INSTITUT FUR INFORMATIK

DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Bachelorarbeit

Variance of photon mapping
density estimation

Zhiming Gan

INSTITUT FUR INFORMATIK

DER LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN

Bachelorarbeit

Variance of photon mapping
density estimation

Zhiming Gan

Aufgabensteller: Prof. Dr. Dieter Kranzlmiiller

Betreuer: Dr. Rubén Jesis Garcia Herndndez
Abgabetermin: 19. Dezember 2018

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbstandig verfasst und
keine anderen als die angegebenen QQuellen und Hilfsmittel verwendet habe.

Miinchen, den 11. Dezember 2018

(Unterschrift des Kandidaten)

Abstract

Computer graphics is a sub-field of computer science which studies methods for digitally
synthesizing and manipulating visual content. The major subfields in computer graphics
might be geometry, animation, imaging, topology and rendering. The rendering generates
images from a model. It may simulate light transport to create realistic images or it may
create non-photorealistic images that have a particular artistic style. The rendering tech-
niques can be classified into local illumination techniques and global illumination techniques.
The local illumination algorithms are very fast, but images rendered using global illumina-
tion algorithms often appear more photorealistic than those using only local illumination
algorithms. There are many algorithms used in global illumination. Photon mapping is a
very popular two-pass global illumination algorithm: the first pass is casting photons from
the light source and saving the information of reflection in the so called photon map; in the
second pass, the brightness of the pixels are estimated from the photon map, this pass is
also called radiance estimate.

Many studies have successfully tried to improve the radiance estimation, for example, the
radiance estimation can be improved by adding a filter of the distance. Because the error
analysis of rendering algorithms is beneficial for understanding their behavior, this thesis
extended the framework presented by Dr. Garcia and presents an analysis of the variance
in common used filtering kernels in the context of photon mapping density estimation. We
use the joint distribution of order statistics to calculate the variance value in both 2D and
3D case for the constant kernel, the epanechnikov kernel, the silverman kernel (also called
quartic kernel), the cone filter and the triangle kernel, which is a special case of the cone
filter. Corresponding to our theoretical study, we have implemented a scene consisting of a
planar unit disc, a very simple model, which illuminated by a directional light source for each
kernel and calculated the signal to noise ratio of each kernel. After it we show the signal-to-
noise ratio of our theoretical results and its computational cost compares to the empirical
results and computational time. The theoretical comparision among different filters allow us
to choose the best kernel for our needs. Besides, we could offer a threshold, the estimation
of computational cost of algorithms which stop after error is smaller than the threshold.

vii

Contents

(1. _Introductionl
[1.1. Computer graphics|
(1.2. Rendering|
(L.3. Local illuminationl

(1.5. Photon mapping|
[1.6. Survey of the previous work| . . .

[1.7. Mathematical and statistical prerequisites|

[1.7.1. Integral

|2. Theoretical studyj|
[2.1. Constant kernel/No filter]

[2.1.1." Original PM with constant kernel[.
I2|1.2, !:!!lls:!:ls:si I I&I !y illl !:!!Ilfiliilll 1;‘:1115:” --------------------

[2.2. Epanechnikov kernel|
[2.3. Silverman/Quartic kernel|
|2|1, (:!!lls: lills:ll -------------

[2.4.1. 'Triangle kernel|

[2.4.2. Corrected photon mapping with cone filter|

[2.4.3. Original photon mapping with cone filter]

2.5, Gaussian filter]
[2.6. Specialized differential filter| . . .

|3. Empirical study|
[3.1. Signal to noise ratio|
[3.2. Pseudo signal to noise ratio| . . .

||:ISt of Flgu res|

[A.1. Prerequisites|
[A.2. Original PM with constant kernell

13
14
14
15
16
17
18
18
19
19
20
21

23
23
24

29
29
30

31

33

37
37
37

ix

Contents

[A.3. Corrected PM with constant kernell o000 39
|A.4. Epanechnikov kernell o oo 41
[A.5. Silverman/Quartic kernello o oo 44
|A.6. Corrected photon mapping with cone filter|. 49
|A.7. Original photon mapping with cone filter] 56
[A.8. Gaussian filter] 58
[A.9. Mathematica code 60

1. Introduction

In this thesis, we have extended the framework presented in Garcia et al. [GHUPSI4]
and used the joint distribution of order statistics to calculate the variance value of photon
mapping density estimation in common used filtering kernels, because the error analysis of
rendering algorithms is beneficial for understanding their behavior [ATS94] and the radiance
estimation can be improved by adding a filter of the distance [ZuclT],

Section 1.1 to 1.5 introduces the background knowledge like computer graphics, rendering,
local illumination, global illumination and photon mapping algorithm. Section 1.6 gives a
short survey of the related previous works. Section 1.7 introduces the mathematical and
statistical prerequisites that we have used in our study, with 1.7.1 introducing integral,
1.7.2 introducing variance, section 1.7.3 introducing order statistics and section 1.8 applying
order statistics to photon mapping density estimation in both 2D case and 3D case. Then
section 2 describes in detail our theoretical study of the variance value of the irradiance
estimate for the constant kernel, the epanechnikov kernel [Wal9§|, the silverman/quartic
kernel [WMHSPG9S], the cone filter [Jen96a] inclusive triangle kernel and the gaussian
kernel [Sch03]. Section 3 contains an empirical study of the kernels using a directional light
source. Section 4 provides the conclusions and our near future work plan.

1.1. Computer graphics

Computer graphics [SM09] is a science of using mathematical algorithms to convert two- or
three-dimensional graphics into a raster form of a computer display. Generally, the main
research content of computer graphics is to study how to represent graphics in computers,
and the related principles and algorithms for computing, processing and displaying graphics
using computers.

The main goal of computer graphics is to create effective visual communication. In the
field of science, graphics can show scientific results to the public in a visual way; in the field of
entertainment, such as PC games, mobile games, 3D movies and film special effects, computer
graphics plays an increasingly important role; Graphics is also playing an important role in
creative or artistic creation, commercial advertising, product design and other industries. In
the field of science, this was highlighted in the report Visualization in Scientific Computing
in 1987 [McC88|]. The report cites Richard Hamming’s classic assertion in 1962 [Ham86]:
“The purpose of computing is insight, not numbers.” The report mentions the important
role of computer graphics in helping the human brain understand the essence of things from
the perspective of graphical images, because graphic images have more insight than simple
numbers.

With the continuous development of computer graphics, its application range has become
increasingly widespread. The main application areas of computer graphics are computer-
aided design and computer-aided manufacturing (CAD/CAM), Computer aided instruction
(CAI), Computer animation, Management and office automation, Scientific computing visu-
alization, Computer game and Virtual Reality (VR).

1. Introduction

Computer graphics mainly consists of four parts: Modeling, Rendering, Animation, and
Human-computer Interaction (HCI).

To represent a three-dimensional object in a computer, you must first have its geometric
model representation. Therefore, the modeling of 3D models is the basis of computer graphics
and the premise of other content. Expressing a geometric object can be expressed by a
mathematical spline function or an implicit function; It can also be expressed by a triangular
mesh expressed by sampling points on a smooth surface and its connection relationship. In
figure we have an example of a triangle mesh representing a dolphin.

Figure 1.1.: Example of a triangle mesh representing a dolphin. Picture with permission
from author: Chrschn

With 3D models or scenes, how do you draw these 3D geometric models to produce a
pleasing and realistic image? This is the main task of traditional computer graphics. In
computer-aided design, film and television animation and various visual applications, high
requirements for the high-fidelity of graphics rendering results are put forward.

Animation is the effect of motion of an object by continuously playing a still image. Com-
puter animation is one of the research hotspots of computer graphics by using programming
or animation software to generate a series of scene images. Its research interests include
human animation, motion animation, script animation, and animation systems for human
characters. In addition, the dynamic simulation of highly physical reality and the real sim-
ulation of various physical phenomena are also major issues in the field of animation.

Human-Computer Interaction (HCI) refers to the process of information exchange between
a person and a computer that determines the task in a certain interaction or interaction
interface between the person and the computer. Generally, it is how people tell the computer
through certain interactions to accomplish the tasks he wants to accomplish. In recent
years, human-computer interaction devices have undergone tremendous development, and
various natural interaction methods have emerged in an endless stream, greatly enriching
the user-machine interaction experience, facilitating user operations, and easily expressing
user interaction intentions. There are many interesting human-computer interaction devices,
such as Google Glass, 3D Printer, Apple iWatch, etc.

1.2. Rendering

1.2. Rendering

Rendering or image synthesis [AMHHOS]| is the automatic process of generating a photo-
realistic [Carlb] or non-photorealistic [SS02] image from a 2D or 3D model by means of
computer programs. Also, the results of displaying such a model can be called a render.

Rendering has uses in architecture, video games, simulators, movie or TV visual effects,
and design visualization, each employing a different balance of features and techniques. The
rendering process has the following steps:

1. You must locate the camera in a 3D scene, which is the same as real pho-
tography. In general, 3D software has provided four default cameras, which are
the four main windows in the software, divided into top view, front view, side
view and perspective. Most of the time we render perspectives rather than other
views. The cameras in perspective basically follow the principle of real cameras,
so the results we see will be as stereoscopic as the real 3D world.

2. In order to reflect the sense of space, the rendering program has to do some
special work, which is to decide which objects are in front, which objects are
behind and which objects are occluded. The sense of space is not perfectly
reproduced by the occlusion relationship of objects. Many beginners in three
dimensions only pay attention to the shaping of the three-dimensional sense and
ignore the sense of space. It is necessary to know that the sense of space and the
attenuation of the light source, the environment fog, and the depth of field effect
are closely related.

3. After the rendering program has acquired the range that needs to be rendered
by the camera, it is necessary to calculate the influence of the light source on the
object, which is the same as the real world. Many 3D software have a default light
source, otherwise we can’t see the coloring effect in the perspective, especially
rendering. Therefore, the rendering program is to calculate the effect of each light
source we add in the scene on the object. Unlike real-world sources, rendering
programs often compute a large number of auxiliary sources. In the scene, some
light sources illuminate all objects, and some light sources only illuminate an
object, which complicates the simple things.

4. To use depth map shadows or raytraced shadows? This often depends on
whether a transparent material object is used in the scene to calculate the shadow
cast by the light source. In addition, after using the area light source, the renderer
also calculates a special shadow, the soft shadow, If the light source in the scene
uses a light effect, the rendering program will also spend more system resources
to calculate the results of the special effects, especially the volumetric light, also
known as the light fog. It takes up a lot of system resources and must be used
when using it.

5. The rendering program also calculates the color of the surface of the object
according to the material of the object. The type of the material is different, the
properties are different, and the textures will produce different effects. Moreover,
this result does not exist independently, it must be combined with the aforemen-
tioned light source. If there are particle systems in the scene, such as flames,
smoke, etc., the rendering program should be considered.

1. Introduction

Many rendering algorithms have been researched, and software used for rendering may
employ a number of different techniques to obtain a final image. Today’s rendering technol-
ogy has been able to render a variety of objects, including skin, trees, flowers, water, smoke,
hair, etc., They are very realistic. Some commercial software (such as Maya, Blender, Pov
Ray, etc.) also provide powerful realistic rendering capabilities, which are often used in com-
puter graphics research papers to render beautiful presentations or result graphs. In figure
[I2] it is an image created by using Pov Ray 3.6.

Figure 1.2.: An image created by using POV-Ray 3.6. Picture with permission from author:
Gilles Tran

The rendering technique can be classified into local ilumination technique and global
illumination technique.

1.3. Local illumination

The local illumination or direct illumination is the lighting (shading) method that was orig-
inally used by computer graphics programs. When rendering, direct illumination considers
only light from the original source, no bounce light or light emissive polygons (or sources
other than lights) will add to the lighting within the rendered scene.

The local illumination is very fast, and often used for real-time applications such as 3D
computer games. But the images synthesized appear artificial and it requires the user to
add the effects like shadows and mirrors one by one.

There are many popular local illumination methods such as Phong reflection, Lambert’s
model and Gouraud shading.

The Phong reflection model (also called Phong illumination or Phong lighting), it is an
empirical model of the local illumination of points on a surface. The Phong reflection model
was developed by Bui Tuong Phong [Pho75].

Lambert’s model [ON94] for body reflection is widely used in computer graphics. It is used

1.4. Global illumination

extensively by rendering techniques such as radiosity and ray tracing. For several real-world
objects, however, Lambert’s model can prove to be a very inaccurate approximation to the
body reflectance. While the brightness of a Lambertian surface is independent of viewing
direction, that of a rough surface increases as the viewing direction approaches the light
source direction.

Gouraud shading [Gou71] named after Henri Gouraud, is an interpolation method used
in computer graphics to produce continuous shading of surfaces represented by polygon
meshes. In practice, Gouraud shading is most often used to achieve continuous lighting
on triangle surfaces by computing the lighting at the corners of each triangle and linearly
interpolating the resulting colours for each pixel covered by the triangle. Gouraud shading
works as follows: An estimate to the surface normal of each vertex in a polygonal 3D model
is either specified for each vertex or found by averaging the surface normals of the polygons
that meet at each vertex. Using these estimates, lighting computations based on a reflection
model, e.g. the Phong reflection model, is then performed to produce colour intensities at
the vertices. For each screen pixel that is covered by the polygonal mesh, colour intensities
can then be interpolated from the colour values calculated at the vertices.

1.4. Global illumination

Global illumination [DBBS06] or indirect illumination, is a general name for a group of
algorithms used in 3D computer graphics that are meant to add more realistic lighting to
3D scenes. Such algorithms take into account not only the light that comes directly from
a light source (direct illumination), but also subsequent cases in which light rays from the
same source are reflected by other surfaces in the scene, whether reflective or not (indirect
illumination).

Images rendered using global illumination algorithms often appear more photorealistic
than those using only direct illumination algorithms. However, such images are computa-
tionally more expensive and consequently much slower to generate.

There are many popular global illumination methods such as radiosity [SP94], ray tracing
[Gla89], monte carlo ray tracing [MPO01] and photon mapping [Jen96a].

Radiosity methods were first developed in about 1950 in the engineering field of heat
transfer. They were later refined specifically for the problem of rendering computer graphics
in 1984 |[GTGB&4].

The first ray tracing algorithm used for rendering was presented in 1968 [App6§|. This
algorithm has since been termed “ray casting” . The idea behind ray casting is to shoot rays
from the eye, one per pixel, and find the closest object blocking the path of that ray.

The monte carlo ray tracing is an approach that simulates the light reflection at diffuse
surfaces, it can simulate indirect lighting.In addition one might add that monte carlo ray
tracing methods can be very easy to implement. The main problem with monte carlo ray
tracing is variance seen as noise in the rendered images. It requires a lot of samples per pixel
to reduce the noise.

The photon mapping is a two-pass global illumination algorithm developed by Henrik
Wann Jensen that approximately solves the rendering equation [Kaj86].

In figure we have two pictures, the left one is created by local illumination method,
the right one by global illumination method, we can see that the right one is more realistic.

1. Introduction

Figure 1.3.: Pictures created by local illumination method (left) and global illumination
method (right). Picture with permission from author: Dr. Garcia

1.5. Photon mapping

Photon mapping [Jen96a] can simulate global illumination effects including diffuse reflection,
caustics, etc. It’s as flexible as general monte carlo ray tracing [JC94], but more efficiently.
The method is to emit radiation from the light source and the camera respectively, and
when the termination condition is satisfied, the two rays are connected together to generate
a radiance value in the next step.

The photon mapping algorithm includes several computation steps:

Photon emission and tracking, creating photon maps: First, a certain number
of photons are emitted from the light source to the scene, and the direction of
each photon is randomly generated, and the power of the light source is uniform
distributed to each emitted photon. When a photon hits an object, it may be
reflected, refracted or absorbed. This is determined by the material properties
of the surface of the object, usually using the Russian roulette method. When a
photon hits the diffuse surface in the scene, the information of the photon is stored
in the global photon map. If the photon is specularly reflected or refracted before
hitting the diffuse surface, the photon is stored in the caustic photon. The main
problem with photon mapping is finding the k nearest photons to the sampling
point in a large number of photons. In order to quickly find photons, a balanced
kd-tree is usually used to store photons.

Radiance estimation and rendering: Through the photon map generated in the
first step, the k£ nearest photons to the sampling point are searched, and the
radiance of the sampling point (ie, the indirect illumination value) is estimated
according to the found power. This process is called density estimation. If you
want to get high quality rendering, you need to use the final Gathering instead
of the density estimate. But the cost of this calculation is very large

The contribution of the k nearest photons is commonly weighted by a filtering kernel.
such as the cone filter [Jen96al, the epanechnikov kernel [Wal98] and the silverman kernel
[WMHSPGY8|. The gaussian kernel and the specialized differential filter have also been
used, along with other filtering strategies [Sch03].

