical
power states [ARM16].

2.4 Related Work

There are many more virtualization domains that have not been covered in this in-
troduction. For information regarding operating system, network, application, server,
storage, desktop and service virtualization, refer to [BKL10], which also discusses foren-
sic techniques of virtualization. For an in-depth introduction to hardware and software
virtualization, including hardware extensions of x86-64 and ARM, refer to [BNT17]. An
evaluation of virtualizing ARMv7 and ARMv8 architecture can be found in [Dal18],
including why ARM architecture does not meet the classical requirements for virtualiza-
tion. Both [Dal18] and [DLLN15] compare performance of KVM and XEN on the x86
and ARM processors.

2.5 Summary

This chapter introduced the fundamental concepts of virtualization. In particular, the
three basic virtualization techniques of multiplexing, aggregation, and emulation were
presented and type 1 and type 2 hypervisor architectures discussed. Popek and Gold-
berg’s requirements of virtual machines were explored and their theorem regarding clas-
sically virtualizable ISAs. This was followed by the three techniques to enable virtu-
alization of not classically virtualizable ISAs through the use of Binary Translation,
Paravirtualization, and Hardware-Assisted virtualization. Finally, functions of a hy-
pervisor were discussed with consideration to overhead that each function adds into a
virtualized system.

In chapter 3, the virtualization of embedded systems is explored. Particular consider-
ation is given to the requirements, challenges, and use cases of an embedded hypervisor.

16



3 Virtualization for Embedded Devices

Virtualization basics were introduced in chapter 2, with a focus on virtualizing ARMv8-
A architectures. In this chapter, virtualization of embedded devices is examined. In
section 3.1, embedded devices are defined and an overview of the different embedded
systems domains is given. In section 3.2, the design requirements of embedded systems
are established, which closely relate to section 3.3, the requirements and challenges of an
embedded hypervisors. Finally, specific use cases of virtualization for embedded devices
are considered in 3.4.

3.1 What Are Embedded Devices?

Embedded devices are dedicated functionality devices that have historically relied on
a single microprocessor or microcontroller to serve a single purpose in a larger system
composed of hardware and software. These devices evolved out of a need for technol-
ogy that could provide utility for a combination of cheap, lightweight, and low power
consumption. Today, embedded devices build the foundation of a diverse spectrum of
electronics, known as embedded systems, which vary widely on their functionality, pur-
pose, and their level of interactions with humans and the environment. For example, cars
rely on hundreds of simple embedded devices known as electronic control units (ECU) to
support their expanding functionality, such as an anti-lock braking system, navigational
system, and fuel injection pump. ECUs rely on sensors and actuators to accomplish
their purpose. In contrast to ECUs, mobile devices, such as tablets and smartphones,
have evolved to be similar to general-purpose devices, such as personal computers. Mo-
bile phones rely on interacting with external networks (cellular, WiFi, etc.) for their
functionality. An overview of the embedded systems market is seen in 3.1.

3.2 Embedded System Design Requirements

In order to be competitive in the market place, the entire embedded system (hardware
and software) needs to be taking into account when making design decisions [Jr96].
Decisions to fulfill a system requirement can lead to a negative impact on other features
and thus need to be weighed on a system-by-system basis. The utility of the end product,
along with the size, weight, power, and cost (SWaP-C) are all major design driving
factors. An overview of an embedded system architecture is shown in 3.3, adapted from
[Jr96].

17



3 Virtualization for Embedded Devices

Table 3.1: IDC’s Embedded systems market model device segmentation.
Industry Sub Industry Category Device Category

Automotive Automotive Automotive control devices, infotainment devices, transportation telematics
Industrial Aerospace and Defense Avionics
Industrial Industrial Automation Manufacturing and process controls, motion controllers, operator interfaces,

robotics, HVAC and other controls
Industrial Services Kiosks, POS, video surveillance, test and measurement
Industrial Other Industrial PC, handheld terminal, other
Health Care Medical equipment Proactive and consumers, diagnostic and monitoring, imaging, therapeutics
Energy Consumption point Smart metering, home/building automation
Energy Renewable energy Inverters controls, intelligent switches and controls, wind turbine control

and communication systems
Energy Electricity T&D Distribution automation command and controls, fault detection and isolation
Communications Broadband Access Broadband access
Communications Phones Cellular phones, cordless phones
Communications Network Ethernet, infrastructure, network security, routers, optical,

ATM multi-service switch
Communications Services Videoconference, VoIP
Communications Wireless Infrastructure Wireless infrastructure
Communications Other Communication other
Consumer Consumer Digital camera, digital TV, digital video devices, gaming, GPS, mobile

internet devices, portable media devices, projector, consumer other

Source: IDC and Final Study Report: Design of Future Embedded Systems (SMART 2009/0063) [IDC14]

Figure 3.1: Example architecture of a possible embedded system, adapted from [Jr96]

3.2.1 Criticality

Embedded devices play integral roles in systems and are often categorized by the out-
come of failure. This is often referred to as the criticality of a system, which can be
distinguished by the function and associated consequence of failure.

• Safety critical systems may lead to a loss of life, serious personal injury, or
damage to the environment in case of a failure. An example is the anti-lock braking
sensors in a car.

• Mission critical systems result in an inability to complete the objectives for which
the system was designed. An example is a navigational system used for landing a
spacecraft.

18



3.3 Requirements and Challenges of an Embedded Hypervisor

• Business critical systems may result in significant economic costs. An exam-
ple is any device that could lead to the failure of the automation system in a
manufacturing plant.

• Security critical systems deal with the loss of sensitive data through theft or
loss. An example is exposure of passwords on a mobile phone.

3.2.2 Real Time

Additionally, the failure of a system can have a different meaning in the context of real-
time constraints. A real-time system is one in which the correctness depends not only
on logical results but also on the timeliness, predictability, and dependability of those
results [Ker11, HGC97]. These devices have tolerances of missed deadlines categorized
into hard, firm, or soft real-time.

• Hard real-time any missed deadline is a system failure, often used with mission-
critical systems. For example, the spacecraft Mars Pathfinder was nearly lost
when a high priority task was not completed on time due to being blocked by a
lower priority task, causing a system restart. The problem was corrected, and the
spacecraft landed successfully.

• Firm real-time allows for infrequent, adequately spaced, missed deadlines, but
the value of the task is zero after the missed deadline. For example, video con-
ferencing applications send video and audio as packets over a network. Since the
frames are time-order sensitive, a missed deadline causes jitter, diminishing Qual-
ity of Service (QoS). Late frames are disregarded as it would cause more jitter to
display them. However, as long as jitter does not occur too often, users can still
hear and see each other.

• Soft real-time allows for missed deadlines, and tasks continue to have value after
the deadline as long as tasks are executed in a timely manner. For example, after
taking a photo on a digital camera, it may take several seconds before the photo
is processed and can be displayed on the screen. As long as all tasks involved
with the image processing are completed relatively on time, the delay will have no
critical effect.

3.3 Requirements and Challenges of an Embedded Hypervisor

Embedded hypervisors are type 1 hypervisors that are typically designed into the hard-
ware device [BKL10]. As discussed in section 3.1 and 3.2, embedded systems encompass
a large array of devices that all have different requirements making a one-size-fits-all
hypervisor difficult. In this section, the requirements and challenges of embedded hy-
pervisors are identified.

19



3 Virtualization for Embedded Devices

3.3.1 Efficiency

All hypervisors strive to be efficient, but embedded hypervisors must work under the
additional resource constraints imposed on embedded systems due to the SWaP-c re-
quirements. Fewer instructions to accomplish a task results in less power consumed.
Power consumption is often a bottleneck for battery-powered devices, warranting hy-
pervisors for battery-powered devices to add minimal overhead. This entails minimizing
hypervisor intervention during VM execution and a need to consider power-consumption
and performance trade-off [LX15]. Power consumption also has a direct correlation to
heat-production, important for systems that are heat-sensitive, such as applications in-
volving combustion in transportation [Jr96].

Most embedded devices are also memory constrained, requiring embedded hypervisors
to be small and use memory efficiently. A small codebase has additional advantages, like
simplifying Validation and Verification (V&V). V&V leads to a more reliable, stable,
secure platform, essential for hypervisors that run in kernel mode and thus are part
of the Trusted Computing Base (TCB). These properties are especially important in
safety-critical and security-critical systems that go through rigorous certification pro-
cesses [Xia16]. One way of minimizing the TCB of an embedded hypervisor is by using
virtualization extensions provided by hardware. Virtualization extensions are hardware-
specific, so for an embedded hypervisor to fully integrate, the hardware needs to be
specified before development, decreasing OEM flexibility, or the hypervisor needs to be
retrofitted to the hardware, increasing costs. Hardware extensions also play a significant
role in the virtualization overhead of a hypervisor. Tasks that can be offloaded from
the hypervisor to the CPU through hardware extensions decrease the CPU cycles spent
outside of completing VM tasks.

3.3.2 Secure Communication and Isolation

Security in traditional server and desktop virtualization is achieved through isolation.
However, most embedded devices are concerned with a different communication style
from the server or personal computer domains. Whereas servers and personal com-
puters are primarily concerned with inter-communication, between systems, embedded
devices usually provide a specific function of a larger system and thus require intra-
communication, within the system, to complete a function.

Additionally, embedded devices have real-time needs and are typically equipped with
less powerful processors, creating a bottleneck and performance decline with bulk data
transfers. An example of this is seen in Android’s virtualization of the network interface
baseband processor, responsible for processing all radio functions in smartphones. The
mobile phone OS and the baseband processor code are run in separate VMs on a single
processor. Data received by the baseband VM, such as video, needs to be shared with
applications running in other VMs, such as the media player. Bulk data transfers,
copying the memory between VMs, necessitates considerable processing time and energy,
which results in a decline in QoS. Efficient inter-VM communication breaks the isolation
principle since efficient energy-conserving bulk data transfers usually necessitate a shared

20



3.3 Requirements and Challenges of an Embedded Hypervisor

buffer [Hei07].
Additionally, most hypervisors are retrofitted with inter-VM communication facilities,

leading to significant protocol overhead when communicating with other VMs or the
outside world [KCSS11]. This is further complicated by security-critical devices, such
as mobile phones that save passwords and bank account access codes. Security-critical
data must be protected in case of loss or malicious behavior. This necessitates that
an embedded hypervisor enables communication with the Principle of Least Authority
(POLA) while minimizing processing time overhead [Hei07]. Embedded devices may also
have to share data without a centralized host, such as car ECUs, which use a controller
area network (CAN) bus.

3.3.3 Real-time Capabilities

Since most embedded systems have real-time constraints, a hypervisor must ensure a
worst-case execution time (WCET) to function properly and safely [Hei07, EES+01].
The WCET does not necessarily entail the execution time to be fast, but rather, that
the execution time has to be predictable, especially when the system is under peak load
[Xia16, HGC97].

Additionally, a hypervisor must ensure that VMs that have different and sometimes
conflicting timing requirements coexist safely and cooperatively. Temporal behavior of
unrelated VMs sharing resources such as CPU, network, etc., must not interfere with one
another [Ker11]. This is complicated since a virtualized system has a two-level hierarchy
of schedulers, see 2.3.5. Each guest OS has a scheduler that selects a task to execute
according to its policy with no insight into the importance of the task in relation to
the other VMs [Hei07, KCSS11]. The hypervisor then schedules threads from individual
VMs with no insight over what the task being scheduled is.

There are several methods for embedded hypervisors to try to adhere to VM timing
constraints. One approach is through the association of a priority level with each VM;
however, this can lead to a low-priority task from a high-priority VM blocking a high-
priority task from a low-priority VM [Xia16, Hei07].

Another technique is through implementing bandwidth reservation schemes for CPU
time, but this can lead to severe lag and jitter [Xia16]. Another approach is by using a
multicore processor and assigning cores to individual VMs. However, this may result in
underutilization of the CPU. Better utilization of multicore processors can be achieved by
enabling hyperthreading and sharing cores between VMs that complement each other’s
real-time needs. Nevertheless, this complicates spatial isolation since there are multiple
levels of cache with no guarantee where data may reside and which VMs have access to
the data [BMB+18].

Apart from the disadvantages mentioned for the techniques available to a hypervisor
to adhere to timing constraints, the biggest problem is that none of them can guar-
antee a WCET [EES+01]. Large systems often have too much hardware complexity
and program state spaces to exhaustively explore all possible executions of a program
[EES+01, Kel15]. The result is that measured execution times often underestimate the
WCET and increases the chances of a time-related failure [EES+01].

21



3 Virtualization for Embedded Devices

Summary

There are further constraints that embedded devices face not discussed here, such as
that embedded devices are usually non-configurable after manufacturing. However, most
requirements for an embedded hypervisor can be summarized as [Hei07, LX15]:

• Lightweight hypervisor code base to minimize TCB and increase security and
safety.

• Strong encapsulation between subcomponents for fault containment and secu-
rity isolation.