A weight depending on the distance to the point where radiance is being estimated is often
used to provide smoothing. This avoids artifacts when the number of photons is small. The

1.6. Survey of the previous work

weight function is called a kernel. If no weights are used, the result is equivalent to using a
constant kernel. This procedure is essencially a kernel density estimation technique [W.J94].

1.6. Survey of the previous work

The role of global illumination algorithms is to simulate the interaction of light with large-
scale geometry for the purpose of image synthesis. The greatest challenges in this endeavor
have been those of accuracy and efficiency. While issues of efficiency have been addressed
frequently in computer graphics, error analysis has received comparatively little attention.
[ATS94]

Arvo has attempted to establish a framework for error analysis within a well-defined class
of global illumination problems. [ATS94]

Ashikhmin has attempted to prove the convergence properties of the MLT (Metropolis
Light Transpo) algorithm. This does not by itself yield immediate practical implications,
but some of the tools used in our proofs may eventually prove to be useful for error estimation
and reduction [SSSOI]

The photon mapping method uses k nearest neighbors to compute the outgoing radiance
at a shading point. The radiance estimation can be improved by adding a filter of the
distance. With kernels, we can get a smoother result, the MISE (Mean integrated squared
error) can also be minimized with respect to the kernel used.

In Jensen [Jen96a), a filter was added to weigh each photon according to its distance to
the shading point, it is expressed as the cone filter.

Another useful filter is the epanechnikov kernel, which can reduce the mean integrated
square error of the kernel density estimation. In photon mapping, Roland [Sch03] employed
it and achieved smooth results.

In Garcia et al. |[GHUSI2| was shown that the photon mapping algorithm with con-
stant kernel should discard the contribution of the k* nearest photon in order to avoid an
overestimation bias.

In Garcia et al. [GHUPS14] it was shown that the estimator provided by the cone filter is
not consistent unless the slope is one (yielding the triangular kernel), and that the epanech-
nikov and silverman/quartic kernels are consistent. The gaussian filter has two different
estimation biases.

1.7. Mathematical and statistical prerequisites

First of all, we will introduce the mathematical and statistical prerequisites that we have
used in this thesis for our study.

1.7.1. Integral

An integral [LS14] assigns numbers to functions in a way that can describe displacement,
area, volume, and other concepts that arise by combining infinitesimal data.

Given a function f of a real variable z and an interval [a, b] of the real line, the definite
integral is:

b
/ f(x)dz (1.1)

1. Introduction

if f is a continuous real-valued function defined on a closed interval [a, b], then, once an
antiderivative F' of f is known, the definite integral of f over that interval is given by:

b
| e = [F@) = FO) - Fo) (1.2)

with the following properties:

(af + Bg)(@)dz = o | f(a)de+ (1.3)
[[swrias [o

In our study we have to evaluate double integrals and triple integrals.
If T is a domain that is normal with respect to the zy-plane and determined by the
functions a(x,y) and S(z,y), then:

// flz,y, 2 dxdydz—/// f(z,y, z)dadydz (1.4)

To compute a double integral we could use the Fublnl s theorem [JonOI]. If f(z,y) is
X XY integrable, it means that it is measurable and

| Uiy <o (15)
XxY

fo ([smas) = [([st o

/‘ f(z,9)d(z,y)
XxY

then

(1.6)

1.7.2. Variance

Variance [Fel68] is an important tool in the sciences, where statistical analysis of data is
common. It measures how far a set of (random) numbers are spread out from their average
value.

The variance of a random variable X is the expected value of the squared deviation from
the mean of X, u = E[X].

Var[X] = E[(X — 1)°] (L.7)
The expression for the variance can be expanded:
Var[X] = E[X? - (E[X])? (1.8)

If the random variable X represents samples generated by a continuous distribution with
probability density function f(x), and F(x) is the corresponding cumulative distribution
function, then the population variance is given by:

vmm=/< 12 f (2)dz

.
— [#)s -y

(1.9)

1.7. Mathematical and statistical prerequisites

where p is the expected value of X given by u = E(X).
For the sum of N random variables { Xy, ..., Xn}:

N N
Var ZXZ] = Z Cov[X;, X;]
i=1 ij=1
N
=> Var[Xi]+>_ Cov[X;, X}] (1.10)
i=1 i#j

N
= Z Var[X;] + 2 Z Cov[X;, X|]
i=1 1<i<j<N

Where Cov] | is the covariance:
Cov[X,Y] = E[XY]| - EX|E]Y] (1.11)

The formula states that the variance of a sum is equal to the sum of all elements in
the covariance matrix of the components. The last expression states equivalently that the
variance of the sum is the sum of the diagonal of covariance matrix plus two times the sum
of its upper triangular elements.

Together we get:

Var

N N
in] => Var[Xi]+2 > (E[X:X;] - E[X)|E[X]]) (1.12)
i=1 i=1 1<i<j<N

1.7.3. Order Statistics

Order statistics [DN04] deal with the probability distribution of elements in ordered lists.
When we sample a continuous random phenomenon which has a probability distribution f,
the result is a list of real values [z1,...7,,]. After ordering this list, we obtain [z(1), ...z ()],
where z (1) is the minimum value, and x(,) the maximum.

The probability distribution of the ith order statistic is:

fxp(@) =CF ™ (2)(1 = F(2))" ™' f(2) (1.13)

where F' is the cumulative distribution function corresponding to f and

C= ! (1.14)
(k—1D!(n—k)!

The joint distribution of two order statistics is:
FXon (@:y) = CoF @) f(2)[G (2, 9)] ") [F ()" " (1.15)

with '

n!
G = oDk =i =)i(n — R) (1.16)

and

Flz)=1- F() (1.17)

1. Introduction

G(z,y) = F(y) — F(x) (1.18)

In general, the joint distribution of k order statistics X, y, ... X(n,), (1 <n1 < ... <ny < n)
is for 1 < ... < xy:

k k njp1—n;—1
[F(2jt1) — F(zy)]
) = n! x; 1.19
S =2t T)| 11 (o ren (119)
where xg = —00, g1 = +00,n9g =0 and ng1 =n+ 1.

The joint distribution of three order statistics is then:
_ [F@)]" ! [F(y) = F@) ' [F(z) - Fy)* 7 1L = F(z)" ™"

for z <y < z and 0 otherwise.

1.8. Application of Order Statistics to Photon Mapping

We will now applicate order statistics to photon mapping with uniform rediance in 2D
[GHUS12| [GHUPS14] and 3D cases.

Uniform density of impacts

We study the expected value of photon mapping estimators for a unit disc with uniform
radiance. We assume all photons carry the same flux ¢ = ”gr(f;). The location of impacts

has a constant distribution function:

9(P) = (1.21)

1
T

with P being a point in the unit disc. The probability density of photons at distance r
and the cummulative distributions are:

flry=2r (1.22)
and
F(r)=r? (1.23)

The distribution of the k' order statistic (the distance of the impact sought by Photon
Maps) is
k— _
fxu (r) = CF(r) 1 (1= F(r)" " f(r) (1.24)

Substituting, we get

Fxg (r) = C2r2E1 (1 — 42" (1.25)
The joint distribution is[1.15
FX (rivr) = Co[F(r)) ™ f(r)[G (ray i) F (i) [F ()] (1.26)

= C2ri Y2 — TiZ]kiiil

10

1.8. Application of Order Statistics to Photon Mapping

with (notice there was a typo in the definition of F(ry) in Garcia et al. [GHUPS14], in
which 7 should be squared)

Q(ri,rk) = F(Tk) — F(T’Z> = ’f'kz — T'i2 (1.27)
Flre) =1=F(rg) =1 -4 (1.28)
and we define Cx as
CK = QCJTk[l - T’kQ]n_k (1.29)
The joint distribution of three order statistics is [1.20
f () nl2r;2r;2ry, [rﬂ]i_l[rf — riQ]j_i_l[er — er]k_j_l[l — rlﬂn_k
o (ri i) =
CTONR A (—DIG—i—Dl(k—j—Dl(n—k) (1.30)
i—1 j—i—1 k—j—1 —k
= C@QT’Z‘QT]QT]?[TZ‘Q}Z [T’jQ — T’i2]] ! [Tk2 — Y’jZ] J [1 — Tkz]n
and we define Cg as
|
Co = e (1.31)

G—DIG—i—(k—7j—1)(n—k)

Volumetric effects in photon mapping

We will study here the case of an homogeneous, isotropic sphere of unit radius. In this case,
the probability density of the photon interactions is constant in the sphere.

3

1
V) = — = — 1.32
g() %W An ()

for the v inside the sphere, and g(v) = 0 otherwise.
If we denote the power contained in the sphere by W and the volume of the sphere by V,
the Power density is:

w 3w
PD=—=— 1.33
%4 4 (1.33)
If all photons carry the same power ¢,
W 4nPD
=— = 1.34
¢ n 3n ()

The cummulative distributions and the probability density of photons at distance r are:
F(r)=—mr3-— =3 (1.35)

and

f(r) =3r2 (1.36)

The distribution of the k* order statistic (the distance of the impact sought by Photon
Maps) is
B k—1 —k
fxgy(r) =CF(r)" (1= F(r))" " f(r) (1.37)

11

1. Introduction

Substituting, we get

Fxgo (1) = CP)EL (1 —)" *3r

(1.38)
= 331 (1 —)"

The joint distribution is|[1.15

Fxony (ris i) = ColF(r)] ™ f(r) (G (rasrin)]* ™7 f (ri) [F (ri))" "

= C[(r)* " 3(r)2 (G (ri,)] F T B (r) 2F ()" (1.39)
= Cy3r G (r, rk)]k_i_13r,% [f(rk)]"_k
with
G(ri,ri) = Fr) = F(ry) = > —ri° (1.40)
Fri) =1—=F(ry) =1—mn° (1.41)

The joint distribution of three order statistics is

n!3rz-237’]2-37’,3[ri3]i71[rj3 — ri?’]j*i*l[rk?’ — rj3]k7j71[1 — rk?’]nfk
Txaan (risTisTh) = G(—-DIG—i-Dlk—j—1)l(n— k) (1.42)

:C@?)T?ST?ST,%[TZ-?’]Fl 3 3]]'71'71[3 3]’67]'71[

(1% — 1 TS — Ty
with Cg defined as in

1— rkg]nfk

12

2. Theoretical study

We will present here the basis for the study of filtering kernels in photon mapping. The
symbols used repeatedly in the thesis can be seen in and [2.2] Because we have extended
the framework from Dr. Garcia, for consistency reasons, here we follow the symbols that are
used in Garcia et al. [GHUPSI]

Photon mapping parameters

P
n
k

Tk
¢

S

Point where a photon map query is done.

Number of photon impacts.

Number of photons sought in a Photon Maps query.

k > 3, otherwise the variance value is infinity.

Distance of the k' nearest photon in a query. rj follows the distribution f Xa)-
Flux.

Slope of the cone filter.

Distribution functions

g Area density of photon impacts.

f Area density at a given distance of the photon map query.

F Accumulated distribution of f.

f X) k" order statistics of f.

fX(i,k) Joint distribution of the " and k' order statistics of f.

Irradiance

K, (r;) | Filtering kernel.

I Irradiance.

I Photon mapping irradiance estimate..

I;*,I;;* Estimate of the contribution of the i*" (respectively k*") nearest photon to I.

Power density

PD Power density.

ﬁ)(rk) Estimate of the power density by taking the k£ nearest photons.
Expected values and variance

E[] Expected value.

Ep1 | S0 EIL7].

Var[] | Variance.

Cov[] | Covariance.

Figure 2.1.: Symbols used in this article

13

2. Theoretical study

Combinatorials in order statistics

C = (k—+('n—k)' Constant in univariate case.
|

Cr= (ifl)!(kfgil)!(nik)! Joint distribution constant (i, k).
n!

Co= G—DIG—i—1)!(k—j—1)(n—F)!

Cr =2C rg[l — er]nfk Auxiliary combinatorial.

Joint distribution constant (i, j, k).

Figure 2.2.: Combinatorials in order statistics

2.1. Constant kernel/No filter

If no kernels are used, the result is equivalent to using a constant kernel. So when no filter
is used, we call it constant kernel in our thesis. First we will deal with the constant kernel.
For constant kernel, we could calculate the variance value with the formula

Var[X] = /x2f(:v)d:c — E[X)? (2.1)

2.1.1. Original PM with constant kernel

First we will deal with the original photon mapping with constant kernel.

2.1.1.1. Two-dimensional

For the original PM with constant kernel, the estimate of irradiance depends on the distance
of the k' nearest photon, which we will denote ry.
ko kI(P)

I(ry) = P .. (2.2)

The expectation of the estimate of irradiance in the photon mapping method is [GHUS12]:

E[l(ry)] = -—1(P) (2.3)

The variance value is:

. 1 k2
24
_ k*(n—k+1)I*(P) 24)
(k—1)%*(k —2)n
From the formula , we can see that the variance Var[f] = oo if k = 2, because the

denominator would be then 0.

14

2.1. Constant kernel/No filter

2.1.1.2. Three-dimensional

The estimate of power density:

_ k¢ kPD
PD(r;) = T 3= i3
37Tk k

W~

The expectation of the estimate of power density is [GHUS12]:

E[PD(ry)] = %PD

The variance value is:
. 1, 2
Var[PD(rg)] :/ PD (rk)fx(k)(rk)drk —
0
_ k*(n—k+1)PD?
(k—1)%(k —2)n

The same as the 2D case, we can see here that the variance Var[l] = oo if k = 2.

2.1.2. Corrected PM with constant kernel

%pp
(k—1)

(2.5)

(2.6)

(2.7)

Now we deal with the corrected photon mapping with constant kernel from Garcia et al.

[GHUST?]

2.1.2.1. Two-dimensional

The corrected irradiance estimate is:

I(T‘k) = 3 = 3
and the expected value is [GHUS12|:
E[I(ry)] = I(P)

The variance value is:

A 1 A,
Var[l] = /0 IP(ri) fx g (ri)dry, — I?(P)

— 1
:IQ(P)TL k +

n(k —2)

Again, from the formula we can see that the variance Var[I] = oo if k = 2.

(2.10)

15

2. Theoretical study

2.1.2.2. Three-dimensional

The corrected irradiance estimate is:

— _(k—l)(b_(k:—l)PD
PD(ry) = e R T (2.11)

and the expected value is [GHUS12]:
E[PD(ry)] = PD (2.12)

The variance value is:

—_— 1 —_—
Var[PD(ry)] = /O PD”(ri) fxy, (ri)dry — PD?

2.13
:PDQn—k—i-l (2.13)

n(k —2)

From formula we can see that the variance Var[I] = oo if k = 2.
2.2. Epanechnikov kernel
For epanechnikov kernel we offer here the formula of variance in both 2D and 3D cases.

Two-dimensional

The epanechnikov kernel was used by Walter [Wal98].

K, (1) = —s [1 _ (”)1 (2.14)
Tk Tk
The estimator is: .
I(ry, i) =Y Ky (ri)¢ (2.15)
=1
The expected value is [GHUPS14]:
E[I] = I(P) (2.16)

By using the formula we can calculate the variance value of the epanechnikov kernel.

The variance value is:

(2.17)

Var(f] = 1%(P) (4" — 3k 2)

3n(k —2)

From the formula we can see that the variance Var[I] = oo if k = 2.

16

2.3. Silverman/Quartic kernel

Three-dimensional

The epanechnikov kernel in 3D case is.

15 T 2
K, (rj)=——=|1—(— 2.18
) = gy 1= (2] (2.18)
The estimator is: i
I(ry, i) = Y Ky (1i)¢ (2.19)
i=1
The expected value is:
/ / T’Lu Tk fX(k) (T’La Tk)drldrk
(2.20)
3ngb PD
CAdrm

By using the formula we can calculate the variance value of the epanechnikov kernel.

The variance value is:

Tk(9n — 4) — 86n + 16 N 35[0 (k — 1)]2
(k—2)n [T (k+2))2

Var[l] = %PDQ (

where function u(n) and v(n) with n € N defined as:

5\ 12
-0 we-[r(2)]
(2.22)
(18n? — 60n + 52)u(n — 1) — (4 — 3n)%u(n — 2)
u(n) =
9(n — 2)?
and
5\ 12
=0 we=r(2)]
(2.23)
o(n) = (18n3 — 87n? + 148n — 88)v(n — 1) — (4 — 3n)%(n — 1)v(n — 2)
B 9(n —2)3
The same as the 2D case, from the formula [2.21} we can see that the variance Var[I] = oo
it k=2

2.3. Silverman/Quartic kernel

The silverman/quartic kernel was used by Shirley [WMHSPGO9S].

Ko (1) = — [1 - <”>2]2 (2.24)

T Tk

17

2. Theoretical study

The estimator, as with previous sections, is.

k
I(ry, i) = Y Ky ()¢ (2.25)
i=1
The expected value is [GHUPS14]:
E[I] = I(P) (2.26)

By using the formula we can calculate the variance value of the silverman/quartic
kernel.

The variance value is:

Varll] = I2(P) (%) (2.27)
Also here from the formula we can see that the variance Var[I] = oo if k = 2.
2.4. Cone filter
The cone filter was used by Jensen [Jen96a]. Let us call s the slope of the cone filter.
_
Ky (ri) = W—k%) (2.28)
The estimator is: .
I(ry, i) =Y Ky (ri)¢ (2.29)
i=1

We will use the formula to calculate the variance value. For all the following formulas,
k> 3.

2.4.1. Triangle kernel
If s = 1, we have the triangle kernel, and from Garcia et al.[GHUPS14]:

E[I] = I(P) (2.30)
The variance value of triangle kernel is:

3n—2k+1 3[[(k—1)?
2n(k —2) Dk + 1)

Var(l] = I*(P) (4 +

18

2.4. Cone filter

where function u(k) and v(k) with k£ € N defined as:

u(1) =0 u(2) = %
(k) = (8k2% — 28k + 25)u(k — 1) — (2k — 3)%k(k — 2)
= Ak —2)°
and
v(1) =0 v(2) = %
() = (8K — 40k? + 69k — 41)v(k — 1) — (k — 1)(2k — 3)*v(k — 2)
= A(k —2)°

2.4.2. Corrected photon mapping with cone filter
The expected value of corrected photon mapping is [GHUPS14]:
The variance value is:

n—k+1 1 n—1 3[0(k — 1))
n(k — 2) +(2—38)2 4Jr2n(k—2)Jr

Vary_, = I*(P) <
where function u(k) and v(k) with k£ € N defined in and

2.4.3. Original photon mapping with cone filter

The expected value of original photon mapping is [GHUPS14]:

E[I) =Ej_1 + E[I}]
- (35 — 3)I(P)
=IOt 5y -

The variance value of the k& photon is:

3(n—k+1) ((6k —3)s* — (10k — 4)s + 4k — 1)

Var(ly]| = I*(P) (k—2)(k —1)2n(2 — 35)2

(2.32)

(2.33)

(2.34)

(2.36)

(2.37)

19

2. Theoretical study

The variance value is then:

Var[l] =Vare_i + Var[ly]

B n—k+1 1 n—1 3[0(k-1)

—12(P) (= 2) + 239 4+ 2n(—2) - T (u(k) — 4U(k))D
3(n—k+1) ((6k — 3)s* — (10k — 4)s + 4k — 1)

’p
+I(P) (ki — 2)(k — 1)2n(2 — 35)2
(2.38)
where function u(k) and v(k) with k£ € N defined in and
2.5. Gaussian filter
The gaussian filter described in Jensen’s phD [Jen96b) is:
P
1 1—e¢

Tk

where o = 0.918 and 5 = 1.953.
There are four variants of this algorithm: the contribution of the k" nearest photon may
or may not be taken into account, and there are two possible values of a. The corrected

algorithm with & = 1.728 and § = 1.953 and discarding photon k£ has an expected value
[GHUPS14] of:

Ex_1=1(P) (2.40)
while the other versions are biased.
The variance value is:
k—1
Var[l| =Y Var[[;]+2 > Cov[l}, I] (2.41)
i=1 1<i<j<k—1

However, to the best of the authors knowledge, for the sum of the upper triangular elements
of covariance matrix, there is no analytical formula, so there is no closed analytical formula
for gaussian filter, we will show here the formula of the sum of the diagonal of covariance
matrix Z;:ll Var[l;*] in the appendix. Here we offer the preliminary work in the hope that
sparks interest in the mathematics community.

el o [PO 2 L=k l1—e i 2 ovk—j-1
E[Iilj]_8<ﬂ_ Co ; T ; 1—ﬁ ri(rg —175) X
(2.42)
, B30z
Tj 1 _ 2r . o
/ 1-— o F 667/3]6 T?Z_l(r? —)= drydrydry,
0 _

20

2.6. Specialized differential filter

k—1j-1 2
- 5 2¢aCy
BB = (227)
7=11i=1
2
_5 J 5
Voo (1 — Tk12)”_k l—e %k 2i1 .
1— 2j=1 (2 2yk=i-1q, g
/0 /0 Tk 1—e b i k=) Rk
pt
Lo (1 =y, 2k 1—e 2%’ %-17,. 2 . 2\k—i—1
/0 /0 . 1— = T (kT — 1) dr;dr,

(2.43)

2.6. Specialized differential filter

The differential filter [JC95|] detects discontinuities in radiance by noticing that the changes
in the estimate become monotonic near the edges. In this case, the algorithm will stop
adding photons and use an estimate with fewer photons [GHUPS14]. So we calculate the
variance value with & <k.

We assume that, the number of photons n is infinity. So for corrected photon mapping
with constant kernel we have:

(n—k+1)I%(P) ~

L L) e R e (2.44)
nooo Var[l, k] (=ktDI2(P) Kk —2
(k=2)n

For other filters we get similar results, and for all filters, that we have studied, we have
Var[l, k] < Var[l, k] (2.45)

for k > k.
So we can see, when k is smaller, the Variance Var[f is greater. Meanwhile, the bias is
smaller.

21

3. Empirical study

In this chapter we will introduce our empirical study. To extend the framework in Garcia et
al. [GHUSI12| and [GHUPS14], we have implemented in C++ the same scene that presented
in the papers above, which consisting of a planar unit disc illuminated by a directional light
source, that can create the constant value of the incoming flux, in the case, we have uniform
irradiance I(P), and all photons carry the same flux. Then we have calculated the photon
mapping signal-to-noise ratio for n = 100 000 and k ranging between 3 and 200, by using
constant kernel, the epanechnikov kernel, the silverman/quartic kernel and the cone filter
inclusive triangle kernel. We have repeated the simulations ten thousand times to calculate
the signal-to-noise ratio of the convergence of the algorithm. After it, we have calculated the
signal-to-noise ratio for different kernels under the same condition by using the analytical
formulas from our theoretical study. From the both results, we have calculated the square
residuals to measure the goodness of fit. In addition, we have compared the calculation time
as well. For the signal-to-noise ratio calculation, instead of using the correct expected value,
many people use just I(P) as the expected value, we call the result in this case in our thesis
the pseudo signal to noise ratio. Besides the signal-to-noise ratio, we have calculated the
pseudo signal to noise ratio, then compare the result to the normal signal-to-noise ratio.

3.1. Signal to noise ratio

The signal-to-noise ratio is a measure used in science and engineering to quantify how much
a signal has been corrupted by noise. The rose criterion [Ros73| states that an SNR of at
least 5 is needed to be able to distinguish image features at 100% certainty. From the signal
to noise graphs that we have offered in our thesis, we could find the minumum value of k
of different kernels for our needs. In addition, the signal to noise ratio value comparision
among different filters allow us to choose the best kernel for our needs. The theoretical
prediction of the signal to noise ratio is calculated by SNR = %, where p is the expected
value from Garcia et al. [GHUS12] and [GHUPS14] and o is the standard deviation, that
equals to square root of our variance value, which is a function of k and n. For cone filter,
our function is not continuous, but we are interpolating the values to make the graph easier
to read.

We get our theoretical results for n = 100 000 and %k ranging between 3 and 200 using
different kernels within 0.1 sec in avarage. Regarding to the calculation cost, for our empirical
calculation, it takes 5 hours for constant kernel and for other kernels, it takes even longer.
So it is efficient to use our formula to calculate the variance value.

Figures[3.1and [3.2]show the signal to noise Ratio of different filters of the photon mapping.
In figure The first row show the cases of cone filter using s=0.5 for original photon
mapping and corrected photon mapping. The second row show the cases of cone filter
using s=0.75. The bottom row show the case of cone filter using s=1.5. In figure
The first row shows the cases of constant kernel of original photon mapping and corrected
photon mapping. The second row and the third row show the cases of epanechnikov kernel,

23

3. Empirical study

silverman /quartic kernel and triangle kernel of corrected photon mapping. The theoretical
results are represented by green line, The empirical results are represented by red points. We
can see in the pictures almost only the green line with a couple of red points behind it, that
means, our theoretical result matches well with the empirical results. Meanwhile, we offer
here an overview for all kernels above, we can see that the original photon mapping with
constant kernel and the corrected photon mapping with constant kernel have the same signal
to noise ratio, and the highest signal to noise ratio as well. That is because the calculation
without filters is simpler, but if we want a much smoother result, then it is better to use
the filters for improving radiance estimation. Follows constant kernel, we can see the cone
filter with s=1.5 and epanichnikov filter. The signal to noise ratio of cone filter with s=1.5
is slightly higher, but from our study, epanichnikov filter takes less calculation time than
cone filter. Moreover, from Garcia et al. [GHUPS14], we already know that the estimator
provided by the cone filter is not consistent unless the slope is one, and that the epanechnikov
and silverman kernels are consistent. The triangle filter and silverman filter follow directly
the epanichnikov filter. Then follows the cone filter with s=0.5 and s=0.75. The same as
cone filter with s=1.5, we can see the underestimation bias in original photon mapping with
cone filters.

3.2. Pseudo signal to noise ratio

For original photon mapping, which the contribution of impact %k is counted, the expected
value of constant kernel is ¢ k 71(P) and the expected value of cone filter is I(P)+ %,
But instead of the correct formulas, many people use just I(P) as the expected value. We
can also model this typical implementation mistakes and quantify their effect. Here we will

1(P)

name —— as “Pseudo signal to noise ratio”, and denote it SN R.

Figure shows the pseudo signal to noise ratio SNR of different filters of the original
photon mapping. The first row shows the cases of constant kernel and cone filter with s=0.5,
the second row shows the the cases of cone filter with s=0.75 and s=1.5. The predicted value
is represented by green line and the empirical results are represented by red points. As we
can see, positively biased algorithms can have misleadingly high signal to noise ratios. To
avoid the issue, Garcia et al. [GHUPSI4] used in figure 5 the unbiased irradiance I(P)
instead of the biased estimator E[I(P)] for the numerator of .

Fig shows the theoretical signal to noise ratio compares to the pseudo signal to noise

ratio SIVR. The first row shows the cases of constant kernel and cone filter with s=0.5, the
second row shows the the cases of cone filter with s=0.75 and s=1.5. The theoretical signal
to noise ratio is represented by green line, the pseudo signal to noise ratio is represented
by red line. From the graphs we can see the overestimation and underestimation for each
case. For cone filter with s=0.5 and s=0.75 the overestimation and underestimation biases
are significant.

24

10 . . : . ! : !) :
Cone filter, PhotonMapping, s=0.5
Predicted
]
I
hd
Q
2
o
z
e
©
c
2
(7]
0 L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200
k
6 . — , | r ! . :
Cone filter, PhotonMapping, s=0.75 +
5| Predicted |
2
I
hd
(]
2
o
z
i)
]
c
2
(7]
_1 L L L L L L n n n
0O 20 40 60 80 100 120 140 160 180 200
k
16 T —— . . — , .
Cone filter, PhotonMapping, s=1.5 +
14 + Predicted]
S 12
I
o4
o 10
2
2 8
2
s 6
5
%) 4
2
0 L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200
k
Figure 3.1.:

Signal to Noise Ratio Signal to Noise Ratio

Signal to Noise Ratio

10

3.2. Pseudo signal to noise ratio

(‘Zone‘filter,‘ CorréctedPM, s=05 N
Predicted

20 40 60 80 100 120 140 160 180 200
k

Cone ﬁlter, ‘Corre‘ctedl‘DM, $=0.75 *
Predicted

16
14

20 40 60 80 100 120 140 160 180 200

k

8
6
4
2
o !

Cone ‘filter,‘ CorréctedPM, s=1.5 N
Predicted]

20 40 60 80 100 120 140 160 180 200
k

Signal to noise ratio of the cone filter of photon mapping. First row: Original
photon mapping with cone filter using s=0.5 (left) and corrected photon mapping
with cone filter using s=0.5 (right). Seond row: Original photon mapping with
cone filter using s=0.75 (left) and corrected photon mapping with cone filter

using s=0.75 (right).

Third row: Original photon mapping with cone filter

using s=1.5 (left) and corrected photon mapping with cone filter using s=1.5
(right). Uniform distribution of photons as a function of &k (in red); theoretical
prediction of the signal to noise ratio (in green).

25

3. Empirical study

16 T T T T T T T T T 16 T T T T T T T T T
Constant kernel PM + Constant kernel CPM
14 Predicted —— 14 Predicted
£ 1 1 £ 1 1
© ©
o4 4
o 10 q o 10 4
2 2
2 8 1 S 3]
2 2
T 6 1 © 6]
S S
o 4] o 4]
2 1 2 1
O L L L L L L L L L O L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
k k
14 —— 14 ——
Epanechnikov kernel Silverman kernel
12 Predicted 12 Predicted |
2 2
] 1]
4 4
() [
@ E 0
[=} [=}
z z
= 1 =
© ©
c o
2 1 k=]
(7] (7]
0 L L L L L L L L L 0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
k k
14 —— T . . O Consamtiemal B ' ' ' ' ' '
Triangle kernel + Constant kernel CPM
| Predicted 14 slverman kernel
12 Triangle kernel —
Cone PM s=0.5 —_—
2 Sy — T
g Cone CPM $=0.75 e _—
° Cone PM s=1.5 —_— —
0] % 10 |-Cone CPMs=15 —
0 @
5] 8
P4 S gl
2 2
2
(7] Al
ok
0 L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200 o L2
0 20 40 60 80 100 120 140 160 180 200
k K
Figure 3.2.: Signal to noise ratio of the different filters of photon mapping. First row: Origi-

26

nal photon mapping with constant kernel (left), corrected photon mapping with
constant kernel (right). Second row: Corrected photon mapping with epanech-
nikov filter (left) and silverman/quartic filter (right). Third row: Corrected
photon mapping with triangle filter (left) and an overview for all kernels above
(right). Uniform distribution of photons as a function of & (in red); theoretical
prediction of the signal to noise ratio (in green).

16
14
12
10

Pseudo Signal to Noise Ratio

o N B~ O ©

Pseudo Signal to Noise Ratio

‘ ‘ ‘ " Constant kernel PM N
L Predicted
0O 20 40 60 80 100 120 140 160 180 200
k
Cone filter, I5M, $=0.75 K
Predicted]

20 40 6

80 100 120 140 160 180 200
k

Pseudo Signal to Noise Ratio

Pseudo Signal to Noise Ratio

10

16
14

8
6
4
2
0

3.2. Pseudo signal to noise ratio

Cone ‘filter,‘PM, s=05 N
Predicted

20 40 60 80 100 120 140 160 180 200
k

Cone ‘filter,‘PM, s=1.5 N
Predicted]

20 40 60 80 100 120 140 160 180 200
k

Figure 3.3.: Pseudo signal to noise ratio of the different filters of original photon mapping.
First row: original photon mapping with constant kernel (left) and cone filter
using s=0.5 (right). Second row: original photon mapping with cone filter using
s=0.75 (left) and s=1.5 (right). Uniform distribution of photons as a function
of k (in red); theoretical prediction of the signal to noise ratio (in green).

27

3. Empirical study

Signal to Noise Ratio

Signal to Noise Ratio

16 T T T r T T T T T 10 T T T T T T T T T
Constant kernel PM, Theoretical SNR —— Cone filter, PM, s=0.5, Theoretical SNR ——
14 + Pseudo SNR —— Pseudo SNR ——
8 L
12 1 2
S
14
10 1 2 6 1
8] 2
o
6 J t_‘; 4 r]
S
4 1 g
o,]
2 4
0 L L L L L L L L L 0 L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
k k
Cone filter, PM, s=0.75, Theoretical SNR —— Cone filter, PM, s=1.5, Theoretical SNR ——
Pseudo SNR —— 14 L Pseudo SNR —— |
2 12
<
13
o 10
Kol
2 8
e
= 6
S
7] 4
2
0 L L L L L L L L L 0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
k k

Figure 3.4.: Theoretical signal to noise ratio versus pseudo signal to noise ratio for the dif-

28

ferent filters of original photon mapping. First row: original photon mapping
with constant kernel (left) and cone filter using s=0.5 (right). Second row:
original photon mapping with cone filter using s=0.75 (left) and s=1.5 (right).
Theoretical signal to noise ratio (in green); Pseudo signal to noise ratio (in red)

4. Conclusions and Future Work

In this chapter, we give here our conclusions and our plan for the future work.

4.1. Conclusions

We have extended the study that presented in Garcia et al. [GHUPSI4] to determine the
variance of photon mapping with diffenrent filters, and provied a theoretical and empirical
study of the filtering kernels in the context of photon mapping.

From our theoretical study, we have got the analytical formulas of the variance value for
constant kernel and epanechnikov filter in both 2D and 3D case as well as silverman/quartic
kernel, triangle kernel in the context of photon mapping, they are all functions of k, the
number of photons sought in a photon maps query and n, the number of photon impacts.
We have got the analytical formula of the variance value of the cone filter, which is a function
of n, k, and s, the slope of the cone filter. We have showed that the computation time of
our formulas is very low, we could get the signal to noise ratio for different kernels within
0.1 sec in avarage. But actually, the print function in C++ takes a lot of time, so our true
computation cost is much less than 0.1 sec. Moreover, we have also studied the differential
filter, and we have found out the variance becomes smaller when k is greater, so the bias is
then smaller.