• Controlled communication for low-latency, high-bandwidth information flow
control between VMs.

• Fine-grained encapsulation of individual threads to impose a global scheduling
policy that respects real-time constraints.

• Minimal overhead on system resources and performance.

3.4 Virtualization Use Cases for Embedded Devices

Virtualization offers viable solutions to some of the problems faced by embedded devices.
However, as discussed in Section 3.3, a one-size-fits-all hypervisor is difficult due to the
complexity and diversity of embedded devices. Individual use-cases for virtualization
are identified in the following and the benefits of each.

3.4.1 Coexisting Operating Systems

Concurrently running multiple OSs on a device can lead to benefits such as hardware
consolidation, real-time support, development simplification, and support for legacy sys-
tems. Supporting more than one independent user on a device can be achieved by vir-
tualization and reduces costs through hardware consolidation. Even devices that only
support one user can benefit from hosting more than one environment on a device.

Use Case 1: BYOD Devices

The concept of Bring-Your-Own-Device (BYOD) has recently gained traction in the
enterprise domain, where employees typically need a personal and a separate business
phone or tablet. BYOD offers separate environments on the same device, maintaining
the separation of personal and enterprise data [SGB+16]. This reduces costs through
hardware consolidation and enables the enterprise IT department to better control busi-
ness data without accessing personal data.

22



3.4 Virtualization Use Cases for Embedded Devices

Use Case 2: Decouple Application from Environment

High-level application programming interfaces (APIs) can be used to specify the interface
between an application and the OS. APIs are typically OS dependent, so an application
programmed for Linux would need to be changed to function in Apple’s iOS. A hypervisor
is able to support both environments in separate VMs, decoupling the application from
the device. For example, a virtualized mobile phone can host both iOS and Android
environments, enabling users to install OS-specific applications in the corresponding
environment. This leads to application development simplification since applications are
no longer bound to the device environment provided.

This use-case could also enable application developers to ship their applications with
an OS image. Application developers would have a well-defined OS environment and
would lead to reduced device failure due to configuration mismatch [Hei08]. Automatic
elimination of replicated page content could be used to reduce memory usage [LUSG04].

Use Case 3: Vanilla OS Support

Virtualization can also be used to provide standard bloat-free OS environments. Vanilla
Android is the most basic version of Android developed by Google. Android is open-
source, allowing manufacturers to customize it with additional features and their own
user interface. However, phones running the non-standard Android typically suffer from
delayed updates since the manufacturer has to change updates to suit their version. This
can shorten the lifespan of devices when the manufacturer no longer supports the device
by providing updates. Running Vanilla Android in a VM and manufacturer specific code
in a separate VM has the potential to provide better, faster updates and greener IT since
devices can be supported longer.

Use Case 4: Legacy Application Support

Virtualization can also form the basis of legacy application support by enabling legacy
software to operate in a suitable VM environment. Legacy support does not just re-
duce waste; it can also save money. Some applications have to go through costly and
time-consuming recertification processes when upgraded. System hardware or software
changes can result in the application no longer being supported without upgrading. Vir-
tualization can form the basis of legacy application support by decoupling the hardware
and software layers and dividing large systems into subsystems [Hei08]. A legacy appli-
cation can be run on an older version of the OS in a VM while providing a user with
all the functionalities of the new OS run a separate VM [Hei08]. This is especially ap-
plicable to industries with long certification processes such as automotive, avionics, or
government work [Xia16]. Wrapping legacy software was also the basis of work done by
[LUSG04], where legacy device drivers were isolated in VMs instead of integrated into
the new OS.

23



3 Virtualization for Embedded Devices

Figure 3.2: Legacy software support

Use Case 5: Real-Time Support

Many embedded devices require real-time responsiveness with low and predictable in-
terrupt latency, which most mainstream OSs are not optimized for [Hei08]. A real-time
operating system (RTOS) can be run alongside a general-purpose OS, proving an en-
vironment for applications that require real-time responses while maintaining the func-
tionality provided by the general-purpose OS.

This use-case is implemented in some Android phones to reduce cost by consolidating
the main processor and baseband processor [Hei11] 1. The baseband processor is the
network interface for radio functions for smartphones, GPS, or Bluetooth devices. Typ-
ically, the baseband processor is separate from the main processor because of real-time
needs, certification requirements, and reliability concerns [KCSS11]. The baseband pro-
cessor code is usually proprietary making it difficult to perform independent audits and
raise security concerns. Virtualization enables the real-time needs to be satisfied, en-
ables changes to the general OS without interfering with the radio functions, and enables
separate certification of baseband code and OS. The use of a hypervisor also increases
the security of the system through isolation of the subsystems. If vulnerabilities exist in
the baseband processor code, the general OS data is protected by the hypervisor.

3.4.2 Dynamic Resource Management

Dynamic resource management entails the allocation and reallocation of physical re-
sources to VMs. This can also include modules for monitoring and detecting the resource
usage in VM for specified time periods in order to allocate the resource more suitably.
This can lead more efficient use of hardware and less hardware required for a system.
Dynamic resource allocation also increases the scalability, flexibility, and reliability of a
system.

1Although implemented in some Android phones in early 2010; this use case is relevant for devices with
very restrictive budgets and low network bandwidth.

24



3.4 Virtualization Use Cases for Embedded Devices

Figure 3.3: RTOS coexisting with general-purpose OS.

Use Case 6: Multicore Management

As multicore processors are becoming cheaper to produce, they are becoming mainstream
in the embedded systems market [Kel15]. Legacy software built for unicore processors
is often not programmed to take advantage of multicore processors. A hypervisor can
form the basis of a poorly scaling legacy software on multicore processors by performing
analysis of the threads and scheduling them efficiently on the available cores.

A hypervisor can also dynamically add cores to an application domain, which requires
extra processing power or can manage power consumption by removing processors from
domains and shutting down idle cores [Hei08]. Fine-grained scheduling allows core cycles
to be assigned to different VMs, enabling multiple VMs to share a core. This decoupling
of the hardware and software also enables additional processing configurations, not just
symmetric and asymmetric [Hei08]. This has the potential of increasing performance
while lowering power consumption [Hei08].

However, there is an inherent security issue associated with certain multicore manage-
ment techniques. Typical processors have several layers of cache. Each core has its
own L1 data and instruction cache and shares L2 and L3 caches with other cores. Due
to their hierarchical nature, complicated replacement policies, and quick turnover, it is
difficult to know exactly where data is stored in the cache and to ensure isolation of data
between VMs [CBS+18].

Use Case 7: Hot Failover

Dynamic resource allocation can also increase the reliability of an embedded system
[Jr96]. Downtime due to failure, can have devastating effects for many safety-critical
and mission-critical applications. Flight control failure can lead to personal injury, while
factory automation control failure can lead to downtown and costs. Some embedded
devices cannot be shut down for maintenance due to safety reasons, such as reactor
control systems, or due to being inaccessible, such as space systems. A common approach
to reducing downtime is using redundant hardware, which directly increases costs [Jr96].

25



3 Virtualization for Embedded Devices

However, a substantial amount of system failures are due to a software error, often
freezing the system and requiring a reboot. The traditional approach to reducing down-
town in such a case is to use redundant processors where one is active, and at least one
other is in standby. This approach adds overhead to maintain constant synchronization
between the active and standby processors so that the standby processor can cleanly
take control and keep the system alive if the active processor is unavailable [Jr96].

Most embedded devices are produced in competitive markets and have narrow profit
margins. These devices cannot tolerate the costs of redundant hardware or additional
processing capacity required for traditional fault tolerance techniques [Jr96]. Virtual-
ization allows the active and standby systems to be set up as redundant VMs with
redundant processing domains, enabling hot-failover.

Use Case 8: Migration

Another method of increasing reliability is through the use of migration. Hypervisors
are able to automate the environment migration process while decreasing the downtime
of a system by using a combination of migration techniques. Rather than having to
install the software on the hardware, the entire VM can be copied from one domain to
another regardless of the underlying hardware. This allows systems that cannot suspend
activity, such as mission-critical systems, to be seamlessly migrated. This leads to the
added benefit of decoupling the environment from the hardware leading to easy exchange
from phones or other devices after hardware failure, device loss, etc.

Use Case 9: Dynamic I/O Management

Virtualization can also be used to manage I/O resources dynamically. VMs can be set
to share a single physical I/O device without being aware that they do not have sole
possession of the device. Virtualization can also enable dedicated I/O devices to be
unplugged or hot-plugged to VMs without necessitating a restart. Especially embedded
devices that need to communicate with the outside world, such as IoT devices, would
benefit from dynamically assigning network cards [ASL+19].

3.4.3 Sandboxing

Security critical embedded devices are especially sensitive to malicious behavior. Sand-
boxing is the process of using software to isolate applications from critical system re-
sources and other programs. This can be used for any applications that poses a security
risk to a system to increase security.

Use Case 10: Operating System Isolation

Virtualization can be utilized to increase the security of an OS since a VM encapsulates
the environment. If the standard OS is compromised, the rest of the system is still
protected by the hypervisor. According to [Hei08], a hypervisor must adhere to two
conditions to increase the security of an OS. First, the hypervisor must be much smaller

26



3.4 Virtualization Use Cases for Embedded Devices

than the OS; otherwise, the hypervisor increases the size of the trust computing base
(TCB) and is counter-productive for security. Secondly, the hypervisor must support the
segregation of critical functionality into VMs different from exposed user- or network-
facing ones.

Figure 3.4: A user or network facing OS is compromised but the rest of the system is
safe from exploit, adapted from [Hei08].

Use Case 11: Monitor Software Isolation

Another potential source of attack are virus scanners themselves. To prevent this, a virus
scanner can be installed in its own VM, which gets a read-only copy of the memory. The
virus scanner is encapsulated so it cannot leak any data and is protected from network
and user components which are at a high risk to be compromised.

Use Case 12: Licensing Separation

Sandboxing can also be used for licensing separation. Linux is frequently used as a high-
level OS due to its royalty-free status, independence from specific vendors, widespread
deployment and strong developer community [Hei07]. However, linux is distributed
under a GPL license, requiring derived code to be open source [Hei07]. There are
discussions that this applies to device drivers that are loaded as binaries at run time
into the kernel [Hei07]. Virtualization can be used to provide a proprietary execution
environment for software that shares the processor with a Linux environment. A proxy
driver is used to forward Linux driver requests to the real device driver using hypercalls
[Hei07]. Sandboxing can also be used to protect licensed media content from copying.
Embedded systems have a diversity of micro-controllers with different ISAs so when
exchanging a micro-controller, the embedded system software must be ported to run
on a different ISA [Ker11]. This is problematic if the source code is unavailable or
inaccessible due to licensing restrictions. Through virtualization, software can run on a
non-supported ISA through the usage of emulation [Ker11].

27



3 Virtualization for Embedded Devices

Use Case 13: Fault Containment

Even applications that were not created with malicious intent can cause devastating
errors in a system. A hypervisor can encapsulate subsystems to keep faults contained
and unable to interfere with other subcomponents.

3.5 Related Work

An overview of the embedded systems market was given in section 3.1. For a more
detailed analysis of the market, refer to [IDC14], which evaluates the market of 2012 and
predicts embedded system design trends until 2020. In [Fut19], the embedded systems
market growth is evaluated with forecasts made until 2022.

Current design issues of embedded devices are evaluated in [Jr96]. Particularly impor-
tant are the real-time needs of embedded systems. Fundamentals of real-time systems
is given in [Ker11] and information to transforming real-time systems into virtualized
real-time systems. Information regarding execution time analysis for embedded systems
can be found in [EES+01]. Challenges associated with real-time virtualization are given
by [ZG12, TSC14]. For information regarding the security aspects of virtualization, refer
to the European Union Agency for Network and Information Security report [MJGB17].

Finally, virtualization motivation and use-cases for embedded device are discussed in
section 3.4. For more information regarding use-cases for embedded device virtualization
refer to [SGB+16, Hei11, Hei08]. A more in-depth analysis of use-cases is performed by
[Hei07], with particular focus on the OKL4 microkernel hypervisor.

Performance comparison of microkernels L4 and OKL4 and hypervisors KVM and
XEN on ARM was performed by [Xia16], which focuses on embedded real-time virtu-
alization of reconfigurable platforms. Different virtualization platforms developed for
ARM-based devices are summarized by [SGB+16]. Other ARM-based mobile virtualiza-
tion platforms CodeZero, KVM-on-ARM and EmbeddedXEN are compared in [LX15].
MIPS and ARM-based Docker and LXC container virtualization solutions are compared
in [NRLB18].

There are also several targeted commercial virtualization platforms available for a
range of embedded systems. Cells [ADH+11] is a virtualization platform for mobile
devices based on OS virtualization. Green Hills’ Integrity hypervisor [Sof] is for high
security systems certified by the EAL7 standard. Open-Source ARCN hypervisor is
geared towards IoT development [LXRD19].