During our study we realized that the value of k£ must greater than 2 for all the kernels, that
we have studied, otherwise the variance value is infinity if & = 2, because the denominator
in the fomulas would be then 0. For example, for corrected photon mapping with constant
kernel, the variance Var[f] = IQ(P)Z@]“_J;%, it is obviously that n(k —2) = 0, if k = 2,
the variance value is then infinity. For the case when k = 1, the variance value is either
infinity or negative. As we can easily see from our analytical formulas, for constant kernel, if
k = 1, the variance value of the corrected photon mapping Var[I] = I*(P) Z@k—% = —I%(P);

—’“?Ig’:%)_’;(:) — Infinity,

the variance value of the original photon mapping is Var [f | =

because the denominator (k — 1)%(k — 2)n = 0.

In our empirical study, we have implemented a scene consisting of a planar unit disc, a very
simple model, which illuminated by a directional light source for each kernel and calculated
the signal to noise ratio of each kernel. We have calculated the theoretical prediction of the
signal to noise ratio as well. Moreover, we show the both results in a graph for every kernels,
that we have studied. We have calculated the squared residuals between the theoretical
result and the empirical result to measure the goodness of fit [LLJ16]. The squared residuals
is less than 3500 ppm for all different filters. It shows, that our theoretical result and the
empirical result match well.

For constant kernel, the original photon mapping and the corrected photon mapping from
Garcia et al. [GHUSI2] have the same signal-to-noise ratio. The theoretical comparision
among different filters allow us to choose the best kernel for our needs. Besides, we could

29

4. Conclusions and Future Work

offer a threshold, the estimation of computational cost of algorithms which stop after error
is smaller than the threshold.

4.2. Future Works

Besides uniform distribution, we also want to simulate a scene composed of a disc illuminated
by a point light source located above the disc centre at one unit distance.

Light source

k" nearest photon

it" nearest photon

Figure 4.1.: The point light source model

The fraction of the power which leaves the light source and arrives at the point P in the
plane (the form factor) is %, with 6 denoting the angle between the light vector and
the normal, L the light position and P the point of interest.

Figure shows our model with point light source. Let ¢ be the power which leaves the
light source, then the power of the k' nearest photon is:

~ cos(0) 1

* — _ (2 f%
G T T T 4

Our near term future work will deal with the Variance of different kernels by point light
source.

30

List

of Figures

1.

Example of a triangle mesh representing a dolphin. Picture with permission

2.

An image created by using POV-Ray 3.6. Picture with permission trom au-

thor: Gilles Tranl e

3.

Pictures created by local illumination method (left) and global illumination

method (right). Picture with permission from author: Dr. Garcial

B

Symbols used in this articlel o o oo

13
14

BT

oignal to noise ratio of the cone filter of photon mapping. First row: Origi-

nal photon mapping with cone filter using s=0.5 (left) and corrected photon

mapping with cone filter using s=0.5 (right). Seond row: Original photon

mapping with cone filter using s=0.75 (left) and corrected photon mapping

with cone filter using s=0.75 (right). Third row: Original photon mapping

with cone filter using s=1.5 (left) and corrected photon mapping with cone

filter using s=1.5 (right). Uniform distribution of photons as a function of k

(in red); theoretical prediction of the signal to noise ratio (in green).|

B.2.

pignal to noise ratio of the different filters of photon mapping. First row:

Original photon mapping with constant kernel (left), corrected photon map-

ping with constant kernel (right). Second row: Corrected photon mapping

with epanechnikov filter (left) and silverman/quartic filter (right). Third row:

Corrected photon mapping with triangle filter (left) and an overview for all

kernels above (right). Uniform distribution of photons as a function of £ (in

red); theoretical prediction of the signal to noise ratio (in green).|

26

B3

Pseudo signal to noise ratio of the different filters of original photon mapping.

First row: original photon mapping with constant kernel (left) and cone filter

using s=0.5 (right). Second row: original photon mapping with cone filter

using s=0.75 (left) and s=1.5 (right). Uniform distribution of photons as a

function of k£ (in red); theoretical prediction of the signal to noise ratio (in

GUEEN).| . v v v v e e e e e e e e e e e e e e e e

27

B4

Theoretical signal to noise ratio versus pseudo signal to noise ratio for the

different filters of original photon mapping. First row: original photon map-

ping with constant kernel (left) and cone filter using s=0.5 (right). Second

row: original photon mapping with cone filter using s=0.75 (left) and s=1.5

(right). Theoretical signal to noise ratio (in green); Pseudo signal to noise

ratio (inred)|

.

The point light source model|

AT

Mathematica code of original photon mapping with constant kernel

28

30

61

31

List of Figures

32

A2

Mathematica code of corrected photon mapping with constant kernel|

A3,

Mathematica code of corrected photon mapping with epanechnikov kernell . .

[A.3.

Mathematica code of corrected photon mapping with epanechnikov kernell . .

A

Mathematica code of corrected photon mapping with silverman kernel|

A4

Mathematica code of corrected photon mapping with silverman kernell

A

Mathematica code of corrected photon mapping with silverman kernel]

A5,

Mathematica code of corrected photon mapping with cone filter|.

[A.5.

Mathematica code of corrected photon mapping with cone filter|.

[A.5.

Mathematica code of corrected photon mapping with cone filter|.

As5.

Mathematica code of corrected photon mapping with cone filter|.

[A.5.

Mathematica code of corrected photon mapping with cone filter|.

[A.6.

Mathematica code of original photon mapping with cone filter|.

NG

Mathematica code of original photon mapping with cone filter|.

[A.6.

Mathematica code of original photon mapping with cone filter|.

Bibliography

[AMHHOS]

[App68]

[ATS94]

[Carlbh]

[DBBS06]

[DNO4]

[Fel68)]

[GHUPS14]

[GHUS12]

[Glag9]

[GouT1]

AKENINE-MOLLER, Tomas ; HAINES, Eric ; HOFFMAN, Naty: Real-Time
Rendering. 3rd. Natick, MA, USA : A. K. Peters, Ltd., 2008. — ISBN
1568814240, 9781568814247

APPEL, Arthur: Some Techniques for Shading Machine Renderings of Solids.
In: Proceedings of the April 30-May 2, 1968, Spring Joint Computer Con-
ference. New York, NY, USA : ACM, 1968 (AFIPS ’68 (Spring)), 3745

ARvoO, James ; TORRANCE, Kenneth ; SMITS, Brian: A Framework for the
Analysis of Error in Global Illumination Algorithms. In: Proceedings of the
21st Annual Conference on Computer Graphics and Interactive Techniques.
New York, NY, USA : ACM, 1994 (SIGGRAPH ’94). — ISBN 0-89791-667-0,
75-84

CARDOSO, Jamie: 3D Photorealistic Rendering: Interiors & Exteriors with
V-Ray and 3Ds Mazx. Natick, MA, USA : A. K. Peters, Ltd., 2015. — ISBN
1138780731, 9781138780736

DuTRE, Philip ; BALA, Kavita ; BEKAERT, Philippe ; SHIRLEY, Peter: Ad-
vanced Global Illumination. AK Peters Ltd, 2006. — ISBN 1568813074

Davip, H.A. ; NAGARAJA, H.N.: Order Statistics. Wiley, 2004 (Wiley
Series in Probability and Statistics). https://books.google.de/books?
1d=bdhzFXg6xFkC. — ISBN 9780471654018

FELLER, William: An Introduction to Probability Theory and Its Applica-
tions. Bd. 1. Wiley, 1968

GARCiA HERNANDEZ, Rubén ; URENA, Carlos ; PocH, Jordi ; SBERT, Ma-
teu: Querestimation and Underestimation Biases in Photon Mapping with
Non-Constant Kernels

GARCIA HERNANDEZ, Rubén ; URENA, Carlos ; SBERT, Mateu: Description
and Solution of an Unreported Intrinsic Bias in Photon Mapping Density
Estimation with Constant Kernel. 12 2012

GLASSNER, Andrew S. (Hrsg.): An Introduction to Ray Tracing. London,
UK, UK : Academic Press Ltd., 1989. — ISBN 0-12-286160—4

GOURAUD, Henri: Computer Display of Curved Surfaces. (1971). —
AAIT127878

33

https://books.google.de/books?id=bdhzFXg6xFkC
https://books.google.de/books?id=bdhzFXg6xFkC

Bibliography

[GTGBS84]

[Ham86)

[JC94]

[JC95]

[Jen96a]

[Jen96b]

[JonO01]

[Kaj86]

[LLJ16]

[LS14]

[McC88]

IMPO1]

[ON94]

34

GORAL, Cindy M. ; TORRANCE, Kenneth E. ; GREENBERG, Donald P. ; BAT-
TAILE, Bennett: Modeling the Interaction of Light Between Diffuse Surfaces.
In: SIGGRAPH Comput. Graph. 18 (1984), Januar, Nr. 3, 213-222. http:
//dx.doi.org/10.1145/964965.808601. — DOI 10.1145/964965.808601. —
ISSN 0097-8930

HamMming, R. W.: Numerical Methods for Scientists and Engineers. New
York, NY, USA : Dover Publications, Inc., 1986. — ISBN 0-486-65241-6

JENSEN, Henrik W. ; CHRISTENSEN, Niels J.: Photon Maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects. 1994

JENSEN, Henrik W. ; CHRISTENSEN, Niels J.: Photon Maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects. In: Computers & Graphics
19 (1995), Nr. 2, S. 215-224. — ISSN 00978493

JENSEN, Henrik W.: Global illumination using photon maps. Springer, 1996.
- 21-30 S.

JENSEN, Henrik Wann: The Photon Map in Global Illumination, Ph.D.
dissertation. Technical University of Denmark: Department of Planning:
Graphical Communication, 1996

JONES, F.: Lebesgue Integration on Fuclidean Space. Jones and Bartlett,
2001 (Jones and Bartlett books in mathematics). https://books.google.
de/books?id=3U7tresTD1AC. — ISBN 9780763717087

Kajtiya, James T.: The Rendering Equation. In: SIGGRAPH Comput.
Graph. 20 (1986), August, Nr. 4, 143-150. http://dx.doi.org/10.1145/
15886.15902. — DOI 10.1145/15886.15902. — ISSN 0097-8930

Liu, Qiang ; LEE, Jason ; JORDAN, Michael: A Kernelized Stein Dis-
crepancy for Goodness-of-fit Tests. 48 (2016), 2022 Jun, 276-284. http:
//proceedings.mlr.press/v48/1iub16.html

Loowmis, Lynn H. ; STERNBERG, Shlomo: Advanced Calculus. Revised.
WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9095. http:
//dx.doi.org/10.1142/9095

McCoRrMICK, B. H.: Visualization in Scientific Computing. In: SIGBIO
Newsl. 10 (1988), Mérz, Nr. 1, 15-21. http://dx.doi.org/10.1145/43965.
43966. — DOI 10.1145/43965.43966. — ISSN 0163-5697

MARcos, Wann Jensen Henrik Mitchell Don Pharr M. Hanrahan Pat P.
Hanrahan Pat ; PETER, Shirley: State of the Art in Monte Carlo Ray
Tracing for Realistic Image Synthesis. (2001)

OREN, Michael ; NAYAR, Shree K.: Generalization of Lambert’s Reflectance
Model. (1994), 239-246. http://dx.doi.org/10.1145/192161.192213| —
DOI 10.1145/192161.192213. ISBN 0-89791-667-0

http://dx.doi.org/10.1145/964965.808601
http://dx.doi.org/10.1145/964965.808601
https://books.google.de/books?id=3U7tresTD1AC
https://books.google.de/books?id=3U7tresTD1AC
http://dx.doi.org/10.1145/15886.15902
http://dx.doi.org/10.1145/15886.15902
http://proceedings.mlr.press/v48/liub16.html
http://proceedings.mlr.press/v48/liub16.html
http://dx.doi.org/10.1142/9095
http://dx.doi.org/10.1142/9095
http://dx.doi.org/10.1142/9095
http://dx.doi.org/10.1145/43965.43966
http://dx.doi.org/10.1145/43965.43966
http://dx.doi.org/10.1145/192161.192213

[Pho75]

[RosT73]

[Sch03]

[SMO9]

[SP94]

S502]

[SSS01]

[Wal9g|

[WJ94]

[WMHSPG98]|

[Zucl7]

Bibliography

PuoNG, Bui T.: Hlumination for Computer Generated Pictures. In: Com-
mun. ACM 18 (1975), Juni, Nr. 6, 311-317. http://dx.doi.org/10.1145/
360825.360839. — DOI 10.1145/360825.360839. — ISSN 0001-0782

RosSg, A.: Vision: Human and Electronic. Plenum Press, 1973 (IBM
Research Symposia Series). https://books.google.de/books?id=s0GjM_
rY95kC. — ISBN 9780306307324

SCHREGLE, Roland: Bias Compensation for Photon Maps. Bd. 22. 2003. —
729-742 S.

SHIRLEY, Peter ; MARSCHNER, Steve: Fundamentals of Computer Graphics.
3rd. Natick, MA, USA : A. K. Peters, Ltd., 2009. — ISBN 1568814690,
9781568814698

SILLION, Francois X. ; PUECH, Claude: Radiosity and Global Illumination.
San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 1994. — ISBN
1558602771

STROTHOTTE, Thomas ; SCHLECHTWEG, Stefan: Nomn-photorealistic Com-

puter Graphics: Modeling, Rendering, and Animation. San Francisco, CA,
USA : Morgan Kaufmann Publishers Inc., 2002. — ISBN 1-55860-787-0

SIMON, Michael A. ; SHIRLEY, Peter ; SMITS, Brian: A Variance Analysis of
the Metropolis Light Transport Algorithm. In: Computer and Graphics 25

(2001), S. 287-294

WALTER, Bruce J.: Density Estimation Techniques for Global Illumination.
1998. — AAT9900037

WanDp, M.P. ; Jones, M.C.: Kernel Smoothing. Taylor & Francis,
1994 (Chapman & Hall/CRC Monographs on Statistics & Applied Prob-
ability). https://books.google.de/books?id=GT00i5yE008C. — ISBN
9780412552700

WALTER, Bruce ; M. HUBBARD, Philip ; SHIRLEY, Peter ; P. GREENBERG,
Donald: Global Illumination Using Local Linear Density Estimation. 02 1998

ZUCCHINI, Walter: Applied smoothing techniques, Part 1: Kernel density
estimation, 2003, 2-19. In: Notes (2017)

35

http://dx.doi.org/10.1145/360825.360839
http://dx.doi.org/10.1145/360825.360839
https://books.google.de/books?id=s0GjM_rY95kC
https://books.google.de/books?id=s0GjM_rY95kC
https://books.google.de/books?id=GTOOi5yE008C

A. Appendix

A.1. Prerequisites

Because for the order statistics ¢ < j < k, we get:

Var[l Evm > (ElL*LY) - E[LY)E[LY)
1<i<j<k—1
kljjl k—1j-1 (A1)
—ZVar 1+23 Y B[-2 E[I
j=11i=1 j=1i=1
A.2. Original PM with constant kernel
Two-dimensional
The variance is:
N 1 k2
Varll] = /O IQ(Tk)fX(k) (rg)dry — (k — I)QIQ(P) (A.2)
A.2.0.1. Integral
LA k
/0 Iz(Tk)fX<k)(7"k)di—/O <7T7“(Z2> CF(ri) 1 (1= F(ry))" " f(ri,)dry
242
- iF (m)* (1= F)" * f(ri)dr
242
=T / <1> F(r) ™ (1 = F(r)"~* £ () dr
242
=L [Rt - Ry dn
k:2¢2 T'(k k1
2 ¢ 1“)(71(ﬁ 1) : (4-3)
kPP n! (k—3)(n—k)!
w2 (k—-1D!(n—k)! (n—2)!
k2¢? n(n—1)

T2 k-1 -2)
kK> 7*(P) n(n—1)
2 n?2 (E-1)(k-2)
_K2(P) (n—1)

n (k—1)(k—2)

37

A. Appendix

A.2.0.2. Variance

. KIA(P) (n—1) K2,
R) R T
k*(n —1)(k —1) — k*n(k - 2)
n(k—1)*(k — 2)
_ K*(n—k+1)I*(P)
 (k=1)%k—2)n

I*(P)

Three-dimensional

The variance is:

2

— L
Var[PD(ry)] _/0 PDz(Tk)fX<k) (r)dry — (kﬁl)gPDz

A.2.0.3. Integral

1 1 2
/0 PD2(Tk)fX<k) (T’k)d’l”k = /0 <4k¢3> CF(Tk)kfl(l . F(Tk))nfkf(rk)drk

gﬂ'?"k

= [) By
0

1671'2 T'k
9]472(]52
1672

c / F(l B F (1)~ f)

2 12
_ 1’“6 :; c / WE (L = F(r))" f(ry)drs

_ 9k2¢2C/))nik3(7’k)2d7’k

1672
C9k%2¢% T(k—2)T(n—k+1)
1672 I'(n—1)
9k2¢? n! (k—3)!(n —k)!
T 16m2 (k—Din—k)! (n—2)!
924> n(n—1)
T 16m2 (k—1)(k—2)
9k? 167°PD? n(n—1)
T 16m2 92 (k—1)(k—2)
K2PD%* (n—1)
T n k-D(k-2)

38

(A.4)

(A.5)

A.3. Corrected PM with constant kernel

A.2.0.4. Variance

kK*PD? (n—1) k2
) Rl
kE*(n —1)(k — 1) — k®>n(k — 2)

Var[PD(ry)] =

= PD? AT
n(k —1)%(k —2) (A7)
_ kK*(n—k+1)PD?
(k=12 (k-2)n
A.3. Corrected PM with constant kernel
Two-dimensional
The variance is:
1
Var[l] —/0 IZ(Tk)fX<k) (r)dry, — I*(P) (A.8)

A.3.0.1. Integral

1 1 B 2
/0 P(re) fx g, (ri)dry, = /O (““ 12)(’5) CF(ri) 1 (1 = F(ry))"* f (r)drg

Tk

2 1
B 71'2 7 C/ 7 W)= P ()" F F(re)dry

-1 ¢’2c/ WL = Flr))™" i)
Tk

_ 2
1 ‘¢ /) T = F ()" £ (ri)dry,

_ (k-)¢2 —2)l(n—k+1)
=2 T Teo (4.9)
(k—1)%¢? n! (k—3)!(n — k)!

2 (k—1)l(n—k)! (n—2)!
_ (k=1)*¢* n(n-1)
2 (k—1)(k—2)
(k—=12*721%(P) n(n-1)
72 n2 (k—1)(k—2)
(k—1)I*(P) (n - 1)
B n (k—2)

39

A. Appendix

A.3.0.2. Variance

o PP(P)(n—1)(k—1)
Var[l] = - i—2) — I*(P)
B (n—1)(k—1)—n(k—2)
=I*(P) nlh =3 (A.10)
n—k+1
=1%(P) n(k — 2)
Three-dimensional
The variance is:)
Var[PD(ry)] = /D PD’ (1) fxy, (ri)dri — PD? (A1)

A.3.0.3. Integral

1 1 — 2
/(; PDZ(Tk)fX(k) (rk)drk = /0 (“; 1;¢> CF(Tk)k_l(l - F(Tk»nfkf(?“k)d?“k

ITTE
2
= (167(3¢C/0 Tk F()k 1(1 —F(’I"k;))n_kf(’f'k)d’l“k
2
B - 167Tg - C/ (1)2F(T’f)k 1(1 *F(Tk))n_kf(rk)drk
- 167r ¢2C/)E)33 ()2 drye
_ 9k -)¢2CF —2)T(n—k+1)
- 1672 T(n—1)
9(k —1)°¢ nl (k —3)!(n — k)!

1672 (k—1D!(n—k)! (n—2)!
_9(k—1)%¢* n(n-—1)
- 16r2 (k—1)(k—-2)
9(k —1)*16x2PD? n(n—1)
1672 In? (k—1)(k—2)
(k—1)PD? (n —1)

n (k-2
(A12)
A.3.0.4. Variance
Var[PD(ry)] = PZL)Q (n _(kl)_(];)_ Y _ pp?
_ pp2” 1)(]2&1_) ;)”(k), (A.13)
- PDQZ(_kk_J;)l

40

A.4. Epanechnikov kernel

A.4. Epanechnikov kernel

The variance is [A T}

k—1j-1

k—1j—-1
Var[l ZVar [+2> > B[LY -2> 0 E[IE(L
j=11

j=1i=1 =1 i=1

Yo VarlL]

Var[l;*] = E[I;*z] - (E[I;*DQ
So we have
k-1 L= L
> Varlli] =) (E[i = (BI*]))
i=1 i=1

A.4.0.1. B[]

Since Vr; > 1y, fx; 4 (ri,75) = 0, the inner integral upper limit is r

B[] /01 /OT
1 T
¥

/o /

I
S—

ka2

IZ‘* (ri;rk)fX(iyk)(ri;Tk)dTidrk
(e

(e

2

2 1= (TZ

Tk Tk
2 1 (n

TI'Tk Tk

Tk

2
. 2 . i
7)] ¢> CKQTin_l[TkZ — Tiz]k ldn‘drk

2
2 _ .
) :| (Z)) 2CJTk[1 — Tk]n k27’¢22_1[7"k2 — TZ'Q]

T reo 212 i1 r 2D (DT (k — i+ 2)
1 (& o2~ 1y, 2 2 dr; =
/0 [)] el Dk +2)

Then we can solve the outer integral:

k—i—1

2
) C / / [1 — ﬁ) :| 27’k[1 — er]n—k‘QriQi—l[er — T'f]k_
Tk Tk
2 2 n—k r 2
2 1_ k 1 2 g — 11—
> CJ/ il Zk] / {1 — (T—) } 22 2 — oy]k 1dridrk
0 0

71—

(A.14)

(A.15)

(A.16)

d?"z' d?"k

ldridrk

(A.17)

(A.18)

D)k — 2)T(k — i+ 2)T(n — k+1)

[l T
dry =
0

rit I'(k+2) I'(k+2)(n—1)

(A.19)

41

A. Appendix

Finally, we have:
.2 20\% _ T(i)T(k —2)T(k —i+2)T(n —k+ 1
O
20\ 2 n! P(k—2)T(k—i+2)(n—k+1)
- <7r> Gi—D)l(k—i—1l(n—Fk)! T(k+2)(n—1)
20\ 2 n! (i — DIk —3)!(k — i+ 1)(n — k)!
- <7r) G-k —i—1l(n—Fk)! (k+ 1)l(n—2)!

_ <2¢)2n(n —1)(k—i+1)(k—1)
) (k+1)k(k—1)(k—-2)

(A.20)

A.4.0.2. Yk (E[I;*2] - (E[I;*])2>
From Garcia et al. [GHUPS14], we already know that:

o 20 (k—i)n
B = =k (421
So we have now
k-1 k-1))
ZV&T[L*] = (E[Iz* | = (E[LY]))
i=1 =1
’“< w>2n<n—1><k—z'+1><k—z'>(%(k—z’)n)2>
P ™ (k+1k(k—1)(k—2) m (k—1k (A.22)
k—1

()5 (M - (=)
2 _
@) ! (3k<2kn£311€><k22 5 2))
zf LS B
/ / / (i, i) L (15, rk)fx(Jm(rz,rj,rk)dridrjdrk

LI G [— 219 (ma -G e)

6@27“@27“]27"16[7“1] [7“)2 — TZQ]j_i_l[er — er]k_j_l[l — er]n_kdndrjdrk
T .2
er [[[ab-alial e
0 Tk
21 2 k j—1 o n—k
ririrg[ric] [r] -7 } [rk —rj] 1 —r] “drydrjdrg
n—k
o i /1 [1 - 7“I<:2] " rj\2 2 21k—j—1
—32(2 k) 1— () | 7 —
' .92 i
/] [1 — (ﬁ)] 7i ZQ] 1[rj2 — 7] 1dndr]drk
0 Tk

42

A.4. Epanechnikov kernel

The value of the inner integral is:

T3 .2 i— i Tj ’ 9 . o
/ [1 -)] rr?] =T :/ {1 — (&]) R (A) i T
0 0 Tk
207 — rPOP I —]

2r?I'[j + 1]
(A.24)
Then, the value of the middle integral is:
| P] B e Sl U ek SOL UL
Tk ek ! 2r 2[5 + 1] J
’ (A.25)

(b =i+ D)2t UTE — Tk — 5 + 1]
AT [k + 2]

Then we can solve the outer integral:

u—rﬁf*xk—r+nm%#ﬂrmru—qu—j+ud
(k= i+ DT — iUk — 2]T[k — j + 1T[n — k + 1] '
8C[k + 2]T[n — 1]

Then, we have:

BT :32@)26@% — i+ DI — i]T[k — 2Tk — j + 1JT[n — k + 1]

ST[k + 2]T[n — 1]

(2 n!
—32@ DG —i— Dk - DR
(k —i+ DT[i|T]j —][k — 2Tk — j + 1T[n — k + 1]
8T[k + 2]T[n — 1]

(A.27)

oo 2) nl
B 2<w> -G —i-Dlk—j—Dli(n—k)! "
(k—i+1)(i— DG —i— Dk —3)k —)(n— k)
8(k +1)!(n — 2)!
(NP = D)k —i+1)(k —j)
'4<n> (k+ 1)k(k —1)(k — 2)

Finally, we have:

k—17—1 -1j5-1 2 . .
e ¢\ nn -1k —i+1)(k—j)
2> Bl = G<w> (E+ 1)k =)k =2 >
2 —1

S ety

Jj=11i=1

43

A. Appendix

S 1 EL17]
k—1j—-1 . k—17—1 —in — \n
BUSENL] = Qf((]/-:— 1)k27?EZ—i;k
7j=11i=1 7=11i=1
_(200)*5 8 (k=) =)
< 4 ; = (k1% (A.29)
(1o (3K — Tk +2)
_<7r> 6k(k — 1)
_(ne* (3k — 1)(k —2)
_<w> 6k(k — 1)
Variance
The variance is [A 1}
k—1j-1 o k—1j—1)
Var[l ZVar [+2) > Bl -2 E[I;*| E[1;*]
j=11i=1 j=11i=1
(o)} 2n(3k — 2) 4 o\ n(n—1) né\? 3k —1)(k —
_<w> " <3k(k:— Dk—2) 3(k:—2)> +2<7r> > _2<7r> 6k(k — 1)
(o)} 2n(3k — 2) 4 nin—1) _n2B3k—1)(k—2)
(w) (” [skuc— Dh-2) 3<k—2>] L T Y)
(o)} 2n(3k — 2) 4 n?(3k —1)(k — 2)
=(2) ("l oviss om0)
(N ([2n(3k —2) — 4k(k — 1) + (n — 1)3k(k — 1)(k — 2) — n(3k — 1)(k — 2)°
_(w) " 3k(k — 1)(k — 2)
o\? [—4nk + 4k2n — 3K + 5k% — 2k
:(w> ”(3k(k—1)(k—2) >
O\ [dnk(k—1) — k(k —1)(3k — 2)
‘<w> "(3k(k— 1)(k—2))
e 2n dn — 3k + 2
(5) ()
An — 3k + 2
) ()
(A.30)
A.5. Silverman/Quartic kernel
The variance is [A 1}
k—1 k—1j5—1 k—137—1
Varll] = ZV&T |+ QZZE *I -2 E[I (A.31)
=1 7j=1 =1 Jj=11i=1

44

A.5. Silverman/Quartic kernel

Z;:ll Var [I;*]

Var[l7] = B[] - (E[1))”
So we have
k-1 = L
ZVar[Il*] = Z (E[S = (E[LT]))
i=1 i=1

A.5.0.1. E[[*’]

Since Vri > 7, fx(; 1) (ri,7k) = 0, the inner integral upper limit is 7

~ 2
/ / L rurk fX(l k) (T17Tk)d7"zd'rk

k 3 . 912 2)
= / / (3 |:1 — (2) :| ¢> CKQT'iZifl[T'kQ — TiQ}k_Z_ldTidT'k
0 Jo T Tk

T

1 Tk 3 .92 2 2 _k)
21" 2i—17,. 2
:/ / (7”%2 [1 — (a) } gi)) 20 rk[1 — 2" 2r 2 g2 — 1

(A.32)

(A.33)

1—1
dr;dr

(3¢) CJ/ / [1— —)] 2rk[1—rkz]n_k%i%_l[rkz—rzz]k - ldndrk
rit Tk

k

_ (3¢ 2r[1 — %" Tk[_ 7'2'2]4 P21 2
_<7r>CJ/0 e /o ! (Tk) 2l a

The value of the inner integral is:

Tk 214 . i 2(k=1)(; —
0

Tk F(/{? + 4)

Then we can solve the outer integral:

~drdrg

(A.34)

(A.35)

T(i)D(k — 2)T(k — i+ 4)T(n — k+1)

/1 2 (1 — 2] " 2B DT (D (k — i 4 4)
d?"k =
0

it T(k +4) I'(k+4)I'(n—1)

Finally, we have:

B - (3¢> TGT(k = 2)0(k i+ 4)T

(n—k+1)
I'(k+4)I'(n—1)

36> n! T(i)T(k —2)T(k —i4+4)T(n—k+1)

-k —i—1)(n— k) T(k+4)T(n—1)

(i— Dk —i—1)(n—k)! (k+3)!(n — 2)!
nn—1)(k—i+3)(k—i+2)(k—i+1)(k—1i)
(k+3)(k+2)(k+ Dk(k —1)(k —2)

)
<3¢> n! (i — 1)1k — 3)(k — i+ 3)!(n —
()

(A.36)

(A.37)

45

A. Appendix

A5.0.2. S (BILT] - (B[L7))
From Garcia et al. [GHUPS14], we already know that:

e 30 (k—i+1)(k—i)n
Bl == (k+1)(k— 1)k (A.38)

So we have now

k—1 k—1
Z Var[l;*] =Y (E[I;*z] - (E[IZ*])Q)
1

=

30\“n(n—1)(k—i+3)(k—i+2)(k—i+1)(k—1)
_Z<) (k+3)(k+2)(k+ Dk(k —1)(k —2)

3¢ (k—i+1)(k—i)n)>
_<7r (k+1)(k—1k >)

30\ n(n = 1)(k —i+3)(k—i+2)(k —i+1)(k i)
_<7r> ;(< (k+3)(k+2)(k+ 1k(k—1)(k —2))

B ((k;—z’+ 1)(k—i)n>2)
(k+1)(k— 1)k

O\ 30 (—k[3k(k — 2n) +n — 3] — 4n)
- <> 5(k + D)k(k —1)(k —2)
3 (—k[3k(k —2n) +n — 3] —4n)

5n(k+ 1)k(k — 1)(k — 2)
—3(3k® — 3k) — 3n(—6k* + k + 4)

5n(k + 1)k(k — 1)(k — 2)

5 3(6k* — k —4) 9

=I°(P) (5(k R —1) (k=2 (k= 2))

(A.39)

™

~1*(P)

—I*(P)

k—1 '—1 A* A*
Zj 1 E]' [i 4]
// / (ri, i)l rj,rk)fX(Jk)(m,rj,rk)dndrjdrk
2 2
3 ;2
AL TE [— o) (-2
7T7‘k Tk L Tk
Co2ri2ri2rilri] ' [r? — rﬂj*“[m? =1 T = drdrydry

(e [/ /; L) e o) o

2] - [r] -y } [rkz — 7’j2]k_j 1[1 — 7] _kdmdrjdrk
n—=k

8<37?> @/0 [1:?;]/0’"’6 [1 _ (:2)2] 2Tj[rk2 i

T i 2 2 i— 1—
/ ’ [1 — (ﬁ)] ri[riQ] 1[rj2 — riQ]j drldrjdrk
0

TiriTE(ri

46

A.5. Silverman/Quartic kernel

The value of the inner integral is:

Ti T2 2 i—1 j—i—1
/ |:1 — (7) :| T‘i[le] [Tj2 — T‘,L'Q] d?"i
0 Tk

- /oTj [1 - (riﬂ 2[7"i]2i71[7“j2 — 2 (A.41)

Tk
r 20D (4 (G + 1) + i+ 1) — 202,20 + D)CET] —]
2rk41“[j + 2]

Then, the value of the middle integral is:

Tk 972 .
[=7 e -
0 Tk

720D (5 (5 + 1) 4 rti(i + 1) — 2r 2% + 1))TET [— 4]

- A .42
21, T]j + 2] ar; (4.42)
(k=i +3)(k—i+2)r 2k VLT[— 4Tk — j + 2]
B ATk + 4]
Then we can solve the outer integral:
/1 1= " (k—i+3)(k — i+ 2)r2E-DT[ET[j —)Tk — 5 + 2] ”
k

(k=i +3)(k—i+ T[T — iT[k — 2Tk — j + 2T[n — k + 1]
8T[k + 4]T[n — 1]

Then, we have:

e (30N, (k—i+3)(k—i+ 2T —i|T[k — 2][k — j + 2|T[n — k + 1]
Bl L] =8 () Co 8Tk + 4]T[n — 1]

B % 2 n!
- <7r> G- DI —i—Dlik—j—Dl(n—k)! "
(k—i+3)(k—i+2) T[] — i|T[k — 2Tk — j + 2T[n — k + 1]
STk + 4T[n — 1]

(30’ nl
_8<7r> GG —i-Dk—j—Dln—k)N "
(k—i+3)(k—i+2)(i— DG —i—Dk=3)(k—j+1l(n—k)
8(k +3)!(n —2)!
:<3¢>2n(n—1)(k—i+3)(k—i+2)(k—j+1)(k—j)
™ (k+3)(k +2)(k + Dk(k — 1)(k — 2)