3.6 Summary

Embedded systems encompass a diverse array of devices that include both the hardware
and software aspect. Not only are these devices constrained by design factors such as
size, weight, cost, and power requirements but they also face varying challenges such as
real time needs, safety, and security. This has led to design requirements of an embedded
hypervisor that is efficient, lightweight, provides strong and fine-grained encapsulation,

28



3.6 Summary

and controlled communication. An embedded hypervisor offers solutions to problems
faced by embedded devices by providing co-existing OSs, dynamic resource management,
and isolation through sandboxing.

In the following chapters, a prototype version of VMware’s ESXi hypervisor modified
to run on ARM processors is evaluated as an embedded hypervisor. Chapter 4 details
the research design and methodology and chapter 5 presents the results of this research.

29





4 Research Design and Methodology

In chapter 2, the architecture and role of a hypervisor is discussed. The performance of
a virtualized system depends strongly on the design decisions of a hypervisor and the
use of built-in virtualization support of processors. The performance of a virtualized
system is measure as overhead, which is any combination of excess computation time,
memory, bandwidth or other resources that are required to perform a specific task. In
comparison to the personal computer or server space, embedded devices typically have
decreased tolerance for overhead. In chapter 3, embedded system design criteria are
defined with focus on what role an embedded hypervisor should ideally fulfill.

The objective in the rest of this paper is to determine the feasibility of an embedded
hypervisor through the evaluation of a prototype version of the ESXi-ARM hypervisor.
The methodology for testing is detailed in the section 4.1 while the rest of the chapter
defines the hardware and software configurations of the testing environments.

4.1 Methodology

In a virtualized environment, overhead comes from the additional layers of processing
required by the hypervisor and from sharing limited hardware resources. In complex
virtualized systems, it is difficult to pinpoint the cause of performance degradation,
which can result from specific tasks, such as context switching, or resource competition
between VMs. Chapter 3 discusses many characteristics that an embedded hypervisor
should adhere to. Not all these characteristics can be explored here so the memory
footprint, scheduling latency, selected function latencies, and selected bandwidth met-
rics will be examined to give a starting point for future work. Additionally, domain
specific applications will be examined to evaluate ESXi-ARM’s performance in different
embedded domains.

To measure the virtualization overhead of the ESXi-ARM hypervisor, different execu-
tion environments are used that compare native to virtualized execution and increasing
instances of VMs, see Figure 4.1 for an overview. Environment 1 is used as a baseline of
Debian executing natively on the bare metal MACCHIATObin development board. En-
vironment 2 evaluates the performance of Debian executing in a VM on the ESXi-ARM
hypervisor. Any deviations of the performance between environment 1 and environment
2 are due to virtualization, i.e. virtualization overhead. Environments 3 to 6 are eval-
uated to determine the increase in overhead from concurrently executing VMs on the
ESXi-ARM hypervisor. The performance from concurrent execution primarily suffers
due to resource contention such as when the hypervisor is busy performing tasks for one
VM and unavailable for another VM. All benchmarks were run in the first VM while any

31



4 Research Design and Methodology

Figure 4.1: Testing environments

additional VMs hosted on ESXi-ARM were put under a simulated workload using the
Stress-ng package, see [Fra18], with the command stress-ng --cpu 4 --cpu-method

matrixprod -timeout 60m.

The memory footprint of ESXi-ARM and VMs was evaluated using the vSphere service
console. The benchmarks were run directly after startup using a bash script found in
6.2. This script automates the testing process, first evaluating the boot time of the
system and then running three different benchmark suites. First, the LMbench3 suite
is run three times consecutively. The LMbench microbenchmarking suite [MS96, MS98]
is used to evaluate basic operations of the OS such as system calls, memory access, and
context switch time.

The script next runs 50 consecutive measurements of the synthetic benchmarking suite
MiBench [GRE+01]. The MiBench suite is used to analyze the performance of domain
specific algorithms to evaluate real-world performance. The categories and algorithms
selected from each are as follows:

1. Automotive and industrial control: basicmath, bitcount, qsort, susan

2. Consumer devices: jpeg, lame, tiff 1, typeset

3. Networking: dijkstra, patricia

1Replaced with tiff 4.0.104.dsc for latest version check https://packages.debian.org/buster/libtiffdev.

32



4.2 Hardware Configuration

4. Office automation: ghostscript 2, ispell 3, stringsearch

5. Security: blowfish, rijndael, sha

6. Telecommunications: ADPCM, CRC32, FFT/IFFT, GSM

The execution time of each MiBench algorithm is measured using the bash function
‘date + %s%N‘ and subtracting the execution start time from the end time.

Finally, the effects of virtualization on real-time performance are analyzed using
cyclictest from the linux RT-tests benchmarking suite [ebu18]. Of interest here is the
scheduling latency and WCET that the ESXi-ARM hypervisor adds to the system.
Cyclictest is run at a priority of 90 with 10 million loops at an interval of 1000 or
./cyclictest -i1000 -l10000000 -h1500 -p90.

Hardware was chosen to be comparable to embedded devices such as smart phones
and tablets. An ARMv8-A processor was chosen since ARM is one of the largest market
shareholders in the embedded market and this processor offers hardware extensions to
support virtualization. Hardware and software configurations are unmodified as much
as possible across benchmarking to negate effects from components not under testing.
Excel was used to evaluate data and generate the graphs.

4.2 Hardware Configuration

Measurements were done on a Solid Run MACCHIATObin Single Shot development
board [Mar19], equipped with a Marvell Armada 8040 SoC, see Figure 4.2. It is a
cost effective and high performance single board computer aimed at the networking,
storage, and connectivity space. The processor is an ARM quad-core 1.6 GHz Cortex-
A72 processor, see section 4.2.1. It is important to note that the MACCHIATObin is a
development board that was not tested for stability.

Onboard memory consists of a 4 GB RAM, 8 GB eMMC, and two 2.5” Intenso High
Performance SSDs connected via SATA III. The native environment was installed on
a 240 GB 2.5” Intenso High Performance SSD while the ESXi-ARM host and all VM
environments shared a 960 GB 2.5” Intenso High Performance SSD.

4.2.1 Processor

The ARM Cortex-A72 is a low-power high-performance microarchitecture which imple-
ments the ARMv8-A64 instruction set, see Figure 4.3. ARMv8-A virtualization exten-
sions include additional execution modes, a memory management unit (MMU), and a
generic interrupt controller (GICv2m). Information related to ARMv8 ISA can be found
in [ARM19].

2Replaced with ghostscript 9.27 dfsg2+deb10u3.dsc for latest version check
https://packages.debian.org/buster/ghostscript.

3Replaced with ispell 3.4.006.dsc for latest version check https://packages.debian.org/buster/ispell

33



4 Research Design and Methodology

Table 4.1: Hardware configuration

Component MACCHIATObin Single Shot Rev is 1.3

SoC Marvell ARMADA 8040

CPU quad-core Cortex-A72 (up to 1.6 GHz)

Accelerators

Packet Processor
Security Engine
DMA Engine
XOR engines for RAID 5/6

Memory
4 GB RAM
8 GB eMMC
240 GB 2.5” Intenso SSD via SATA (Native environment)
960 GB 2.5” Intenso SSD via SATA (Virtualized environments)

Figure 4.2: MACCHIATObin Single Shot development board, adapted from [Mar19]

4.2.2 Applicability

The MACCHIATObin Single Shot was chosen because of its comparable hardware to
several embedded device domains. Most smart devices use six to eight core CPUs with
a combination of high-performance cores, such as the Cortex-A72, and energy-efficient
cores (prioritizes performance per watt), such as the Cortex-A53. The Apple A13 SoC
appears in the iPhone 11 series and has two 2.65 GHz A72 cores and four A53 cores with
4 GB of RAM. Even low-end smartphones like the Huawei P smart released in 2017 has
an Octa-core CPU with four 2.36 GHz Cortex-A53 cores and four 1.7 GHz Cortex-A53

34



4.2 Hardware Configuration

Figure 4.3: Block diagram of the Cortex A72 Processor from [ARM16]

cores with 3 GB of RAM.

Car infotainment ECUs typically use high-end ARM Cortex-A SoC processors and
run applications such as Linux GENIVI. SoC from this category include Jacinto 6,
developed by Texas Instrument with two ARM Cortex-A15 MPUs and two ARM Cortex-
M4 processing subsystems and the Freescale i.MX6 based on ARM Cortex-A9.

Although the results of ESXi-ARM on the MACCHIATObin single shot will not trans-
late exactly to all embedded domains, it offers a mid-scale performance environment that
is a starting point to evaluate how an embedded hypervisor may perform.

35



4 Research Design and Methodology

4.3 ESXi Configuration

VMware’s Elastic Sky X Integrated (ESXi) is a type 1 hypervisor [VMw18a]. VMware’s
ESXi only supports 64-bit x86 processors released after September 2006 [VMw18a]. In
this paper a pre-release version of ESXi 6.9 modified to run on ARMv8 ISA with the
vSphere service console was tested, referred to as ESXi-ARM to differentiate from the
version of ESXi that runs on x86 processors. It is important to note that the version of
ESXi-ARM tested for this work is a not publicly available pre-release prototype that is
not complete and with minimal optimization work performed.

Table 4.2: Hypervisor configuration

Configuration Description

Hypervisor ESXi-6.9.2 pre-release modified for ARM (ESXi-ARM)

BIOS Version EDK II

Memory 3.97 GB

Virtual Flash 119.75 GB

Hyperthreading No

Power Management Policy Balanced

4.4 Operating System Configuration

Debian 10 (Buster) was chosen as the OS since it is open-source, widely available and
easily configurable. It is also compatible with ESXi-ARM and the bare-metal MACCHI-
ATObin development board. The kernel used for both the native and hosted environment
was 4.19.

Table 4.3: OS configuration

Configuration Description

OS Name Debian GNU/Linux 10 (Buster)

Linux Kernel Version Linux 4.19

4.5 Virtual Machine Configuration

The VM environment was setup in a single environment and then the VMDK was cloned
to create additional VMs. This ensured that the environments were exact replicas.

36



4.5 Virtual Machine Configuration

Table 4.4: Virtual machine configuration

Configuration Description

CPU 1 vCPU

Memory 2 GB

Hard Disk

SCSI Controller VMware Paravirtual

USB Controller USB 3.1

Network adapter VMXNET 3

Video Card
4 MB total memory
256 MB 3D Memory

Power management Standby mode

37





5 Results and Analysis

The performance of ESXi-ARM as an embedded hypervisor is evaluated in the following
sections. First, the memory consumption of ESXi-ARM is analyzed in section 5.1 as
the number of concurrently running VMs is scaled up. Next, sources of virtualization
overhead are evaluated. As discussed in section 2, virtualization overhead can come
from many different areas within a system, such as sensitive instruction virtualization,
interrupt handling, sharing resources, etc. An important metric is the scheduling latency
of the hypervisor, assessed in section 5.2 using Linux’s Cyclictest. LMbench3 is used to
evaluate low-level function latencies and bandwidth of the system in section 5.3. Finally,
the execution time of different domain-specific applications are examined in section 5.4,
to determine how the prototype of ESXi-ARM would perform in various real-world
embedded domains. It is important to note that the version of ESXi-ARM tested in this
paper is still under development and all benchmarks would need to be rerun on future
versions of the software to give an accurate evaluation.

5.1 Memory Consumption

Embedded devices are often resource-constrained, especially in terms of memory. An
embedded hypervisor should have a small code base and make efficient use of memory,
see 3.3.1. Virtualization can severely impact the performance of memory access and
the amount of memory needed to host a VM. The memory footprint of the ESXi-ARM
hypervisor without hosting any VMs is 1.42 GB. From figure 5.1, it is seen that the
memory consumption of the host remains relatively consistent when scaling the number
of VM instances hosted on ESXi-ARM up. The maximum memory consumption of
ESXi-ARM is 1.66 GB when hosting five VM instances. Overhead memory includes
space reserved for the VM frame buffer and various virtualization data structures, such
as shadow page tables [VMw18b].

From figure 5.1, it is seen that the memory consumption of individual VMs dramati-
cally decreases as more VMs are hosted on ESXi-ARM. While only one VM is hosted on
ESXi-ARM, it consumes 1.38 GB of memory, in contrast to when five VMs are hosted,
this same VM only consumes 0.09 GB of host memory. In contrast to VM1, while five
VMs are hosted on ESXi-ARM, VM5 consumes 1.22 GB.

As more VMs are hosted on ESXi-ARM, a decrease in memory consumption for indi-
vidual VMs is expected as ESXi-ARM uses memory reclamation techniques to dynam-
ically expand or contract the amount of memory allocated to a VM [VMw18b]. The
most drastic memory reduction is likely from transparent page sharing (TPS), discussed
further in section 2.3.7, which enables multiple VMs to share pages if the contents of

39



5 Results and Analysis

the page are the same. Since each VM is running the same OS, a high level of TPS is
expected. Although this technique is effective when hosting identical OS environments
in the VM, this effect would decrease when hosting different OSs, such as for Use Case
5: ”Real-Time Support” where a RTOS is hosted alongside a general purpose OS, see
3.4.1. Research done by [LUSG04] already proposes this solution for use cases such as
Use Case 4: Decouple Application from Environment; see 3.4.1.