(A.44)

47

A. Appendix

Finally, we have:

k—1j—1 k—1j—1
S5 B (<3¢ 2nn—1)(k —i+3)(k—i+2)(k—j+1)(k])>

=5 e\ (k+3)(k+2)(k+ Dk(k—1)(k— 2)
N =i)k —i+2)(k— 5+ 1) (k—5)
_9”(”_1)<w 2 izl(k1 3)(k +2)(k+ DE(k—1)(k —2))
(¢ 2n(n—1)
-(5) "
_IQ(P)(HQ_nl)
(A.45)
ST Xin BB
S e e Sk 30 (k= i+ 1) (k= i)n 36 (k — j + 1)(k — j)n
ek 1E[I"]E[Ij]:j:“;w k+1)(k—1k 7 (k+1)(k-1)k
(310 o (k= i+)k —i)(k — j + 1)(k — j)
_< m ;; (k2 —1)°k? (A.46)
_(nd\?(k—2)(5k + k — 3)
_<7r> 10k(k2 — 1)
(k —2)(5k% + k — 3)
212(P)< 10k(k — 1)(k + 1))
Variance
The variance is [A1}
k—1j—-1 k—1j-1
Var[l Zv@r] +2 1 1E I =2 12;15
7j=11i= Jj=11i=
3(6k2 k—4) 9 (n—1) (k —2)(5k* + k — 3)
:IQ(P)<5(k+1)k(k—1)(k—2)_5n(k—2)>+212(P) 2n _212(13)(10k(k — 1)(k +1)
3(6k> — k —4) 9 (n—1) (k—2)(5k®>+k—3)
:IQ(P)<5(k+1)k(k:1)(k:2) Tha(k—2) T n BkE-Dk+1))
2 p 3n(6k% — k —4) — 9k(k2 — 1) + 5(k + Dk(k — 1)(k — 2)(n — 1) — n(k — 2)*(5k* + k — 3)
=I°(P) sn(k + Dk(k — 1)(k — 2)
—9kn — 5k* + k3 + 5k? — k + 9K3n
=I*(P) sk + Dk(k — 1)(k — 2)
Ink(k* —1) + k(k? — 1) — 5k*(k* — 1)
=I*(P) 5k + D)k(k — 1)(k — 2)
=I(P) ggn(:ﬁ;)l

(A.47)

48

A.6. Corrected photon mapping with cone filter

A.6. Corrected photon mapping with cone filter

The variance is [A.Tk

k—17—1 k—1j5—-1
Var(l ZVar [+2) N B L -2 E[I (A.48)
7j=11i=1 7j=11i=1
S Var(l]
Varll;] = B[] - (E[1"])° (A.49)
So we have
k—1 . k—1 _ L
3 Varll7] = (E[IZ-* | — (B[L)) (A.50)
i=1 i=1

A.6.0.1. E[[*"]

Since Vr; > 1, fx; 4 (ri,7,) = 0, the inner integral upper limit is r

~ 2
/ / 3 Tla’rk fX(k)(rla’rk)drldrk
2 .
/ / < Srk ¢5> CKQTZ'Qiil[TkQ — TiQ]k_Z_ldTidi
g2 1 — —)
2
sm 21—k, 2i—1y,. 2 21k—i—1
/ / < (f)) 2C gl —r”] "2ry [re” — 1i7] dr;dry,
g2 1 — —)
¢ / /T’“ 1 (T)2 om—ko 21 2 2k—i—1
=|—5<| C —(1- 2rg[l —r 2 T e =y dr;dr
(W(l -3) o Jo il STy, tl ¢ (7%] k

k

3s¢ 2 1 ri[l — er]" Tk T 2 %11 2 onk—i—1
=4) oy | TR 2 — g dryd
(n<3s—2>) o () e e

(A51)

The value of the inner integral is:

/T’“ (T >2ri2i1[rk2 B 7’¢2]k_i_1d7’i _ 2D (k — i) ((k52 +)l() 2sT(i + ;))
0

257 MhrD) T D)
(A.52)
Then we can solve the outer integral:
/1 il — rk2]n_k r 2B DTk —) [(ks? +0)T(0) 2T+ 3) "
0o 252 Th+1) T(htd)

(A.53)

CTP(k=2T(k—iT(n—k+1) [(ks> +0)T(E) 250+ 5)

= 45°T(n — 1) Ik+1) I'(k+ %)

49

A. Appendix

Finally, we have:

-2 4< 350 >2C T(k—2)T(k—i)l(n—k+1) [(ks> +i)T(G) 2sT(i + 3)
m3s—2)) 7’ 42T (n — 1) T(k+1) T(k+ 1)

3s¢ 2 n!
_4(71'(33 - 2)) G- Dk —i—Dln—k)!
T(k —2)0(k —i)T(n—k+ 1) <(k52 +i0E) 25T+ ;)>

45°T(n — 1) T(k+1) T(k+1)

3s¢ 2 n!
:4(77(33 - 2)) G- Dk —i—Dln—k)! "

(k=3 (k—i—1Dn—k)! [(ks> +i)(i—1)! 2s[(i+3)
4s2(n —2)! k! S T(k+ 1)

o359\ D=3 (ks +i)(i = 1)1 25T(i+3)
<7T(35—2)> 4s2(1 — 1)! k! - F(k—{—%)

4< 35 >2n(n1) (k—3)! (ks® +i)(i — 1)! (k—3)12sT(i + 3)
(35 —2) 45 (i —1)! k! Gi—1)! T(k+1)
kes? + i) (k—3)12sT(i + 1)

(s—2>n)<k;(k(_1)(k—2)_(i—1)! 1“(1”;))
(7

ks? 4 i 2sT'(k — 2)I'(i + 3)
(35 — 2 > n(n—1) kk—1)(k—2) T@I(k+ 1)

9(n—1) ks? +i 2sT(k —2)L'(i + %)
) sy (k(k Dk-2 TONk+D) >
(A.54)
A.6.0.2. 3! (E[IE*Q] - (E[IE*])2>

From Garcia et al. [GHUPS14], we already know that:

Bl ——® >”<k1 _m+;>r<k—1>>

m(l- 2 -1 sT@D(k+3)

__ 359 1 T+ 3T(k-1)
(35— 2)7r)n <k -1 sD()T(k + 1)) (A.55)

) 35 1 T(i+ 5)T(k—1)
=I(P) <35—2> (k— 1 SF(’L’;F(]{"‘ 3))

50

A.6. Corrected photon mapping with cone filter

So we have now

> verli] =3 (Bl - L))
S e (o)
-]:11 (I (P) (3;))5 2> K . 1 FE;Z)?EC(i;)l)>>2
Ejﬂ(ig:;;<Mk?;&l2f%?ZW2¥2;9>
-

B IQ(P)< 952 > 1 T+ H0(k-1) ?
— (3s—2)%) \ k=1 sD(i)T'(k+ 1)

_r2(p)—2 (G(n_k+1)82_8(n_’”1>8+3<n—1><’f—1>_6[F<k—1>}2u<k>>

2(3s — 22 n(k —1)(k - 2) D(k +)
o n—k+41 1 9k — 17 _9[P(k—1)]2u 1
F(p) n(k —1)(k —2) * (3s —2)? (2(k -D(k—-2) [k+ %)]2 (k) 2n(k — 2))
(A.56)
where function u(k) with k& € N defined as:
w(l) =0 w(2) = %
(1) — (8 = 28K+ 25)ull — 1) — (2% - 3)2u(k — 2) (A.57)
! Ak — 2)°

k—1 —1 “x 7%
S S B L
/ / / ’l“@,T‘k Tj7rk)fX(k) (r%?ﬂ]?Tk‘)dr'Ldrjdrk

L) ()

o k—j—1
[

2 2]j - l[rk2 —rj 2] 1— rk2]n7kdridrjdrk

(_2>C@23///0%1< Srk><1_;é>x (A.58)

i—1 k—j—1 —k
rlrjrk[nz] [7“]2 -1] [er — rj2] J [1—r 2]” drydr;dry

3s¢ 2 T - er]n_k Tk Tj 9 9rk—j—1
= L k1 1— L) p. o
(smey) @f e [(1) i -

/ ’ <1 — ") Ti[n‘z]i_l[rjz — TiZ]j_i_ldY’idedrk
0

Ce2ri2r;2ry, [n] [r ;

51

A. Appendix

The value of the inner integral is:

" T 2i—17 2 2qj—i—1
= 1-— i it = i
/O < Srk) L2 e (e (A.59)

120 D [srp (D (j + &) — 7D (G)0(+ HIT(— 4)
251D (5)0(5 + 3)

Then, the value of the middle integral is:

% LT 2 2 rj2(j—1)[srkf(i)F(j + %) —r; () + %)]F[] — 1] .
/0 (1) ilre i 2sr ()T + %) dr;
r2FUT (G —)T (k — j)

T 420G+ DRk + DTk + 1)

(ST +)Tk + DTGk + 5) ~ TRIG + 5)]

D+ TGTERTG + DIk +) — sTG +)Tk + 1))

2
(A.60)
Then we can solve the outer integral:
/*u—rﬁf*7 SO0 -k —g)
0 r2 42T + DK (k + 2D (k + 1)
(ST +)T (k+ DIGIT(k -+ 5) ~ THRITG +)]
+I(i + %)F(j)l“(k)[l“(j + DIk + %) —sI'(j + %)F(k + 1)])drg (A.61)

TGOk —2T(k—)T(n—k+1)
~82I()L(j + HT(K)T(k+)0k + 1T (n — 1)

(PTG + Tk + DIGT(k -+)~ THRITG +)]

DG+ DPGIDENG + Dk 4 3) — s0G + 5)T(k -+ 1)

52

A.6. Corrected photon mapping with cone filter

Then, we have:

) (30 Y, TG0k =Tk + 1)
UL]‘8(w<3s—2>> ORI + DRk + DIk + DT —1) -
()T + 2)T Ok + !

TGk + DISTGIT (6 +) = T(RTG +)]

£G4)PGTEING + DI+) — 5T + Dk + 1)

B 3s5¢ 2 n!
‘8<w<3s—2>> (i—DIG—i-Di(k—j— Dlln— k)"
L —)T (k=21

(k=j)0n—k+1)
852 (j)T'(j + 3)T(k)L(k + 3)L(k+ 1)l(n — 1)
)

(sT@OT(+

4 D0k + DTG+)~ PTG +)]

FT(4 PGTRIG + D+)~ 50 +

B 3s5¢ 2 n!
_8<7r(33 —2)> G- DG —i— (k=) — D=k~

G =i DUk = 3k =~ Dln— k)
8s2(j — DIT(j +) (k — DIT(k + $)k!(n — 2)!
(STGITG +)Tk + DITGT(k+ 5) ~THITG +)]

FD(4+ DTGTHRING + DDk + 5) 5T +

:< 3¢)2 n(n —1) "
(35 —2)) (k—1)(k—2)(i —)I(j — KT +)0k + 3)
(ST +)T+ DTGk + 5) ~ TRITG +)]

FTG+ PGTRTG + D0+ 3) — 5T + T+ 1))
r

_(36 >2n(n - 1)(k52F(i LG +3)+T0+5)T0 +1)
(3s—2)) (-1 k(k — 1)(k—2)F(J+%)
sT(k = 206 + D) + TOIG + %)])

INOINCEEY

)Tk +1)])

(A.62)

)Tk +1)])

93

A. Appendix

Finally, we have:

- n(n— 1) kTR +3) + TG+ DTG+)
2 .
2 (35 2) (i —1)! k(k—1)(k—2)I'(j +

2)

9n(n— 1)¢* A~ BSTTOIG +) + T+ HIG+1)
- 22 G- NG]

ROBCNCES)

(A.63)

J=1i=1 sT(O)T(k+ 3) 35 —2 ~1
- Sl 1 +5)0(k—1) 1 I'(j+ LIk 1)
= <38_2> ;2(’“ ()F(k+%) —1 SsT(G)T(k+1)
3 1 \°(s(8s—4)(k—2) 40(k-1)
- QIZ(P)<33—2> (E—1 T T(k + %)}2 (v(k) — U(M))
N k—2 1 20k —2) 6[0(k—1)]
_I%P)<%k1)_Cﬁ—2f! k—1 _[Hk+5”2@%f—wmi>
(A.64)
where function u(k) with k& € N defined in and v(k) with k& € N defined as:
v(1) =0 v(2) = %
o(k) = (8k3 — 40k? 4 69k — 41)v(k — 1) — (k — 1)(2k — 3)%v(k — 2) (A.65)

4k —2)°

o4

LTk + 3)

1 1=
i 35 1 T(i+ YTk -1) 35 1 TG+ 5HT%k-1)
:ZZI(P)<3S—2> (k—l_) >I(P)< ><k I 2
1

)

A.6. Corrected photon mapping with cone filter

Variance

The variance is [A. Tk

N 9k — 17 79[F(k—1)]2u(k)7 1
k- 1(k—2) (3522 \206-D(k-2) [0k 1) (k= 2)

(n—1) k—2 1 2(k—2)
+2I2(P)72n —2[2(P> <Z(k— 1) - (38—2)2 [1

B n—k+1 (n—1) k-2
_IQ(P)[n(k—l(k—2 _k—l]
)’

+ I*(

)) n

1 9k — 17 1 Ak — 2)

35 2)? [Q(kl)(k 2 mk—2) T k-1]
1 [9[L(k — 1)]? u

(n

i RINCER) I

[C(k+3)] [k + 3))°
(k= D(k - 2) —n(k - 2)°
n(k —1)(k —2)

1 n(9k —17) — (k — 1) +4(k — 2)2n [T(k - 1))
(35 — 2)? [on(k —1)(k —2) T+)P
n—k+1+k*n—k*>—3kn+3k+2n—2—nk?®+4nk — 4n

n(k—1)(k —2)

1 [9nk ~ 10—k + 14 8kn —32kn + 320 3[L(k - 1))
(35 — 2)? 2n(k = 1)(k - 2) [C(k+)
~k2+2k—1+nk—n
n(k —1)(k —2)

1 —k + 1+ 8k*n — 23kn + 150 N 3[C(k— 1))
(35 — 2)? 2n(k —1)(k —2) [T(k+ 3)]
n(k—1) — (k—1)*

n(k—1)(k —2)
—k+ 1+ 8k%n — 24kn + 16n + kn —n N [0k — 1))
on(k —1)(k — 2)

2
k) —

3s — 2
—k+1+

P
)(
+IQ(P)(

—r(p)™

+ I*(P)

(3u(k) — 12v(k))]

—1*(P)

+ I%(P)

n(k—l)—(k—1)+3
2n(k—1)(k—2) " [Tkt L)P

- 2
n(k —2) +I(P) (35 — 2)?

9 n—k+1 1
=) (n(k‘—2) MTIERE

95

A. Appendix

A.7. Original photon mapping with cone filter

The variance is:

. k—1 . k—1j5-—1 o k—1j—1 . A
Var(l] =) Var[l;*] +2) Y E[L*I*] - 2)) E[L*]E[I}"]
i=1 j=11i=1 j=11i=1 (A.67)
k—1 o k—1))
+Var[lf] +2> El*I*] -2 E[L*E[L"]
=1 =1
Var[f,;“]
Var(li') = B[] — (B[L"])’ (A.68)
A7.0.1. E[L")]
~ 1 A
B[] = /0 12 (ri) fx g (i) dr
! 1 - % i 2k—1 2\n—k
:/0 mgf) C2r." (1 —ry)" "dry,
_ 1_% i 1162%’11 2yn—k 4
- 71'(1 _ %)qb A % Tk (- rk:) Tk
=2C (-y qb) 2 /1 r2R =51 — 2R dry,
m(1-3) o " ' (A.69)
1-1 2F(k—2)P(—k+n+1)
=% (71'(1 - gs)¢> 2T(n — 1)
. n! 11 \’T(h—2T(—k+n+1)
T (k—1)(n —k)! 7r(1—32—s)¢ oT'(n — 1)
~ 9(n—1)n(s — 1)%¢?
S w2(k —2)(k —1)(2 — 3s)2
B 9(n—1)(s— 1)2
=I*(P) (k —2)(k — 1)n(2 — 3s)2
A.7.0.2. B[] — (E[I]))
From Garcia et al. [GHUPS14], we already know that:
. (3s=3)I(P)
B[] = B 0D (A.70)

o6

A.7. Original photon mapping with cone filter

So we have now
Varlly] =E[L*"] — (Bl:Y)
_ 9(n — 1)(s — 1)2 (8s =3)1(P))’
=I*(P) (k—2)(k —)n(2 - 3s5)2 ((38 —2)(k - 1))
9(s —12(=k+n+1)
(k—2)(k —1)?n(2 — 3s)?

(A.71)

=I*(P)
St BT
*Ik / / *(ri, k) Ik (Tk)fx(l k)(ri,rk)dridrk
_ -3 ; k—i—1
srk - s Cr2 i2z—1 2 i2 d id
// (er 1——)qS (m%(_323)¢> KT [re” — 1] ridrg
Tk
ST T A A A (e
2(1—- 2

()¢2 rk)”_k "k Ti 2%—17,. 2 2k—i—1
—47[_2(1_)2(1]/0 —_— ; 1-—— T [T’k — 7] d?“idT’k

7“2 STk
(A.72)
The value of the inner integral is:
T o P21 2 2 k—i—1 -
/0 (1 S’r‘k>z [k 2] ari (A73)
r?F 20k —) (sD()T (k+4) =T (i + 1) T(k)) '
B 25T (k)T (k + 3)
Then the value of the outer integral is:
(1 =2k e 2Dk — i) (sSTE)D (k+ 1) =T (i + 3) T(k)) 1
/0 3 2sT(B)T (k + 3) "
. (A.74)
[TG T(i+3)T(k=2)\T(k—i)l(—k+n+1)
A\ k2 -3k +2 sT (k + 3) AT(n —1)
Then we have
I Lo (i) L(i+3)T(k—2)\ T(k—i)T(=k+n+1)
B I =4 5w <k2 —3k+2 o zk +1)) 4T(n—1)
_, =9 n! L(i) L (i+3)T(k—2)
w2(1— 22— Dk—i—Din—k)! \ k2 =3k+2 s (k+3)
(k—i)(=k+n+1)
AT'(n — 1)
~9(n—1)n(s — 1)¢? s I(i+3)T(k-2)
T 22— 3s)2 k2—-3k+2 T (k+ 1)
(A.75)

o7

A. Appendix

Finally we have

k-1 klgn_l (s — 1)¢? s I(i+3)T(k—2)
;E ; 2(2 — 35)2 <k2—3k~+2_ r(z')l3 (k+1) >
_3(n—1)n(s — 1)¢* (A.76)
72(k — 2)(3s — 2)
:12(P) 3n—1)(s—1)

(k—2)n(3s—2)

o PR = 3s 1 TE+H0k—-1)\ (3s—3)I(P)
;EU@ IEL] _;I(P) (33 - 2) (k —1 sT()(k+ 1)) (3s—2)(k—1) (ATT)
3(s—1)
r P)(k —1)(3s —2)
Variance
The variance value is:
. . k—1 o k—1 R)
Var(l| =Vary_ + Var[l{] +2) E[I*I;"] =2 E[I*]E[I;"]
=1 i=1

=Vary_1 + I*(P) (kgis;)(?i(;)]z;(;jglzy +212(P) (i(fi ;);)((;s—_lz)) - 212(}3)(]?_3(13)(;!91)_2)
=Varg_, — I*(P) 3(s 12157]{;__2;1(];—1)1(;{:2(2!(92_—4;33238 +1)
= (T;(—kk——;)l " (2 —133)2 At 2nT(Lk_—12) * ?ELF((:_F %))]]22 (u(k) — 4”(@)])
_]2(]3)3(5 - 1215:]‘5_27)1(;1)1(7;2(2((92—4?))5235 +1)
(A.78)

A.8. Gaussian filter

Here we give the formula of the sum of the diagonal of covariance matrix z;:ll Var[fi*], that
we got from our study.

S Varll?] = n¢* (H(k) + e (R(k) + S(k) + T(k)))
Pt or2(eP —1)% (B4 2682 — 2¢8)% (2 — k) (k — 1)

(A.79)

o8

A.8. Gaussian filter

with

H(k) =(e?(e? —=2) — k+ 1) % [(B* (a*(k — 1)(n — 1) — (k — 2)n)
+ € (28%(k — 2)n — 4a*(B — 1)(k — 1)(n — 1)) + e’ (40?(k — 1)(n — 1) — B*(k — 2)n)

— 80&2€¥(k —1)(n—1) 4+ 402?28k — 1)(n — 1)]
(A.80)

R(k) = o?(2¢® — B — 2¢%/2)2(k — 1) (n — D)u(k) (A.81)

S(k) =2v(k)[8? (a*(k — 1)(n — 1) — (k — 2)n) + 2¢° (B%(k — 2)n — 2a*(B — 1)(k — 1)(n — 1))
+ &% (40?(k — 1)(n — 1) — B*(k — 2)n) — 8a26¥(k‘ —1)(n—1) 4+ 40228k — 1)(n — 1)]
(A.82)
and

T(k) = ¢ (8 1) Bn(k — 2u(k) (A.83)

where function u(n),v(n) and w(n) with n € N defined as:

uw(0)=0 wu(l)=e¢"
w(2) =’ + (k= 1) (=B *r(k - 1,0,-5)
w(n) = (n—k—2umn—-3)+2k—=3n+B8+6un—2)+Bn—k—6—F)u(n—1)

n—2

(A.84)

Here I'(k—1,0, —f3) is the generalized incomplete gamma function I'(k—1,0)—-I'(k—1, —f)

v(0)=0 wv(l)=

o(2) = =5 251 (- 8)H(k — DIk — 1,—2) ~ (k) +1

2(n —k—2)u(n —3)+ (4k — 6n+ B+ 12)u(n — 2) + (6n — 2k — 12 — Blu(n — 1)
2(n—2)

v(n) =

(A.85)

99

A. Appendix

and

w(0) =0 w(l)=1

w(2) =1 + e P41k —1)3(—p)* 2k <F(k —1)-T(k -1, —§)>2

w(3) :%[4 + 1e—ﬁ(k — 1)2(=B) "2 (4P 2 (= B)F + B2F(8 + 2k — 4) (F(k ~-1)-T <k —1, —5>>)2

4 2
+ e PaF(k —1)2(—pB)2> 2 <F(k ~1)-T (k -1, —{j))Z]
w(n) = q(n)
—4(n —3)(n —2)%(4n — B — 2k — 12) As6)
86
with

q(n) =4(n —k — 2)(k —n + 3)%(8 + 2k — 4n + 8)w(n — 4)
+ (k —n+2)[8° +28%(3k — 6n + 16) + 453 (4k* — 13(k + 5)n + 35k + 12n° + 87)
+ 8(2K3 + k*(23 — 9n) + k(n — 3)(14n — 31) — 8(n — 3)%(n — 2))]w(n — 3)
— (B +4 (k> = 3(k+5)n+ Tk + 3n*> + 18) + 4B8(k — 2n 4 5)) *
(58 + 2k* + k(B — 8n + 22) — 28n + 8(n — 5)n + 48) w(n — 2)
+ (n —3)[—=B% — 8k3 + 4k (=38 + 10n — 22) — 2k(—38 + 10n — 20)(—f + 4n — 10)
+46%(3n —7) — 4B(n — 2)(12n — 31) + 64(n — 3)(n — 2)*Jw(n — 1)
(A.87)

A.9. Mathematica code

in figures [A-T]to show our mathematica code with figure[A.T} Original PM with constant
kernel, figure Corrected PM with constant kernel, figure :Epanechnikov kernel,
ﬁgur Silverman/Quartic kernel, figure Corrected PM with cone filter and figure
Original PM with cone filter.

60

A.9. Mathematica code

We definex :=r_i; y:=r_j; z:=r_k; P:=1I (P)orPD;

mop= ci=nt/((k-1) 1% (n-k)1)

n-1= rl(xIntegral of Original PM in 2D casex) =
Integrate[((z72)~(k-3)) % ((1-272)~(n-k)) *2+2, {z, 0, 1}]

{Gamma[—2+ k] Gamma[1l -k +n]

our-- ConditionalExpression , Re[k-n] <18 Re[k] > 2]

Gamma[-1+n]

1= vl(*Variance of Original PM in 2D casex) =
Fullsimplify[((k~2) / (Pi~2)) « (((Pi~2) » (P~2)) / (n~2)) =

Gamma[-2 + k] Gamma[1l -k +n]
Cx -

(((k~2) » (P~2)) / ((k-12)~2))]

Gamma[-1+n]
k? (1-k+n) P2
C(-24K) (~1+K)?n

1= r2(xIntegral of Original PM in 3D casex) =
Integrate[(z~ (3k-9)) » ((1-273)~(n-k)) 3+ (272), {z, 0, 1}]

[Gamma[—2+ k] Gamma[1l -k +n]

our - ConditionalExpression , Re[k-n] <18&&Re[k] > 2]

Gamma[-1+n]

= v2(*Variance of Original PM in 3D casex) =
Fullsimplify[((9« (k~2)) / (16 (Pir2))) « (((16% (Pir2)) * (P*2)) / (9% (n”2))) *

Gamma[-2 + k] Gamma[1 -k +n]
C* -

Ganma (-1 +] (((k~2) * (P~2)) / ((k-2)"2))]
k2 (1fk+n) p2

(—2+k) (71+k)2n

Figure A.1.: Mathematica code of original photon mapping with constant kernel

61

A. Appendix

We definex :=r_i; y:=r_j; z:=r_k; P:=1I (P)orPD;

= ci=nt /((k-1) 1% (n-k)1)

rl(xIntegral of Corrected PM in 2D casex) =
Integrate[((z72)~(k-3)) » ((1-272)~(n-k)) *2+2, {z, 0, 1}]

Gamma[-2 + k] Gamma[1l -k +n]

our-j- ConditionalExpression| , Re[k-n] < 18&Re (k] > 2]

Gamma[-1+n]

/= vl(«Variance of Corrected PM in 2D casex) =

Fullsimplify[(((k-1)~2) / (Pir2)) = (((Pin2) % (P*2)) / (n~2)) *

s Gamma[-2 + k] Gamma[1l -k +n] _ (P"z)]
Gamma[-1+n]
(1-k+n) P2
~(-2+K)n

r2 (xIntegral of Corrected PM in 3D casex) =
Integrate[(z~(3k-9)) » ((1-273)~(n-k)) 3« (2°2), {z, 0, 1}]

Gamma[-2 + k] Gamma[1l -k +n]

= ConditionalExpr‘ession[, Re[k-n] <18& &Re[k] > 2]

Gamma[-1+n]

v2 (xVariance of Corrected PM in 3D casex) =
Fullsimplify[((9+ ((k-1)~2)) /(16 (Pi”2))) =

Gamma[-2 + k] Gamma[1l -k +n]
* -

(36 (122)) » (P~2)) / (% (n"2))) v (Pn2)]

Gamma[-1+n]

(1-k+n) P2
© (~2+k)n

Figure A.2.: Mathematica code of corrected photon mapping with constant kernel

62

A.9. Mathematica code

e ed= (nn/ (((2-2) 1)+ ((k-2-2) 1) » ((n-1) 1))

n!

D aed)r((1-ieKk)t (ken)

pl(* Epanechnikov Inner Integrate E_i”2x) = Integr‘ate[

((1-((x7z)n2))r2) w2 (x~((2#1) -1)) = (((272) - (x*2))~(k-i-1)), {x, @, 2}]
222k Gamma [i] Gamma[2 - i+ k]
[Gamma [2 + k]
Re[i-k] < 28&Re[z] >08&&Im[z] = B&&Re[i] > 0]

our - ConditionalExpression)

p2 (xEpanechnikov outer integrate E_i”2x) = Integrate[

z-2*2k Gamma [i] Gamma[2 - i + k]

2xzx ((1-(272))~(n-k)) » Gamma[2 + k]

]/ (278, {z, 0, 1}]

our-- ConditionalExpression|
(Gamma [i] Gamma[-2 +k] Gamma[2 - i+k] Gamma[1-k+n]) / (Gamma[2+k] Gamma[-1+n]),
Re[k-n] < 1&&Re[k] > 2|

p3 (xEpanechnikov E_i*2x) = FunctionExpand[((cj =4« (¢°2)) / (Pi"2)) *

((e [i1 6 [-2+k] G [2-1i+k] Gamma[1-k+n]) / (Gamma[2 +k] Gamma[-1+n]))]

S 4(-1+i-k) (i-k) (-14n)ne?
C (~2+K) (-1+K) Kk (1+Kk) 22

p4 (xEpanechnikov E_ix) = ((2%¢) /Pi) (((k-1i) »n) / ((k-1) xk))

’ 2(7i+k)na>
- (—1+k)k7r

p5 (xEpanechnikov Var_ix) = FullSimplify[p3 - (p4~2)]
ourr = ((4 (3-K)n (= (~1ek) k (1-d+k) + (-25+k+k2) n) 62) /((-2+Kk) (-1+k)2k2 (1K) 72)]
p9 (xEpanechnikov Sum Var I_ix) = FullSimplify[Sum[p5, {i, 1, (k-1)}]]

2n (-2n+k (2-2k+3n)) ¢?
3(—2+k) (—1+k) k 2

rl(xEpanechnikov Sum EixEjx) =
FullSimplify[Sum[((2+¢) /Pi) » (((k-1) *n) / ((k-1) xk)) *
((2%@) /Pi) » (((k-3) *n) / ((k-12) *k)), {3, 1, k-1}, {i, 1, 5-1}]]

(-2+k) (-1+3k) n?¢?
6 (-1+k) ko

outf«

Figure A.3.: Mathematica code of corrected photon mapping with epanechnikov kernel

63

A. Appendix

2 | 2p.nb

t1(xEpanechnikov Inner Integrate by E_ijx) =
Integrate[(1- (x/2)"2) » (x*(2%i-1)) % ((y*2-x*2)~(3-i-1)), {x, @, y}]

y 223 (—iy?+j2z?) Gamma[i] Gamma[-1i + 3]
ouy- - ConditionalExpression [(N))
2z Gamma |1+ 3]

Re[i] <Re[j] &&Re[y] > @&y = Re[y] &&Re[i] > 0]

t2 (xEpanechnikov Middle Integrate by E_ijx) =
Integrate[(1- (y/2z)~2) xy«* ((z72-y"2)~(k-3-1)) =

y 223 (-iy?+j22) Gamma[i] Gamma[-1i +j]

- s (Y @, 2}]
2 z2Gamma[1l + j]

o
T

ConditionalExpression |
((1-1i+k) z22*Gamma[i] Gamma[-1i+j] Gamma[1-J+k]) / (4Gamma[2+Kk]),
Re[j] <1+Re[k] &Re[z] > 08&&z = Re[z] &&Re[]] > 0]

t3 (xEpanechnikov outer Integrate by E_ijx) = Integrate[(((1-2z72)~(n-k)) /(z"3)) *
(((1-4+k) z>** Gamma[i] Gamma[-1i +j] Gamma[1-3+k]) / (4 Gamma[2+k])), {2, @, 1}]
utf+ J= ConditionalExpression[

(1-1+k) Gamma[i] Gamma[-i+j] Gamma[-2 +k] Gamma[1 - j+k] Gamma[1 -k +n]

B

8Gamma[2 + k] Gamma[-1+n]
Re(k-n] <18&&Re[k] > 2]

t4 («xEpanechnikov E_ij) = FullSimplify][

((ne/((-1)te(F-i-1) 1 (k-3-1) 1 (n-k) 1)) «324 (672) / (Pi*2)) «

(1-4+k) Gamma[i] Gamma[-i+ 3] Gamma[-2 + k] Gamma[1 - j + k] Gamma[1 -k +n]

]

8 Gamma[2 + k] Gamma[-1 +n]
4(1—i+k) (—j+k) (—1+I’l)ﬂtl§2
(72+k) (—1+k)k(1+k) 2

= t5(xEpanechnikov Sum E_ij) = FullSimplify[Sum[r6, {j, 1, k-1}, {i, 1, j-1}]]

(-1+n) ng¢?
2 2
v (*Epanechnikov Varx) = FullSimplify[p9 +2 % t5-2 *ri]

n(2-3k+4n)¢?
3 (-2+k)

Figure A.3.: Mathematica code of corrected photon mapping with epanechnikov kernel

64

A.9. Mathematica code

mn-}= pl(xSilverman inner Integral E_i"2x) = Integrate[

((1-((x72)~2))~8) 2% (x~((2#1) -1)) = (((272) - (x*2))~(k-i-1)), {x, @, 2}]
e . z- 22K Gamma [i] Gamma[4 - i+ k]
our-j- ConditionalExpression | s
Gamma [4 + k]

Re[i-k] <48&Re([z] >08& Im([z] = 0&&Re[i] > O]

;= p2(*Silverman outer Integral E_i"2x) = Integrate[

z2*2k Gamma [i] Gamma[4 - i + k]

2 1-(z~2))~(n-k / ~4 0,1
ezx (2= (22))* (n-K)) » P |/ @a. @ o)
outf+J= ConditionalExpr‘ession[

Gamma [i] Gamma[-2 + k] Gamma[4 - i+ k] Gamma[1l -k +n]

, Re[k-n] < 18&Re (k] > 2]
Gamma [4 + k] Gamma[-1+n]

1= p3(*Silverman E_ir2x) =

FunctionExpand [(((nt/ (((i-1)1) « ((k-i-1)1) « ((n-K)1))) #9# (672)) / (Pir2)) =

Gamma[i] Gamma[-2 + k] Gamma[4 - i + k] Gamma[1l -k + n]