Other memory reclamation techniques include the ESXi memory balloon drive vmmemctl,
which reduces the VM’s memory demands by forcing the VM to relinquish memory pages
it considers least valuable, set in this environment to 65%. Another technique ESXi-
ARM uses for memory reclamation is memory compression to reduce the number of
memory pages it will need to swap out [VMw18b]. Compressing memory pages has sig-
nificantly less impact on performance than swap-in [VMw18b]. If these techniques are
not sufficient, ESXi-ARM will forcibly reclaim memory using host-level swapping to a
host cache. These techniques should have little effect on the performance evaluated in
the next sections [VMw18b].

Figure 5.1: Host memory consumption while scaling the number of VMs hosted on ESXi-
ARM up.

Table 5.1: Host memory consumption while scaling the number of VMs hosted on ESXi-
ARM up.

Number of ESXi-ARM Total Memory VM 1 Memory VM 2 Memory VM 3 Memory VM 4 Memory VM 5 Memory
Active VMs Consumption Consumption Consumption Consumption Consumption Consumption

0 1.42 GB - - - - -

1 2.86 GB 1.38 GB - - - -

2 3.48 GB 0.82 GB 1.39 GB - - -

3 3.56 GB 0.17 GB 0.48 GB 1.32 GB - -

4 3.47 GB 0.09 GB 0.11 GB 0.31 GB 1.33 GB -

5 3.53 GB 0.09 GB 0.11 GB 0.13 GB 0.32 GB 1.22 GB

40



5.2 Scheduling Latency

5.2 Scheduling Latency

Latency and jitter are both critical characteristics of real-time systems, discussed in sec-
tion 3.3.3. Latency is any delay in execution time, and jitter is the variance in execution
time for repeated instructions. Latency can come from: interrupts being disabled when
the event occurs; other interrupts arriving; nested interrupt handling; wake-up of the
cyclictest executable; wait until preemption is re-enabled or higher priority task yields
or same-priority task is pre-empted; scheduler overhead; processor sleep states, process
migration, cache misses in the OS; lock priority inheritance etc.; and interactions be-
tween these [RV13]. It is important to determine the underlying cause for latency as
summary statistics can hide outliers.

The scheduling latency, the delay between an event, and the start of real work is a
crucial characteristic to determine the WCET. Cyclictest measures the amount of time
that passes between when a timer expires and when the thread which set the timer
executes. The measurement steps are as follows:

1. Switch the system to real-time priority and FIFO scheduling.

2. Acquire start timestamp using clock gettime.

3. Call clock nanosleep with specified timeout value.

4. Acquire end timestamp using clock gettime.

5. Calculate latency as follows: latency = end− timeout− start.

6. Repeat steps 2-5 the specified number of loops.

Cyclictest starts several threads, each with different setup time so that they do not run
in lockstep. In the ideal case, the requested timeout is identical to the measured time;
the difference is the latency [RV13]. The resolution measured by cyclictest is 40 nsec for
both the native and the virtualized environments.

Debian was patched Linux’s PREEMPT-RT kernel for this test. This allows Debian
to behave similar to a real-time OS meaning that a task in which a running thread can
be stopped so that a higher priority task can run. This has the negative effect of making
a system less deterministic since it is difficult to know exactly when the task will stop.
Additionally, only tasks that have preemption enabled adhere to the policy and as such,
a high priority task can be delayed indefinitely by lower priority tasks with preemption
disabled. For the following benchmarks, Debian with and without the PREEMPT-RT
patch was used to evaluate the system.

Debian virtualized with the ESXi-ARM hypervisor introduced additional scheduling
latency into the system compared to native execution. In figure 5.2, the native De-
bian environment has a peak to the left of the virtualized environment. The peaks are
the mode of the scheduling latency in the respective environments. The long tail of
the Debian on ESXi-ARM environment suggests poor prioritization in the hypervisor’s
scheduler and needs to be addressed to make ESXi-ARM suitable for some real-time

41



5 Results and Analysis

Figure 5.2: Cyclictest histogram comparing the latency of virtualizing Debian (without
PREEMPT-RT patch) with ESXi-ARM compared to native Debian on a
MACCHIATObin Single Shot development board. Cyclictest measured 10
million loops at an interval of 1,000 µs at a priority level of 90. Please note,
all threads exceeding a wakeup latency of 1,500 µs are not displayed on the
histogram.

Figure 5.3: Cyclictest histogram comparing the latency of virtualizing Debian (with
PREEMPT-RT patch) with ESXi-ARM compared to native Debian on a
MACCHIATObin Single Shot development board. Cyclictest measured 10
million loops at an interval of 1,000 µs at a priority level of 90. Please note,
all threads exceeding a wakeup latency of 1,500 µs are not displayed on the
histogram.

systems. Another important metric is the maximum latency, see table 5.2. This re-
flects the systems WCET, discussed in section 3.3.3. Debian running natively on the
MACCHIATObin had a WCET of 305 µs compared to 50,835 µs for the virtualized
environment.

The PREEMPT-RT patch turns Debian into a real-time OS by giving all tasks sched-
uled from cyclictest a priority and ensuring that tasks with a higher priority will be
scheduled on a CPU within a fixed time of the event waking the task. Repeating the
measurements with the PREEMPT-RT kernel patch did not significantly improve the

42



5.2 Scheduling Latency

Figure 5.4: Cyclictest histogram comparing the latency of Debian with and without the
PREEMPT-RT patch on ESXi-ARM on a MACCHIATObin Single Shot
development board. Cyclictest measured 10 million loops at an interval of
1,000 µs at a priority level of 90. Please note, all threads exceeding a wakeup
latency of 10,000 µs are not displayed on the histogram. The histogram is
blown up to cut off at 1500 µs to better display the effects at lower latency.

Table 5.2: Cyclictest latency measuring 10 million loops at an interval of 1000 µs at a
priority level of 90.

Environment Minimum Average Maximum
Latency (µs) Latency (µs) Latency (µs)

Native Debian 2 3 305

Hosted Debian 6 17 50,835

Native Debian w PREEMPT-RT patch 3 4 27

Hosted Debian w PREEMPT-RT patch 8 17 10,327

performance for Debian on ESXi-ARM, seen in figure 5.3. The graph shows that the
peak of the native environment is still to the left of the virtualized environment, indi-
cating that the scheduling latency of the native environment is better. Additionally, the
virtualized environment still has a long tail compared to the native environment, which
now has no peaks after 27 µs. The WCET of the virtualized environment improved from
50,835 µs to 10,327 µs, but is still significantly below the performance of native Debian
1.

1It is important to note that this WCET is only an estimate and could dramatically increase with more

43



5 Results and Analysis

Although the WCET improved and the average latency remained the same, figure
5.4 shows that the addition of the PREEMPT-RT kernel patch collectively lowered the
performance of Debian on ESXi-ARM. The environment with the PREEMPT-RT patch
has a longer tail that does not start to decrease until around 1000 µs opposed to Debian
on ESXi-ARM without the PREEMPT-RT patch which shows a significant decrease in
the number of latency samples at around 750 µs. Overall, the PREEMPT-RT patch
decreased the scheduling latency performance for the virtualized environments.

It was expected that ESXi-ARM would introduce scheduling latency into the sys-
tem compared to native execution since task scheduling requires unavoidable hypervisor
intervention; discussed in section 2.3.2. Additionally, this version fo ESXi-ARM is a
pre-release prototype which has not been performance optimized. The ESXi hypervisor
for x86 is not a real-time hypervisor and instead optimized for the server domain. In the
server domain, fair scheduling policies are preferred in contrast to embedded systems
where real-time performance is often required. The scheduler of the ESXi-ARM hyper-
visor is a potential area of improvement for future releases to supported uses cases such
as Use Case 5: Real-Time Support, discussed in 3.4.1.

5.3 Microbenchmarks

Microbenchmarks are small pieces of code intended to extract low-level performance
metrics by focusing on specific operations such as communication between threads. The
performance of simple functions is evaluated using LMbench3 benchmarking suite origi-
nally developed by Larry McVoy and Carl Staelin [MS96, MS98]. This suite is especially
useful in evaluating low-level metrics related to latency and bandwidth and has been ex-
tensively used to evaluate the performance of hardware, OSs, and hypervisors [XBG+10].

LMbench3 uses the gettimeofday clock to measure execution time with a module
compute enough that automatically computes the time interval required to reduce clock
resolution timing errors to less than 1% 2. Some results from LMbench3 have also been
excluded here, such as execution latency of primitive operations such as integer-, float-,
double- due to no significant variation in execution time between testing environments.

5.3.1 Latencies

Apart from scheduling latency, virtualizing a system can also introduce low-level function
latency due to sensitive instructions. The LMbench3 suit measures several different
low-level function latencies. Measuring the latency of low-level functions is useful in
identifying potential bottlenecks in system performance. The execution time of the
native environment is the baseline of how quickly the system (hardware and software) can
execute a set of instructions. Any additional execution time required by the virtualized

iterations or with additional workload
2gettimeofday has received criticism in regards to timing accuracy which the creators of LMbench

have disputed. For more information, see the lmbench-3.0-a9 package textfile hbench-REBUTTAL.

44



5.3 Microbenchmarks

environment is assumed to come from the addition of the ESXi-ARM hypervisor since
hardware and software remain unchanged.

Simple System Latencies

System calls (syscalls) are a programmatic way for applications to request services from
the OS and requires the processor to switch modes, discussed in 2.3.2. Nontrivial entry
into the system is measured by null call, null I/O, stat, and open/close. Null call
measures the syscall overhead by repeatedly calling the function getppid(), stressing the
syscall entry and exit path but doing no substantial work in between. In the virtualized
environment, the physical process ID needs to be translated to the virtual one by the
hypervisor. Null I/O function simulates writing and reading to a block device without
actually doing any work; thus, the speed is primarily based on the processor and relevant
syscalls. Zeros are read from /dev/zero and written to /dev/null, a pseudo device
driver that does nothing but discard data [MS96]. The function stat repeatedly requests
information about a file while the open/close function opens and then closes a file.

Table 5.3: Simple function latencies as measured by LMbench3 benchmarking suite. The
values are all in microseconds averaged over three independent runs with
standard deviation as the error estimate (smaller is better).

Test Case Native Debian (µs) Debian on ESXi-ARM (µs) ∆(µs) Percent Overhead

null call 0.35 ± 0.00 1.97 ± 0.01 1.62 464%

null I/O 0.49 ± 0.01 2.16 ± 0.01 1.67 338%

stat 1.33 ± 0.01 3.06 ± 0.05 1.73 130%

open/close 3.76 ± 0.00 7.52 ± 0.26 3.76 104%

Select on 100 fd’s 2.57 ± 0.00 4.27 ± 0.04 1.69 66%

Syscalls were expected to have high percent virtualization overhead compared to native
execution due to their fast execution and the additional handling required from the
hypervisor to execute these functions. The null call function is the simplest out of
the measured syscalls and has the highest virtualization overhead compared to native
execution at 464%. Comparatively, the open/close function requires 3.76µs to execute in
the native environment compared to 7.52µs for Debian on ESXi-ARM, a 104% overhead.
However, comparing the difference in execution time for syscalls between the native and
virtualized environment, all the functions have a relatively consistent overhead with
an average of 1.72 µs 3. A likely cause for the execution time overhead is that the
hypervisor has to intervene to perform processor mode switch, discussed in section 2.3.2.
Syscall execution time remained consistent when scaling the number of VMs hosted on
ESXi-ARM up.

3The open/close function are two separate syscalls that are measured together.

45



5 Results and Analysis

Process Creation Latencies

The fork, execve, and sh function are increasingly expensive forms of process creation.
The function fork, creates a duplicate of the calling process, which then immediately
exits the child process in the benchmark. The execve function, forks a process, and then
has the child process execute a small hello world program. The parent process waits for
the child to finish and exit. The sh function forks a process, and the child process calls
execlp starting the shell, /bin/sh, with the new program as a command to the shell.
This function includes the cost of the shell searching the file path for the program.

Figure 5.5: Process creation latencies. (Smaller is better)

Table 5.4: Process creation latency with native Debian compared to scaling the number
of VMs hosted on an ESXi-ARM hypervisor. (Smaller is better)

Environment fork (µs) fork + execve (µs) fork + sh (µs)

Native Debian 243± 4 709± 4 1635± 3

ESXi-ARM + 1 VM 366± 27 1010± 55 2266± 135

ESXi-ARM + 2 VM 385± 7 1053± 8 2326± 33

ESXi-ARM + 3 VM 411± 14 1123± 53 2472± 76

ESXi-ARM + 4 VM 404± 14 1129± 39 2502± 71

ESXi-ARM + 5 VM 442± 26 1169± 26 2586± 16

The percent virtualization overhead is between 39-50% for process creation, with fork
having the highest percent overhead out of the three functions. The sh function had the
highest ∆ in execution time at 631 µs. This trend is also apparent as scaling the number
of VMs hosted on ESXi-ARM up. The fork and execve functions only slightly increase
in execution time, whereas the sh function has a faster increase in execution time, as
seen in Figure 5.5.

46



5.3 Microbenchmarks

Signal Latencies

Signals tell another process to handle an event similar to interrupts in a CPU [MS96].
Signal handling is often critical to layered systems such as software development environ-
ments and threading libraries, which provide an OS-like layer on top of the OS [MS96].
LMbench3 measures signal handling by installing a signal handler and then repeatedly
sending itself the signal [MS96]. This benchmark uses the POSIX sigaction interface be-
cause the signal stays installed as opposed to the more portable signal interface [MS96].

Table 5.5: Signal latencies as measured by LMbench3 benchmarking suite. The values
are all in microseconds averaged over three independent runs with standard
deviation as the error estimate (smaller is better).

Test Case Native Debian (µs) Debian on ESXi-ARM (µs) Percent Overhead

Signal handler install 0.50 ± 0.01 2.11 ± 0.02 324%

Signal handler overhead 2.23 ± 0.04 4.03 ± 0.08 81%

The signal installer function had considerably more virtualization overhead at 324%
as opposed to the signal handler, which had a virtualization overhead of 81%. This
benchmark does not reflect real-world applications, as signals usually go to another
process.Thus the true cost of sending that signal is the signal overhead plus the context
switch overhead if they are running on the same core of a processor [MS96].

File Latencies

Figure 5.6: File System Latencies. (Smaller is better)

File system latency is defined by LMbench as the time required to create or delete a

47



5 Results and Analysis

zero length file [MS96]. Overhead for file creation consists of computing the label for the
new file, performing permission checks for searching the path, modifying the directory,
and creating the file. File deletion overhead for the 0K file delete consists of performing
permission checks for searching the path, modifying the directory, and unlinking the file.
The number of VMs executing has a stronger effect on file creation execution time than
file deletion, seen in Figure 5.6.

Context Switching Latency

Context switch time is the time needed to save the state of one process and restore the
state of another process, see section 2.3.1. LMbench1 and LMbench2 measured context
switch time using a ”hot-potato” approach with Unix pipes connected in a ring [MS96].
LMbench3 uses N LMbench2-style process rings to measure the context switch times
with all N rings running in parallel [MS96].

A process size of zero does nothing but pass the token on to the next process. A
process size greater than zero simulates the summing up of an array of the specified
size. The effect of this is that the data and instruction cache get polluted by some
amount before the token is passed on. The overhead is measured using hot caches. As
the number and size of the processes increases, the caches become increasingly polluted
until the set of processes do not fit. The context switch times go up because a context
switch is defined as the switch time plus the time it takes to restore all of the process
state, including cache state. This means that the switch includes the time for the cache
misses on larger processes [MS96].

Figure 5.7: Context switching time of processes as a with varying process sizes. (Smaller
is better)

The context switching time was consistent for two processes of varying size in all
environments, see Figure 5.7. At 8 and 16 processes the native environment performed

48



5.3 Microbenchmarks

significantly better than the virtualized environments. The size of the process had a
more significant effect on the virtualization overhead than the number of processes.
Both 8p/16k and 16p/16k had similar executions times within environments, whereas
8p/64k performed significantly better than 16p/64k.

5.3.2 Local Communication Bandwidth

Figure 5.8: Local communication bandwidth as the number of VMs hosted on ESXi-
ARM is increased. (Bigger is better)

Table 5.6: Local communication bandwidth in MB/s of native Debian compared to De-
bian in a VM Hosted on ESXi-ARM. (Bigger is better)

Environment Native Debian (µs) Debian on ESXi-ARM (µs) Percent Overhead

Pipe 1599± 1 1409± 48 12%

AF UNIX 2211± 47 1796± 59 19%

TCP 1524± 9 1241± 132 19%

File reread 3236± 129 3174± 111 2%

Mmap reread 8979± 3 8670± 450 3%

Bcopy(libc) 4517± 1 4309± 68 5%

Bcopy(hand) 4510± 1 4238± 81 6%

Memory read 7197± 0 6950± 35 3%

Memory write 7990± 1 7904± 6 1%

Bandwidth is the rate at which a particular facility can move data in the system
[MS96]. There was not significant decrease to bandwidth due to virtualization overhead
with most of the facilities experiencing less than 10% overhead, see Table 5.6, which
can be attributed to normal deviance in execution time or latencies from hypervisor
intervention.

49



5 Results and Analysis

Pipe latency is the zero-sized context switch overhead plus the pipe overhead. The
2p/0k context switch virtualization overhead was 6% or a ∆ of 0.29 µs. This overhead
did not significantly effect the more complex pipe function which has a virtualization
overhead percent of 12%. The highest overhead is from AF UNIX, at 19%, which are
sockets used for local interprocess communication. Although both AF UNIX sockets and
pipes are mechanisms to enable interprocess communication, AF UNIX sockets are more
flexible than pipes, such as enabling bidirectional communication. AF UNIX sockets also
support additional features such as passing kernel-verified user and group identification.
This flexibility requires intervention from the hypervisor to control the communication
and permission processing but had the same amount of virtualization overhead at 19%.

The read and mmap functions are used to benchmark the overhead associated with
data reuse [MS96]. The difference between bcopy 4 and read is the cost of the file and
virtual memory system overhead [MS96]. As seen in Table 5.6, this difference did not
significantly impact the system performance.

The bandwidth decreases as the number of VMs hosted on ESXi-ARM is scaled up.
Interesting to note is that the bandwidth of the functions Pipe, AF Unix and TCP
converge as the number of VMs is scaled up.

5.4 MiBench Performance Metrics

Microbenchmarks such as LMbench3 and Cyclictest measure basic system operations
and behavior. Although microbenchmarks like these are useful in identifying potential
bottlenecks in execution, they do not represent how real-world applications will behave.
For this reason, a series of domain-specific benchmarks from MiBench benchmarking
suite have been selected to evaluate ESXi-ARM performance.

5.4.1 Automotive and Industrial Control

The Automotive and Industrial Control category focuses on embedded control systems,
such as air bag controllers or sensor systems. These systems rely primarily on basic
math abilities, bit manipulation, and data organization [GRE+01]. Four algorithms
were chosen:

basicmath Calculates simple mathematical functions needed for calculating road speed
or vector values.

bitcount Counts the number of bits in an array of integers using five different algorithms.

qsort Sorts array of strings into ascending order using quick sort algorithm. Important
for systems that require fast prioritization of data.

susan Image recognition package developed for recognizing corners and edges in Mag-
netic Resonance Images of the brain. Typical of a real-world application employed

4bcopy is deprecated but as we are testing the virtualization overhead and not the actual function the
results are still valid.

50



5.4 MiBench Performance Metrics

for vision based quality assurance. Three separate susan algorithms were run:
smoothing, edges and corners.

Figure 5.9: Virtualization overhead of Debian on ESXi-ARM measured with the
MiBench Automotive Suite. Execution times are the average over 50 runs
and have been normalized to native execution time.

Out of the Automotive and Industrial Control domain, Debian on ESXi-ARM per-
formed best on the bitcount algorithm, with equal or close to equal performance to the
native environment. This could be due to bitcount having the lowest total percentage
of load and store instructions [GRE+01]. The only other algorithm that was able to
achieve close to native performance was Susan Smoothing and only when less than three
VMs were concurrently hosted on ESXi-ARM. Performance for less than three VMs was
close to equal for qsort and susan but significantly declined as more VMs were hosted
on ESXi-ARM.

5.4.2 Consumer

Consumer Devices includes devices such as digital cameras, phones, and tablets. This
category of algorithms focuses primarily on multimedia applications [GRE+01].

jpeg Algorithm for image compression and decompression commonly used to view im-
ages in embedded documents.

lame MP3 encoder that supports constant, average and variable bit-encoding. Uses
small and large wave files as data input

tiff2bw Image conversion. Converts a color TIFF image to black and white.

tiff2rgba Image conversion. Converts a color image in the TIFF format into a RGB
color formatted TIFF image.

51



5 Results and Analysis

tiffdither Dithers a black and white TIFF bitmap to reduce the resolution and size of
the image.

tiffmedium Converts an image to a reduced color palette.

typeset Captures the processing required to typeset an HTML document without any
rendering overheads.

Figure 5.10: Virtualization overhead of Debian on ESXi-ARM measured with the
MiBench Consumer Suite. Execution times are the average over 50 runs
and have been normalized to native execution time.

The worst performing algorithm from the Consumer domain was tiff conversion. De-
bian on ESXi-ARM performed less than 40% as well as native Debian for tiff2bw and
tiff2rgba, which significantly decreased as the number of VMs hosted on ESXi-ARM
increased. When five VMs were running on ESXi-ARM, tiff2bw and tiff2rgba had a
performance of only 9% and 2%, respectively, compared to native execution. For all the
algorithms from the Consumer domain there was a significant performance decrease at
five VMs.

5.4.3 Network

The network category represents embedded processors in network devices such as switches
and routers. These devices focus on shortest path calculations, tree and table look-ups,
and data I/O [GRE+01]. Two algorithms were chosen:

dijkstra Constructs large graph in adjacency matrix and then calculates the shortest
path.

patricia Patricia tries are often used to represent routing tables in network applications.

52



5.4 MiBench Performance Metrics

Figure 5.11: Virtualization overhead of Debian on ESXi-ARM measured with the
MiBench Network Suite. Execution times are the average over 50 runs
and have been normalized to native execution time.

Neither of the two Network domain algorithm’s performance were significantly im-
pacted by virtualization. Performance was consistent, around 80% of Native, even as
the number of VMs concurrently hosted on ESXi-ARM was scaled up to five.

5.4.4 Office

Office category represents printers, fax machines, and word processors. The algorithms
in this category focus primarily on text manipulation [GRE+01].

ghostscript postscript language interpreter without its graphical interface.

ispell Spell checker that is similar to the Unix spell, but faster.

stringsearch Searches for given words in phrases using a case insensitive comparison
algorithm.

Performance was above 80% for both ghostscript and ispell when running less than
three VMs on ESXi-ARM. Ghostscript performance significantly decreased at three VMs
down to about 50%. Stringsearch performance decreased inconsistently while scaling up
the number of VMs. Running two and four VMs performed significantly worse on the
stringsearch algorithm compared to one and three VMs.

5.4.5 Security

Security is one of the most important aspects in regard to IoT embedded devices. The
algorithms chosen focus on data encryption, decryption, and hashing [GRE+01].

53



5 Results and Analysis

Figure 5.12: Virtualization overhead of Debian on ESXi-ARM measured with the
MiBench Office Suite. Execution times are the average over 50 runs and
have been normalized to native execution time.

blowfish Symmetric block cipher with variable length key (32-448 bits) input is a large
text file.

rijndael (AES) Block cipher (128, 192, 256-bit key option) encrypts a large text file.

sha Secure hash algorithm used for generating digital signatures.

Figure 5.13: Virtualization overhead of Debian on ESXi-ARM measured with the
MiBench Security Suite. Execution times are the average over 50 runs
and have been normalized to native execution time.

54



5.4 MiBench Performance Metrics

Rjindael performed the worst out of the Security domain with all environments per-
forming below 60%.

5.4.6 Telecommunications

Telecommunications focuses on voice encoding and decoding algorithms, frequency anal-
ysis and a checksum algorithm [GRE+01].

ADPCM Adaptive Differential Pulse Code Modulation is a variation of Pulse Code
Modulation (PCM). The input data is large speech samples to encode and decode.

CRC32 Performs Cyclic Redundancy Check (CRC) on a file. Used for error detection
in data transmission.

FFT/IFFT Performs Fast Fourier Transform (FFT) and its inverse (IFFT) on an array
of data. Input data is a polynomial function with pseudorandom amplitude and
frequency sinusoidal components.

GSM Used for voice encoding/decoding input is small and large speech samples.

Figure 5.14: Virtualization overhead of Debian on ESXi-ARM measured with the
MiBench Telecommunications Suite. Execution times are the average over
50 runs and have been normalized to native execution time.

When evaluating MiBench with only one VM hosted on ESXi-ARM, only ADPCM had
a performance below 80% compared to native out of the telecommunications algorithms.
Encoding from PCM to ADPCM performed closer to native than decoding except when
running 2 VMs. GSM encode had the best performance even when scaling the number
of concurrently running VMs up to five.

55



5 Results and Analysis

5.5 Summary

The performance of a prototype version of ESXi-ARM hypervisor is evaluated in this
chapter. In section 5.1 the memory footprint of ESXi-ARM is evaluated using the
vSphere service console. The ESXi-ARM hypervisor has memory footprint of 1.42 MB
which is similar to the memory footprint displayed by XEN [nod19]. As discussed in
section 3.3.1, embedded devices are often memory constrained so efficient use of memory
is an especially important characteristic of an embedded hypervisor. As the number of
concurrently hosted VMs was increased, the ESXi-ARM prototype made exceptional use
of memory, most likely due to transparent page sharing. This effect would be diminished
if different OS environments were used within the VMs, such as discussed in 3.4.1 for
use cases 2 and 4.

In section 5.2, the scheduling latency of ESXi-ARM is evaluated using cyclictest.
The ESXi-ARM hypervisor introduced additional scheduling latency compared to native
execution, which was expected since this is a pre-release prototype that has not been
yet been fully evaluated for anomalies and performance optimized. Native Debian with
the PREEMPT-RT patch has a measured maximum latency of 27 µs over 10 million
loops compared to on ESXi-ARM with a maximum latency of 5348 µs. This could
suggest poor prioritization in the hypervisor’s scheduler but needs further evaluation to
determine the source of latency.

The function latencies and bandwidth are evaluated using LMbench3 in 5.3. Simple
syscalls have a high percentage of virtualization overhead but added only an average of
1.72 µs to the execution time. The execution time of simple syscalls is not effected by
the number of VMs hosted on ESXi-ARM. Process creation overhead using the fork,
execve, and sh functions was at 39-50%. The virtualization overhead of process creation
increased as the number of VMs executing on ESXi-ARM increased. In contrast, signal
install and handle overhead was relatively consistent as the number of VMs hosted on
ESXi-ARM was scaled up and added about 1.71 µs of execution time compared to the
native environment. File creation was impacted by the number of VMs hosted on ESXi-
ARM to a greater degree compared to file deletion, which remained relatively consistent.
Two process context switching has close to native performance but execution overhead
increased substantially at 8 and 16 processes, however the size of the process has a
greater effect on the virtualization overhead than the number of processes. ESXi-ARM
has minimal decline in communication bandwidth compared to the native environment.

Since LMbench3 measures performance of basic system operations, it does not repre-
sent real world application scenarios. To evaluate how ESXi-ARM performs in different
real-world embedded domains, MiBench benchmarking suite is used. Application spe-
cific benchmarks that reflect six categories: automotive and industrial control, consumer
devices, office automation, networking, security, and telecommunications were chosen.
ESXi-ARM performance varied between and within domains. Not all applications had
a linear decline in performance as the number of VMs scaled up, so it can be concluded
that the overhead is not only due to resource contention. Some of the variance in exe-
cution time can be attributed to the wake up latency but further analysis is warranted

56



5.5 Summary

to make conclusive statements in regards to the source of overhead.

57





6 Conclusion

Further development of embedded systems is currently constrained by issues such as
growing hardware and software complexity, SWaP-C constraints, etc. This work aimed
to answer whether virtualization is a viable solution to the problems currently facing
embedded devices. To answer this question, first requirements of an embedded hypervi-
sor were evaluated and use cases for embedded virtualization established. Thereafter, a
feasibility study was performed using VMware’s well-established server hypervisor, ESXi
modified to run on ARM processors.

The diversity of the embedded domain makes generalizations of an embedded hyper-
visor difficult, however prevailing attributes required of an embedded hypervisor include
a minimal code base, strong and fine-grained encapsulation, controlled communication,
and minimal overhead. The pre-release prototype version of ESXi-ARM tested for this
work is evaluated for potential virtualization use cases in embedded devices, listed in
table 6.1.

6.1 Contributions

Before evaluating the benchmark results of ESXi-ARM, it is important to note that
this version of the hypervisor software is an in-development prototype that has not
undergone the extensive optimization that is performed for market released software.
For this reason, gaps in functionality and performance are expected and any results only
apply to this early pre-release version of ESXi-ARM. All benchmarks would need to be
rerun on the final version of ESXi-ARM to give an accurate evaluation of performance.

Based on the results of the different benchmarks performed, it is concluded that the
ESXi-ARM hypervisor could be a feasible solution for many embedded device domains.
Although it is still in-development, the prototype ESXi-ARM hypervisor exhibited high
stability throughout benchmarking, hosting up to five VMs concurrently with little per-
formance degradation. The ESXi-ARM hypervisor also exhibited efficient use of memory
due to its memory management policies, such as transparent page sharing. For low-level
system calls, ESXi-ARM added only minor latency compared to native execution with
an average of 1.72 µs. However, depending on the amount of syscalls called by an ap-
plication, this minor latency could add significant overhead to a system. Scaling the
number of concurrent VMs hosted on ESXi-ARM did not affect the execution time of
the systems calls such as null call, null I/O, stat, open, close, signal install, and signal
handle.

For other low-level functions such as file create, file delete, process creation, and con-
text switching, the latency increased linearly as the number of VMs hosted on ESXi-ARM

59



6 Conclusion

Table 6.1: Constraints and use cases identified in chapter 3 with the evaluated relation to
benchmarking tests performed in this work. A checkmark indicates applica-
tion areas where the prototype ESXi-ARM could potentially be implemented
as-is, and an X-mark indicates areas for future work. Blank spaces indicate
areas that were not covered by the benchmarks performed in this work and
necessitate further testing.

Background Constraints and Application Areas Results Section

3.3.1 Power Constrained
3.3.1 Heat Sensitive
3.2.2 3.3.3 Real-Time Systems 7 5.2
3.3.1 RAM Constrained 3 5.1
3.3.2 Intracommunication 3 5.3.1 5.3.2
3.3.2 Intercommunication
3.4.1 Use Case 1: BYOD Devices 3 5.1
3.4.1 Use Case 2: Decouple Application 3 5.1
3.4.1 Use Case 3: Vanilla OS Support 3 5.1
3.4.1 Use Case 4: Legacy Application Support 3 5.1
3.4.1 Use Case 5: Real-Time Support 7 5.2
3.4.2 Use Case 6: Multicore Management
3.4.2 Use Case 7: Hot Failover
3.4.2 Use Case 8: Migration 3 4.5
3.4.2 Use Case 9: Dynamic I/O Management
3.4.3 Use Case 10: Operating System Isolation 3 5.3
3.4.3 Use Case 11: Monitor Software Isolation 3 5.3
3.4.3 Use Case 12: Licensing Separation 3 5.3
3.4.3 Use Case 13: Fault Containment 3 5.3

increased. In comparison to the native environment and as the number of concurrently
executing VMs increased, local communication bandwidth decreased slightly. From the
LMbench3 latency and bandwidth results, it is concluded that virtualization solutions
need to be evaluated on a case-by-case basis. The frequency of system calls required by
an application and the tolerance for overhead are all device specific characteristics.

Additionally, according to the results from Linux’s cyclictest, a weakness of the proto-
type ESXi-ARM is the scheduler. Real-time devices require deterministic behavior from
a system such as WCET constraints. Results from cyclictest showed that in comparison
to native execution, the prototype ESXi-ARM introduced additional scheduling latency
and reduced the deterministic behavior of the system.

6.2 Future Work

Further evaluation should be done for characteristics identified in chapter 3. Table 6.1
summarizes these characteristics and the results of benchmarks run in this work. A

60



6.2 Future Work

checkmark identifies application areas in which the prototype version of ESXi-ARM
may already be able to adequately perform. Future work could focus on implementing
the listed use cases. A blank space indicates areas for which no tests were run and need
further evaluation, such as power constrained and heat sensitive devices.

An X-mark indicates areas for which the ESXi-ARM prototype needs further perfor-
mance optimization to be applicable. One such area is improving the scheduling policy
to adhere to priority constraints of different VMs. A more in-depth analysis of different
real-time systems should be performed to determine their tolerance for missed dead-
lines. Determining the tolerance for missed deadlines would enable better scheduling
policy decisions to be made between adhering to real-time and fairness constraints of
the VMs executing. Further, additional tests from Linux’s rt-test suite should be eval-
uated to determine other latency characteristics, such as scheduler or interrupt latency,
to establish where ESXi-ARM adds latency into the system and identify optimization
areas for future versions of ESXi-ARM.

A detailed analysis of the LMbench3 and MiBench suite should be performed to deter-
mine the source of the latencies in the virtualized environments. It would be beneficial
to determine why certain functions take more time as the number of VMs hosted on
ESXi-ARM increases. Additionally, attempts should be made to determine the source
of jitter between MiBench runs.

Finally, to get an accurate representation of the performance of ESXi-ARM, other
embedded hypervisors should be benchmarked on the MACCHIATObin development
board as a comparison. Comparing the performance of different hypervisors would allow
better insight into the embedded hypervisor market.

61





List of Figures

2.1 The three fundamental techniques to virtualization, adapted from [BNT17] 4

2.2 Comparison of a system virtualized using a type 1 hypervisor and a type
2. Arrows represent instruction flow. . . . . . . . . . . . . . . . . . . . . . 5

2.3 Popek and Goldberg’s Definition of Classically Virtualizable and Non-
Virtualizable ISAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Taxonomy of Virtualization Techniques . . . . . . . . . . . . . . . . . . . 8

2.5 Visualization of the instruction flow when an exception occurs. The pro-
cessor must switch from User to Kernel mode to invoke the exception
handler routine (or interrupt handler). Once the exception has been han-
dled, the processor switches back to User mode. . . . . . . . . . . . . . . . 9

2.6 Exception levels in AArch64, adapted from [ARM16]. . . . . . . . . . . . 10

2.7 Synchronous exception handling in a non-virtualized system call for ARMv8
ISA. Application executing in User mode (EL0) initiates a system call
requesting memory using malloc(), which is used to allocate blocks of
memory on the heap. The processor switches to Kernel mode (EL1).
Adapted from [ARM17b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 In a native system, applications executing in EL0 request services from
the OS using a supervisor call (SVC). The OS can then directly request
services from the secure monitor using a secure monitor call (SMC). In a
virtualized system the OS must first request services from the hypervisor
using a hypervisor call (HVC) which then addresses the secure monitor
using an SMC. Adapted from [ARM17b]. . . . . . . . . . . . . . . . . . . 11

2.9 Address Translation in a traditional and virtualized system [MN10] . . . . 14

2.10 Two layer address translation in a virtualized system, adapted from [MN10]. 14

3.1 Example architecture of a possible embedded system, adapted from [Jr96] 18

3.2 Legacy software support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 RTOS coexisting with general-purpose OS. . . . . . . . . . . . . . . . . . 25

3.4 A user or network facing OS is compromised but the rest of the system is
safe from exploit, adapted from [Hei08]. . . . . . . . . . . . . . . . . . . . 27

4.1 Testing environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 MACCHIATObin Single Shot development board, adapted from [Mar19] . 34

4.3 Block diagram of the Cortex A72 Processor from [ARM16] . . . . . . . . 35

5.1 Host memory consumption while scaling the number of VMs hosted on
ESXi-ARM up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

63



List of Figures

5.2 Cyclictest histogram comparing the latency of virtualizing Debian (with-
out PREEMPT-RT patch) with ESXi-ARM compared to native Debian
on a MACCHIATObin Single Shot development board. Cyclictest mea-
sured 10 million loops at an interval of 1,000 µs at a priority level of 90.
Please note, all threads exceeding a wakeup latency of 1,500 µs are not
displayed on the histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Cyclictest histogram comparing the latency of virtualizing Debian (with
PREEMPT-RT patch) with ESXi-ARM compared to native Debian on a
MACCHIATObin Single Shot development board. Cyclictest measured
10 million loops at an interval of 1,000 µs at a priority level of 90. Please
note, all threads exceeding a wakeup latency of 1,500 µs are not displayed
on the histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Cyclictest histogram comparing the latency of Debian with and without
the PREEMPT-RT patch on ESXi-ARM on a MACCHIATObin Single
Shot development board. Cyclictest measured 10 million loops at an inter-
val of 1,000 µs at a priority level of 90. Please note, all threads exceeding
a wakeup latency of 10,000 µs are not displayed on the histogram. The
histogram is blown up to cut off at 1500 µs to better display the effects
at lower latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Process creation latencies. (Smaller is better) . . . . . . . . . . . . . . . . 46

5.6 File System Latencies. (Smaller is better) . . . . . . . . . . . . . . . . . . 47

5.7 Context switching time of processes as a with varying process sizes. (Smaller
is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.8 Local communication bandwidth as the number of VMs hosted on ESXi-
ARM is increased. (Bigger is better) . . . . . . . . . . . . . . . . . . . . . 49

5.9 Virtualization overhead of Debian on ESXi-ARM measured with the MiBench
Automotive Suite. Execution times are the average over 50 runs and have
been normalized to native execution time. . . . . . . . . . . . . . . . . . . 51

5.10 Virtualization overhead of Debian on ESXi-ARM measured with the MiBench
Consumer Suite. Execution times are the average over 50 runs and have
been normalized to native execution time. . . . . . . . . . . . . . . . . . . 52

5.11 Virtualization overhead of Debian on ESXi-ARM measured with the MiBench
Network Suite. Execution times are the average over 50 runs and have
been normalized to native execution time. . . . . . . . . . . . . . . . . . . 53

5.12 Virtualization overhead of Debian on ESXi-ARM measured with the MiBench
Office Suite. Execution times are the average over 50 runs and have been
normalized to native execution time. . . . . . . . . . . . . . . . . . . . . . 54

5.13 Virtualization overhead of Debian on ESXi-ARM measured with the MiBench
Security Suite. Execution times are the average over 50 runs and have
been normalized to native execution time. . . . . . . . . . . . . . . . . . . 54

64



List of Figures

5.14 Virtualization overhead of Debian on ESXi-ARM measured with the MiBench
Telecommunications Suite. Execution times are the average over 50 runs
and have been normalized to native execution time. . . . . . . . . . . . . . 55

65





Bibliography

[ADH+11] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and
Jason Nieh. Cells: A virtual mobile smartphone architecture. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems Principles,
number DOI: 10.1145/2043556.2043574 xiv, xvi in SOSP ’11, pages 173–187,
New York, NY, USA, 2011. Association for Computing Machinery.

[ARM13] ARM. Arm generic interrupt controller architecture version 3.0 and 4.0.
Architecture Specification ARM IHI 0069D ID072617, ARM, www.arm.com,
2013.

[ARM16] ARM. Arm cortex-a72 mpcore processor. Reference Manual r0p3, ARM,
December 2016.

[ARM17a] ARM. Aarch64 virtualization. Technical Report 0100, ARM, March 2017.

[ARM17b] ARM. Version 0.1 aarch64 exception and interrupt handling. Technical
Report 1, ARM, February 2017.

[ARM19] ARM. Arm architecture reference manual armv8, for armv8-a architecture
profile. ARM Architecture Reference Manual ARM DDI 0487D.b ID042519,
ARM, www.arm.com, April 2019.

[ASL+19] Iqbal Alam, Kashif Sharif, Fan Li, Zohaib Latif, Md Monjurul Karim,
Boubakr Nour, Sujit Biswas, and Yu Wang. Iot virtualization: A survey
of software definition and function virtualization techniques for internet of
things. Cornell arXiv, February 2019.

[BKL10] Diane Barrett, Gregory Kipper, and Samuel Liles. Virtualization and Foren-
sics A Digital Forensic Investigator’s Guide to Virtual Environments, vol-
ume 1. Elsevier, 2010.

[BMB+18] Alessandro Biondi, Mauro Marinoni, Giorgio Buttazzo, Claudio Scordino,
and Paolo Gai. Challenges in virtualizing safety-critical cyber-physical sys-
tems. In Embedded World Conference, 2018.

[BNT17] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. Hardware and Software
Support for Virtualization. Synthesis Lectures on Computer Architecture,
2017.

67



Bibliography

[CBS+18] Alfons Crespo, Patricia Balbastre, José Simó, Javier Coronel, Daniel Pérez,
and Philippe Bonnot. Hypervisor-based multicore feedback control of mixed-
criticality systems. In IEEE Access, volume 6, pages 50627–50640, 2018.

[Dal18] Christoffer Dall. The Design, Implementation, and Evaluation of Software
and Architectural Support for ARM Virtualization. PhD thesis, Columbia
University, 2018.

[Dan18] PD Dr. V. Danciu. Virtualisierte systeme. Lecture Notes, 2018.

[DLLN15] Christoffer Dall, Shih-WEi Li, Jintack Lim, and Jason Nieh. A measurement
study of arm virtualization performance. Technical Report CUCS-XXX-XX,
Columbia University, November 2015.

[ebu18] ebugden. Cyclictest. ”https://wiki.linuxfoundation.org/realtime/
documentation/howto/tools/cyclictest/start?s[]=cyclictest”, Au-
gust 08 2018. ”[Last Accessed: December 1, 2019]”.

[EES+01] Jakob Engblom, Andreas Ermedahl, M Sjdin, Jan Gustafsson, and Hans
Hansson. Execution-time analysis for embedded real-time systems. Interna-
tional Journal on Software Tools for Technology Transfer - STTT, January
2001.

[Fra18] Dann Frazier. stress-ng. ”https://wiki.ubuntu.com/Kernel/Reference/
stress-ng”, December 18 2018. ”[Last Accessed: December 5, 2019]”.

[Fut19] Market Research Future. Global embedded software mar-
ket research report- forecast 2022. Market Research Re-
port MRFR/SEM/1571-HCRR, Market Research Future,
https://www.marketresearchfuture.com/reports/embedded-software-
market-2103, May 2019.

[Gan16] Jayneel Gandhi. Efficient Memory Virtualization. PhD thesis, University of
Wisconsin-Madison, 2016.

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded bench-
mark suite. In Proceedings of the Workload Characterization, 2001. WWC-
4. 2001 IEEE International Workshop, number 10.1109/WWC.2001.15 in
WWC ’01, pages 3–14, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

[Hei07] Gernot Heiser. Virtualization for embedded systems. White Paper OK
40036:2007, Open Kernal Labs, Inc., November 2007.

[Hei08] Gernot Heiser. The role of virtualization in embedded systems. Open Kernel
White Paper, pages 11–16, April 2008.

68

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s[]=cyclictest
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s[]=cyclictest
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng


Bibliography

[Hei11] Gernot Heiser. Virtualizing embedded systems - why bother? In DAC. NICA
and University of New South Wales, 2011.

[HGC97] W. A. Halang, R. Gumzej, and M. Colnaric. Measuring the performance of
real time systems. In Real Time Programming, pages 93–98. International
Federation of Automatic Control, September 1997.

[IDC14] IDC. Design of future embedded systems. Industry Report SMART
2009/0063, IDC, 2014.

[Jr96] Philip J. Koopman Jr. Embedded system design issues (the rest of the
story). In Proceedings International Conference on Computer Design. VLSI
in Computers and Processors, pages 310–317, October 1996.

[KCSS11] Robert Kaiser, Massimo Conti, Orcioni Simone, and Ralf Seepold. Solutions
on Embedded Systems, chapter Applicability of Virtualization to Embedded
Systems, pages 215–226. Springer Netherlands, 2011.

[Kel15] Timon Kelter. WCET Analysis and Optimization for Multi-Core Real-Time
Systems. PhD thesis, Dortmund, March 2015.

[Ker11] Timo Kerstan. Towards Full Virtualization of Embedded Real-Time Systems.
PhD thesis, University of Paderborn, March 2011.

[KK13] David Kleidermacher and Mike Kleidermacher. Embedded Systems Security.
Elsevier, 2013.

[LUSG04] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodi-
fied device driver reuse and improved system dependability via virtual ma-
chines. In 6th Symposium on Operating Systems Design and Implementation.
USENIX association, 2004.

[LX15] Wenzhi Chen Lei Xu, Zonghui Wang. The study and evaluation of arm-based
mobile virtualization. International Journal of Distributed Sensor Networks,
11(7):310308, 2015.

[LXRD19] Hao Li, Xuefei Xu, Jinkui Ren, and Yaozu Dong. Acrn: A big little hypervi-
sor for iot development. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, pages 31–44,
New York, NY, USA, December 2019. Association for Computing Machinery.

[Mar19] Marvell. Macchiatobin. Website, October 2019.

[Men05] Daniel A. Menascé. Virtualization: Concepts, applications, and performance
modeling. In 31th International Computer Measurement Group Conference,
pages 407–414, January 2005.

69



Bibliography

[MJGB17] Antonio Maña, Eduardo Jacob, Lorenzo Di Gregorio, and Michele Bezzi.
Security aspects of virtualization. Technical Report ISBN 978-92-9204-211-
0, DOI 10.2824/955316, Enisa, February 2017.

[MN10] Robert Mijat and Andy Nightingale. Virtualization is coming to a platform
near you. White paper, ARM, 2010.

[MS96] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance
analysis. In USENIX 1996 Annual Technical Conference, 1996.

[MS98] Larry McVoy and Carl Staelin. Mhz: Anatomy of a micro-benchmark. In
USENIX 1998 Annual Technical Conference, 1998.

[nod19] nodiscc. Xen wiki. ”https://wiki.debian.org/Xen”, September 09 2019.
”[Last Accessed: December 16, 2019]”.

[NRLB18] Vivian Noronha, Maximilian Riegel, Ekkehard Lang, and Thomas Bauschert.
Performance evaluation of container based virtualization on embedded mi-
croprocessors. In 30th International Teletraffic Congress, pages 79–84, 2018.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtu-
alization third generation architectures. In Communications of the ACM,
volume 17, pages 412–421, New York, July 1974. ACM.

[R19] Lingeswaren R. Para virtualization vs full virtualization vs hardware assisted
virtualization. Website, October 2019.

[RV13] Frank Rowand and Arnout Vandecappelle. Us-
ing and understanding the real-time cyclictest bench-
mark. ”https://mindlinux.wordpress.com/2013/10/25/
using-and-understanding-the-real-time-cyclictest-benchmark-frank-rowand-sony/,
October 25 2013. ”[Last Accessed: December 10]”.

[Sch19] Matthias Schorer. Hypervisor esxi: Virtualisierung für arm-systeme. Inter-
net, May 2019.

[SGB+16] Junaid Shuja, Abdullah Gani, Kashif Bilal, Atta Ur Rehman Khan, Sajjad A.
Madani, Samee U. Khan, and Albert Y. Zomaya. A survey of mobile device
virtualization: Taxonomy and state-of-the-art. ACM Computing Surveys,
0(0):36, April 2016.

[Sof] Green Hills Software. Integrity real-time operating system. ”https://www.
ghs.com/products/rtos/integrity.html. ”[Last Accessed: December 10,
2019]”.

[TSC14] Gilberto Taccari, Luca Spalazzi, and Andrea Claudi. Embedded real-time
virtualization: State of the art and research challenges. In 16th Real-Time
Linux Workshop. Università Politecnica delle Marche, 2014.

70

https://wiki.debian.org/Xen
https://mindlinux.wordpress.com/2013/10/25/using-and-understanding-the-real-time-cyclictest-benchmark-frank-rowand-sony/
https://mindlinux.wordpress.com/2013/10/25/using-and-understanding-the-real-time-cyclictest-benchmark-frank-rowand-sony/
https://www.ghs.com/products/rtos/integrity.html
https://www.ghs.com/products/rtos/integrity.html


Bibliography

[VMw07] VMware. Understanding full virtualization, paravirtualization, and hardware
assist. White Paper WP-028-PRD-01-01, VMware, 2007.

[VMw18a] VMware. Esxi. Internet, October 2018.

[VMw18b] VMware. Performance best practices for vmware vsphere 6.7. Manual
20180727, VMware, July 2018.

[VMw19] VMware. vsphere resource management update 2. Technical documentation,
VMware Inc., 2019.

[XBG+10] Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsi, Klaus Mott,
and Attila Bilgic. Performance evaluation of para-virtualization on modern
mobile phone platform. In International Journal of Computer and Systems
Engineering, volume 4, pages 229–236. World Academy of Science, Engineer-
ing and Technology, 2010.

[Xia16] Tian Xia. Embedded Real-Time Virtualization Technology for Reconfigurable
Platforms. PhD thesis, Université Bretagne Loire, https://hal.archives-
ouvertes.fr/tel-01905886, October 2016.

[ZG12] Qingling Zhao Zonghua Gu. A state-of-the-art survery on real-time issues
in embedded systems virtualization. In Journal of Software Engineering
and Applications, volume 5, pages 277–290. College of Computer Science,
Zhejiang Univesity, January 2012.

71





Bash Script

1 #!/bin/bash

2 ####################################################################

3 # Written by Caroline Frank for LMU bachelor thesis

4 # Last updated 9 December 2019

5 ####################################################################

6

7 # creates new folder to save results of run with date and time

8 home_dir=$(pwd)

9 folder=$(date +"%Y-%m-%d_%T")

10 mkdir "${home_dir}/results/$folder" && RESULTSPATH="$_"

11 TESTNUMBER=1 # Organizes tests in the order they are run

12

13 ######################### Boot time ###################################

14

15 touch $RESULTSPATH/${TESTNUMBER}_boottime.txt

16 systemd-analyze >> ${RESULTSPATH}/"${TESTNUMBER}_boottime.txt"

17

18 ####################### LMBench3 Suite #################################

19

20 RUNNUMBER=1

21 cd ${home_dir}/lmbench-3.0-a9/src

22 make rerun

23 mv ${home_dir}/results/debian.0 ${home_dir}/results/debian.${RUNNUMBER}

24

25 ((RUNNUMBER++))

26 make rerun

27 mv ${home_dir}/results/debian.0 ${home_dir}/results/debian.${RUNNUMBER}

28

29 ((RUNNUMBER++))

30 make rerun

31 mv ${home_dir}/results/debian.0 ${home_dir}/results/debian.${RUNNUMBER}

32

33 ####################### MiBench Suite #################################

34

35 MIBENCH_PATH="${home_dir}/mibench-embedded"

73



Bash Script

36 SRCDIRS="automotive/basicmath automotive/bitcount automotive/qsort

automotive/susan consumer/jpeg/jpeg-6a consumer/lame/lame3.70

office/ghostscript/src"

↪→

↪→

37

38 SUMMARY=zSummaryTimes.txt

39 touch ${RESULTSPATH}/$SUMMARY

40

41 # $1=<filename> $2=<test> $3=<test name> $4=<options1 ...>

42 RUN_MIBENCH () {

43 local FILE="${1}_${2}.txt"

44 cd ${MIBENCH_PATH}/$CURRENT_DOMAIN/$2

45

46 echo Starting ${2} Test.......

47 touch ${RESULTSPATH}/$FILE$x

48 echo Ran $(date +"%Y-%m-%d_%T") Run Options: $@ >>

${RESULTSPATH}/$FILE↪→

49 start=`date +%s%N`

50 ${@:3}

51 end=`date +%s%N`

52 echo Execution time was `expr $end - $start` ns. >>

${RESULTSPATH}/$FILE↪→

53 echo ${2} `expr $end - $start` >> ${RESULTSPATH}/$SUMMARY

54 }

55

56 repeat=1

57 while [ $repeat -le 50 ]

58 do

59 #function_name <filename> <test> <executable> <options>

60 ###################### Automotive ######################

61 CURRENT_DOMAIN=automotive

62

63 # Basic Math

64 ((TESTNUMBER++))

65 RUN_MIBENCH ${TESTNUMBER}_large basicmath ./basicmath_large >

${RESULTSPATH}/${TESTNUMBER}_output_bm_large.txt↪→

66

67 # Bit Count

68 ((TESTNUMBER++))

69 RUN_MIBENCH ${TESTNUMBER}_large bitcount ./bitcnts 11250000 >

${RESULTSPATH}/${TESTNUMBER}_output_bc_large.txt↪→

70

71 # QSort

72 ((TESTNUMBER++))

74



73 RUN_MIBENCH ${TESTNUMBER}_large qsort ./qsort_large input_large.dat

> ${RESULTSPATH}/${TESTNUMBER}_output_qs_large.txt↪→

74

75 # Susan

76 ((TESTNUMBER++))

77 RUN_MIBENCH ${TESTNUMBER}_large_s susan ./susan input_large.pgm

${RESULTSPATH}/${TESTNUMBER}_output_large.smoothing.pgm -s↪→

78 RUN_MIBENCH ${TESTNUMBER}_large_e susan ./susan input_large.pgm

${RESULTSPATH}/${TESTNUMBER}_output_large.edges.pgm -e↪→

79 RUN_MIBENCH ${TESTNUMBER}_large_c susan ./susan input_large.pgm

${RESULTSPATH}/${TESTNUMBER}_output_large.corners.pgm -c↪→

80

81 ####################### Consumer

#############################↪→

82 CURRENT_DOMAIN=consumer

83

84 ## jpeg

85 ((TESTNUMBER++))

86 RUN_MIBENCH ${TESTNUMBER}_large_encode jpeg ./jpeg-6a/cjpeg -dct int

-progressive -opt -outfile

${RESULTSPATH}/${TESTNUMBER}_output_large_encode.jpeg

input_large.ppm

↪→

↪→

↪→

87 RUN_MIBENCH ${TESTNUMBER}_large_decode jpeg ./jpeg-6a/djpeg -dct int

-ppm -outfile

${RESULTSPATH}/${TESTNUMBER}_output_large_decode.ppm

input_large.jpg

↪→

↪→

↪→

88

89 ## lame

90 ((TESTNUMBER++))

91 RUN_MIBENCH ${TESTNUMBER}_large lame ./lame3.70/lame large.wav -S

${RESULTSPATH}/${TESTNUMBER}_lame_output_large.mp3↪→

92

93 ### tiff2bw

94 ((TESTNUMBER++))

95 RUN_MIBENCH ${TESTNUMBER}_large_bw tiff-4.0.10 ./tools/tiff2bw

${MIBENCH_PATH}/${CURRENT_DOMAIN}/tiff-data/large.tif

${RESULTSPATH}/${TESTNUMBER}_tiffbw_output_large.tif

↪→

↪→

96

97 ### tiff2rgba

98 ((TESTNUMBER++))

99 RUN_MIBENCH ${TESTNUMBER}_large_rgba tiff-4.0.10 ./tools/tiff2rgba

-c none ${MIBENCH_PATH}/${CURRENT_DOMAIN}/tiff-data/large.tif

${RESULTSPATH}/${TESTNUMBER}_tiffrgba_output_large.tif

↪→

↪→

75



Bash Script

100

101 ### tiffdither

102 ((TESTNUMBER++))

103 RUN_MIBENCH ${TESTNUMBER}_large_dither tiff-4.0.10

./tools/tiffdither -c g4

${MIBENCH_PATH}/${CURRENT_DOMAIN}/tiff-data/largebw.tif

${RESULTSPATH}/${TESTNUMBER}_tiffdither_output_large.tif

↪→

↪→

↪→

104

105 ### tiffmedian

106 ((TESTNUMBER++))

107 RUN_MIBENCH ${TESTNUMBER}_large_median tiff-4.0.10

./tools/tiffmedian

${MIBENCH_PATH}/${CURRENT_DOMAIN}/tiff-data/large.tif

${RESULTSPATH}/${TESTNUMBER}_tiffmedian_output_large.tif

↪→

↪→

↪→

108

109 ### typeset

110 ((TESTNUMBER++))

111 rm ${MIBENCH_PATH}/${CURRENT_DOMAIN}/typeset/*.ps

112 RUN_MIBENCH ${TESTNUMBER}_small typeset ./runme_large.sh

113 cp ${MIBENCH_PATH}/${CURRENT_DOMAIN}/typeset/*.ps ${RESULTSPATH}

114

115 ###################### Network ######################

116 CURRENT_DOMAIN=network

117

118 # Dijkstra

119 ((TESTNUMBER++))

120 RUN_MIBENCH ${TESTNUMBER}_large dijkstra ./dijkstra_large input.dat

> ${RESULTSPATH}/${TESTNUMBER}_output_dijkstra_large.dat↪→

121

122 # Patricia

123 ((TESTNUMBER++))

124 RUN_MIBENCH ${TESTNUMBER}_large patricia ./patricia large.udp >

${RESULTSPATH}/${TESTNUMBER}_output_patricia_large.txt↪→

125

126 ###################### Office ######################

127 CURRENT_DOMAIN=office

128

129 ## ghostscript

130 ((TESTNUMBER++))

131 RUN_MIBENCH ${TESTNUMBER}_large ghostscript gs -sDEVICE=ppm

-dNOPAUSE -q

-sOutputFile=${RESULTSPATH}/${TESTNUMBER}_gs_output_large.ppm --

${MIBENCH_PATH}/$CURRENT_DOMAIN/ghostscript/data/large.ps

↪→

↪→

↪→

76



132

133 ## ispell

134 ((TESTNUMBER++))

135 RUN_MIBENCH ${TESTNUMBER}_large ispell ./ispell -a -d

tests/americanmed <

${MIBENCH_PATH}/$CURRENT_DOMAIN/ispell/tests/large.txt >

${RESULTSPATH}/${TESTNUMBER}_output_ispell_large.dat

↪→

↪→

↪→

136

137 ### stringsearch

138 ((TESTNUMBER++))

139 RUN_MIBENCH ${TESTNUMBER}_large stringsearch ./search_large >

${RESULTSPATH}/${TESTNUMBER}_output_ss_large.txt↪→

140

141 ####################### security ######################

142 CURRENT_DOMAIN=security

143

144 ## blowfish

145 ((TESTNUMBER++))

146 RUN_MIBENCH ${TESTNUMBER}_large_encrypt blowfish ./bf e

input_large.asc ${RESULTSPATH}/${TESTNUMBER}_output_bf_large.enc

1234567890abcdeffedcba0987654321

↪→

↪→

147 RUN_MIBENCH ${TESTNUMBER}_large_decrypt blowfish ./bf d

output_large.enc

${RESULTSPATH}/${TESTNUMBER}_output_bf_large.asc

1234567890abcdeffedcba0987654321

↪→

↪→

↪→

148

149 # rijndael

150 ((TESTNUMBER++))

151 RUN_MIBENCH ${TESTNUMBER}_large_encrypt rijndael ./rijndael

input_large.asc output_large.enc e

1234567890abcdeffedcba09876543211234567890abcdeffedcba0987654321

↪→

↪→

152 RUN_MIBENCH ${TESTNUMBER}_large_decrypt rijndael ./rijndael

output_large.enc

${RESULTSPATH}/${TESTNUMBER}_output_rij_large.dec d

1234567890abcdeffedcba09876543211234567890abcdeffedcba0987654321

↪→

↪→

↪→

153

154 ## sha

155 ((TESTNUMBER++))

156 RUN_MIBENCH ${TESTNUMBER}_large sha ./sha input_large.asc >

${RESULTSPATH}/${TESTNUMBER}_output_sha.txt↪→

157

158 ####################### telecomm ######################

159 CURRENT_DOMAIN=telecomm

77



Bash Script

160

161 ## adpcm

162 ((TESTNUMBER++))

163 RUN_MIBENCH ${TESTNUMBER}_large adpcm bin/rawcaudio <

${MIBENCH_PATH}/${CURRENT_DOMAIN}/adpcm/data/large.pcm >

${RESULTSPATH}/${TESTNUMBER}_output_large.adpcm

↪→

↪→

164 RUN_MIBENCH ${TESTNUMBER}_large adpcm bin/rawdaudio <

${MIBENCH_PATH}/${CURRENT_DOMAIN}/adpcm/data/large.adpcm >

${RESULTSPATH}/${TESTNUMBER}_output_large.pcm

↪→

↪→

165

166 ## CRC32

167 ((TESTNUMBER++))

168 RUN_MIBENCH ${TESTNUMBER}_large CRC32 ./crc ../adpcm/data/large.pcm

> ${RESULTSPATH}/${TESTNUMBER}_output_crc_large.txt↪→

169

170 ## fft

171 ((TESTNUMBER++))

172 RUN_MIBENCH ${TESTNUMBER}_large_normal fft ./fft 8 32768 >

${RESULTSPATH}/${TESTNUMBER}_output_fft_large.txt↪→

173 RUN_MIBENCH ${TESTNUMBER}_large_inverse fft ./fft 8 32768 -i >

${RESULTSPATH}/${TESTNUMBER}_output_fft_inv_large.txt↪→

174

175 ## gsm

176 ((TESTNUMBER++))

177 RUN_MIBENCH ${TESTNUMBER}_large_encode gsm ./bin/toast -fps -c

${MIBENCH_PATH}/${CURRENT_DOMAIN}/gsm/data/large.au >

${RESULTSPATH}/${TESTNUMBER}_output_large.encode.gsm

↪→

↪→

178

179 RUN_MIBENCH ${TESTNUMBER}_large_decode gsm ./bin/untoast -fps -c

${MIBENCH_PATH}/${CURRENT_DOMAIN}/gsm/data/large.au.run.gsm >

${RESULTSPATH}/${TESTNUMBER}_output_large.decode.run

↪→

↪→

180

181 repeat=$(( $repeat + 1 ))

182 done

183

184 ######################## RT-tests Suite

#################################↪→

185

186 cd ${home_dir}/rt-tests-1.5

187 ./cyclictest -i1000 -l10000000 -h1500 -p90 > output

188 mv ${home_dir}/rt-tests-1.5/output ${RESULTSPATH}/output

78


	Introduction
	Motivation
	Scope of this Work
	Structure of this Work

	Background
	Virtualization Definitions and Notations
	Popek and Goldberg Theorem
	Functions of a Hypervisor
	Context Switching
	Processor Mode Switching
	Exception Handling
	Interrupt Controller Management
	Scheduling and Core Management
	Device Emulation and Assignment
	Memory Virtualization and Management
	Energy Management

	Related Work
	Summary

	Virtualization for Embedded Devices
	What Are Embedded Devices?
	Embedded System Design Requirements
	Criticality
	Real Time

	Requirements and Challenges of an Embedded Hypervisor
	Efficiency
	Secure Communication and Isolation
	Real-time Capabilities

	Virtualization Use Cases for Embedded Devices
	Coexisting Operating Systems
	Dynamic Resource Management
	Sandboxing

	Related Work
	Summary

	Research Design and Methodology
	Methodology
	Hardware Configuration
	Processor
	Applicability

	ESXi Configuration
	Operating System Configuration
	Virtual Machine Configuration

	Results and Analysis
	Memory Consumption
	Scheduling Latency
	Microbenchmarks
	Latencies
	Local Communication Bandwidth

	MiBench Performance Metrics
	Automotive and Industrial Control
	Consumer
	Network
	Office
	Security
	Telecommunications

	Summary

	Conclusion
	Contributions
	Future Work

	List of Figures
	Bibliography
	Bash Script