]

Gamma[4 + k] Gamma[-1 +n]
9 (-3+i-k) (-2+i-k) (-1+i-k) (i-k) (-1+n)ng¢?
(—2+k) (—1+k) k (1+k) (2+k> (3+k) 2

outf+ }

pa (xSilverman E_ix) = (3% (k-i+1) % (k-1i) +n) / (Pix ((k*2) -1) xk)

3(-i+k) (1-i+k)no
k(—1+k2)7r

Outf«]=
n-1= p5(*Silverman Var_ix) = FullSimplify[p3 - (p4~2)]

1
outf-]= ——9 (i—k) n
k2 2

((—3+i—k) <72+ifk) (71+ifk)k(—1+n))/((72+k) (71+k) (1+k) (2+k) (3+k>>,

ni-1= p6(xSilverman Sum Var_ix) = FullSimplify[Sum[p5, {i, 1, (k-1)}]]

3n (4n+k (-3+3k (k-2n)+n)) ¢?
5(—2+k) (—1+k)k(1+k) 2

outf+J= =

Figure A.4.: Mathematica code of corrected photon mapping with silverman kernel

65

A. Appendix

2 | Silverman.nb

[-}= rl(xSilverman inner Integrate by E_ijx) =
Integrate[((1- (x/2z)72)"2) » (x~(2%i-1)) % ((y*2-x~2)~(j-i-1)), {x, @, y}]
J ConditionalExpression[

(y#23 (i (1+1) y*-21 (1+3) y*22+3 (1+3) 2*) Gamma 1] Gamma[-i+3]) /
(2z*Gamma[2 +3j]), Re[i] < Re[j] &Re[y] > @&&Y == Re[y] &Re[i] > 0]

o

= r2(*xSilverman Middle Integrate by E_ijx) =
Integrate[((1- (y/2z)~2)"2) xyx ((272-y~2)~(k-3-1)) «
((y>?3 (i (1+4) y*-24 (1+5) y*22+5 (1+3) 2*) Gamma[i] Gamma[-i +3]) /
(22*Gamma[2+3])), {y, @, z}]
utf+ = ConditionalExpr‘ession[
((-3+i-k) (-2+i-k)z??*Gamma[i] Gamma[-i+J] Gamma[2-J+k]) / (4 Gamma[4 +K]),
Re[j] < Re[k] &&Re[z] > @&z = Re[z] &&Re[]] > 0]
r3(xSilverman Outer Integrate by E_ijx) =
Integrate[(((1-2z~2)~(n-k)) /(273)) » (((-3+i-k) (-2+i-k) 222k
Gamma[i] Gamma[-i+j] Gamma[2-j+k]) / (4 Gamma[4 +k])), {z, @, 1}]
utf« J= ConditionalExpr‘ession[
((-3+i-k) (-2+1i-k) Gamma[i] Gamma[-i+ 3] Gamma[-2+k] Gamma[2 -] + k]
Gamma[1-k+n]) /(8Gamma[4 +k] Gamma[-1+n]), Re[k-n] < 18&Re[k] > 2|
)= r4(xSilverman E_ij+) = FullSimplify|
((nr/((E-2)rx(F-i-2)re(k-3-2) 1% (n-k)1))*«72% (¢~2) / (Pi"2)) »
(((-3+i-k) (-2+1i-k) Gamma[i] Gamma[-i+3j] Gamma[-2 +k]

Gamma[2 - j + k] Gamma[1-k+n]) / (8 Gamma[4 + k] Gamma[-1+n]))]

ourj= (9 (-3+i-k) (-2+1i-k) ¢*n! Gamma[-2+k] Gamma[2-3+k]) /
(7* Gamma [4 + k] Gamma[-J + k] Gamma[-1+n])
m-1= r5(xSilverman Sum E_ijx) = FullSimplify[Sum[r7, {j, 1, k-1}, {i, 1, j-1}]]
(-1+n) ng¢?
272

()= tl(xSilverman E_j) = (3x¢ % (k-j+1) # (k-3) «n) / (Pix ((k~2) -1) xk)

‘ 3(7j+k) (1—j+k)n(b
: K (-1+K2) 7

Figure A.4.: Mathematica code of corrected photon mapping with silverman kernel

66

A.9. Mathematica code

Silverman.nb | 3

)= t2(*Silverman Sum EixEjx) = FullSimplify[Sum[p4 »t1, {j, 1, k-1}, {i, 1, j-1}]]

(-2+k) (-3+k+5k?) n?¢?
10k (-1+Kk?) 2

- p= V(%*Silverman Vars) = FullSimplify[p6 + 2 » r5 -2 x t2]

n(1-5k+9n)¢?
o 5 (—2+k) 2

Figure A.4.: Mathematica code of corrected photon mapping with silverman kernel

67

A. Appendix

mn-j= rl(xCone filter inner Integrate by E_i’2x) =

Integrate[((1- (x/ (s%2)))"2) % (x*(2%i-1)) % ((z*2-x"2)~(k-i-1)), {x, @, z}]

2s Gamma| 2+ itk s2) G N X
z-2+2k | _ [1 N (i+k s?) Gamma[i] Gamma[-i + k]
Gamma[%« Gamma [1+k]
out[J ConditionalExpression[. ,
2s?

Re[i] <Re[k] & Re[z] > 0&&z == Re[z] &&Re[i] > 0]

n)= r2(xCone filter Outer Integrate by E_i’2«) = Integrate[(((1-2z"2)~(n-k))/(2*3)) +

1 .
2's Gamma[Z+i i+k s?) G i .
z72+2k (— 4 Jdsks?) Gamna(d) | Gopma g 4 k]

Gamma[:—ok] Gamma [1+k]
e > {2, 0, 1}]
our)= ConditionalExpression |
25 Ganma| 21 (i+k s2) Gamma[i] .
Gamma [-2 + k] (— " Gamma[-1i+k] Gamma[l -k +n]
Gamma [?k] Gamma [1+k]

4s?2Gamma[-1+n]
Re(k-n] <18&&Re[k] > 2]

n-= r3(«Cone filter E_i2x) = FullSimplify|[

4% ((6/ (Pix(1-(2/(3%s)))))2) *(nt/((i-2) 1% (k-i-1) 1w (n-K)1))«

1.4 : :
Gamma -2 + k] (-“Gmma[""] 4 Loks’) Gamma(d)] Gamma [-1 + k] Gamma[1 -k +n]

Gamma [:—+k] Gamma [1+k]

]

4 s2Gamma[-1 +n]

1 .
ok <2 2sGamma| 2+i| Gamma[-2+k)
9 (-1+n)ng? |k :
2k-3k*+k Gamma[i]Gamma[z‘k]
outf+J=
n? (2-35s)?

= r4(xCone filter E_ix) = (¢/ (Pix (1-(2/(3*s))))) *n=

((2/(k-1)) - ((Gamma[i+ (1/2)] « Gamma[k -1]) / (s » Gamma[i] » Gamma [k + (1/2)])))

1 Gamma | 2+1| Gamma[-1+k]
ne | — -

-1+k s Gamma[i] Gamma[;—d(]
Outf«]= 2
7 (1 - 35)
n-}= r5(xCone filter Var_ix) = FullSimplify[rB - (r'4"2)]
9n ¢? (’1 + n) icks? ZSGamma[%dﬂ Gamma[-2+k] | n s Gamma l’i} Ganma (-1+k) | 2
K3 KK Gamma (i) Gamma[g‘k} “1+k Gamma 1] Gamma[:—¢k]
e m (2-3s)?

Figure A.5.: Mathematica code of corrected photon mapping with cone filter

68

A.9. Mathematica code

2 | Cone Filter new.nb

1= r6(«Cone filter Sum Var_ix) = FullSimplify[sum[rs, {i, 1, (k-1)}]]

o
272 (2-35)?

outf+]J=

3(-1+k) (-1+n)+8(-1+k-n)s+6 (1-k+n)s? 1
3n¢? - 6nGamma[-1+k]?
(-2+k) (-1+K) Gamma[§+k]2

DifferenceRoot [Function|[{y, n}, {(1+2n)%y[A] + (-1-47n-8n%) y[1+n] +

anty(2+n] =0, y[1] =0, y[2] = %}H k]

m-j= ul(xCone filter Inner Integrate by E_ijx) =
Integrate[(1- (x/ (s*2))) » (x~(2%i-1)) % ((y*2-x*2)*(3-i-1)), {x, 0, y}]

ouy)= ConditionalExpression [

y 2423 (—yGamma[§+i} Gamma[j] + s z Gamma[i] Gamma[%+j]) Gamma[-i+ 3]

B

2szGamma[j] Gamma[§+j}

Re[i] <Re[j] &&Re[y] > 0&&Yy == Re[y] & Re[i] > 0}
m-)= u2(x*Middle Integrate by E_ij*) =

FullSimplify[Integrate[(1- (y/ (s*2))) *y* ((272-y"2)~(k-j-1)) »

y-2+23 (—yGamma[%*-i] Gamma[j] +s z Gamma[i] Gamma[iafj]) Gamma[-1i+3]

s> (Y, 0, 2}]]
2's zGamma[j] Gamma[%ﬁj]

our - ConditionalExpression [

1 1
222K Gamma[-1+ 3] |Gamma| =~ +1i] Gamma[Jj] Gamma[1 + j] Gamma k] Gamma |~ + k| +
2 2

1, 1. . . 1.
s Gamma [= + J | [— Gamma |~ +i] Gamma[J] + Gamma[i] Gamma [~ + j| | Gamma[k] +
2 2 2

Gamma [-j +k]]/

1 1
452 Gamma [j] Gamma |~ + j| Gamma[k] Gamma |~ + k| Gamma[1 + k]],
2 2

1
s Gamma [i] Gamma[j] Gamma[7+k] Gamma [1 + k]
2

Re[j] <Re[k] &&Re[z] > 08&&z = Re[z] &Re[]] > 0|

Figure A.5.: Mathematica code of corrected photon mapping with cone filter

69

A. Appendix

Cone Filter new.nb | 3

= u3(xCone filter Outer Integrate by E_ijx) =

Integrate[(((1-2z~2)~(n-k)) / (273)) * (z‘z“z"Gamma[—i+j]
. 1. 1. . 1
(s Gamma[i] Gamma[; +3] (—Gamma[; +3j] Gamma[k] + s Gamma[3j] Gamma[; +k]]
Gamma[1 + k] +Gamma[1 +1i] Gamma[j] Gamma [k]
2

. 1 1 ,
(Gamma[1+J] Gamma[;+k] —sGamma[;+J] Gamma[1+k]]] Gamma[—]+k])/

1 1
(4s“ (31 Ganma - + 5] Ganma k] Ganma ~ +K] 6 [1+k1),(z,e,1}]

our-- ConditionalExpression [

1 1
Gamma[-1i+3j] Gamma[-2 + k] (sGamma[i] Gamma [~ + 3 | [—Gamma[—afj} Gamma [k] +
2 2

) 1
s Gamma 3] Gamma| = + k|
2

1
Gamma[1 + k] + Gamma |~ + i| Gamma[]]
2

Gamma [k]

1 1
Gamma [1 + j] Gamma[f+k] —sGamma[erj] Gamma[1+k]]]
2 2

Gamma[-Jj + k] Gamma[1l -k +n]

1
/ (8 s? Gamma [j] Gamma | — + j | Gamma (k]
2

1
Gamma [= + k| Gamma [1 + k] Gamma[—1+n]], Re(k-n] < 18&Re[k] > 2]
2

Figure A.5.: Mathematica code of corrected photon mapping with cone filter

70

A.9. Mathematica code

4 | Cone Filter new.nb

1= ud(xCone filter E_ijx) =
Fullsimplify[((nt/ ((i-1)t# (J-i-1) 1« (k=-3-1) 1« (n-k) 1)) 8« (72))/
((Pin2) « ((1-(2/ (3%5)))"2)) «

[Gamma[—i +3] Gamma[-2 +k] (s Gamma [1i] Gamma[i +3]

1 . 1 1
{—Gamma[— +3] Gamma[k] + s Gamma[j] Gamma [= + k] | Gamma[1 + k] + Gamma [= + 1]
2 2 2

1 1
G [j1G k] (" [1+3]G [—+k]—sGamma[;+j]Gamma[1+k]))
2
1
Gamma[-7j + k] Gamma[l—k+n])/ [8 s? Gamma [j] Gamma[= + j] Gamma [k]
2
1
Gamma [= + k| Gamma [1 + k] Gamma[—1+n]]]
2

outf+] [9 22 (“143+K) 92 0y Gamma[-2 + k]

1 1
Gamma| = + 1] Gamma[j] Gamma[1+ 3] Gamma (k] Gamma[= + k] +
2 2

1
s Gamma [= + j] Gamma [k] +
2

1 1
Gamma [~ + 1| Gamma[Jj] + Gamma[i] Gamma |~ + j|
2 2

Gamma[1+k]]]/

(71'3 (2- 3s)ZGamma[i] Gamma [2 j] Gamma[2 k] Gamma[1 + k] Gamma[-1 + n])

1
s Gamma (1] Gamma[j] Gamma[= + k]
2

in-}= uS(xCone filter Sum E_ijx) = FullSimplify[Sum[u4, {j, 1, k-1}, {i, 1, j-1}]]

(-1+n) ng?
outfe): —————
2 72

m-1- tl(«Cone filter E_j*) = (4>/ (Pi* (1— (2/ (3*5))))) *N %

((1/ (k-1)) - ((Gamma[j+ (1/2)] « Gamma[k - 1]) / (s » Gamma[j] « Gamma [k + (1/2)])))

no [_ Gamma | 2+5| Gamma[-1+k]
-1+k s Gamma[j] Gamma[}k]
outf+J=
7 (1 _ L)
3s

n-j= t2(xCone filter Sum EixEj {i,1,j-1}%) = FullSimplify[Sum[r4 «t1, {i, 1, j-1}]]

1 1
outf+J= [3 (-1+3) n*¢? (—Gamma[—+j] Gamma [k] + s Gamma [j] Gamma[—+k])
2 2

|/

1 1
(—ZGamma[— + 3| Gamma (k] + 3 s Gamma[j] Gamma| = + k|
2 2

((—1+k)zn2 (2—35)2Gamma[j]zGamma[l+k]z
2

Figure A.5.: Mathematica code of corrected photon mapping with cone filter

71

A. Appendix

Cone Filter new.nb | 5

= t3(xCone filter Sum EixEjx) = FullSimplify[Sum[t2, {j, 1, k-1}]]

1
ouffe}r ——————
27% (2-35)?
“2+Kk)s (-4+3
3n? ¢? (-2+k) s (-4+35) + 1 4Gamma[—1+k]2(—Differ‘enceRoot[Function[
-1+k Gamma[%ﬁ(]z

(v, 0), {(1+20)%y[0) + (-1-40-802) y[1+n] +402y[2+0] =0, y[1] =0,

y[2] = ~}]] (k] + DifferenceRoot [Function|[{y, n}, {(1+n) (1+20)2y(A] +

JT
4
s

(-1-5n-802-80%) y[1+n] +40*y[2+0] =0, y[1] =0, y[2] = ;}]][k])

1= V(xCone filter Corrected PM Varx) = FullSimplify[ré6 + 2 u5-2xt3]

1
outf+]r ——————
27 (2-35s)?
-7+8k) (-1 24 (-1+k- 18 (1-k 2
n¢? (-7+8K) (-2+n) +24 (-1+k-n)s+18(tn) s + 1 6nGamma[-1+k]?
-2+k Gamma [2 + k|
2
(Differencekoot[Function[{y, at, {(1+20)%y[A) + (-1-4n-8n2) y[1+A] +
402y[2+0] =0, y[1] =0, y[2] = ;1}]] (k] -
4 DifferenceRoot [Function|{y, A}, {(1+f) (1+2n)2y[A] + (-1-5n-8n2-81n3)
. o 23 . N . o 7t
YI1+n] +4n3y[2+0] =0, y[1] =0, y[2] = ;}]] [k]]
mp= s =1
outf-]= 1
1= vt (*Triangle Vars) = FullSimplify[v]
2 2 -2+k
1

6nGamma[-1+k]? (DifferenceRoot[Function[{y, ak, {(1+20)%y(A] +
Gamma[§+k]2

(-1-4n-80%) y(1+n] +4n?y(2+0] =@, y(1] =@, y(2] = ~}]] (K] -
4
4 pifferenceRoot [Function|{y, n}, {(1+n) (1+2r:1)ZY[r:1] +(-1-5n-8n*-8n°)

yll+n]+4n*y[2+0] =0, y[1] =0, y[2] = }}]] [k]]

Figure A.5.: Mathematica code of corrected photon mapping with cone filter

72

A.9. Mathematica code

n4= rl(xCone filter Integrate by E_k"2x) =
Integrate[(z~(2xk-5)) » ((1- (z°2))~(n-k)), {z, @, 1}]

[Gamma[—2+ k] Gamma [l -k +n]

ou4)= ConditionalExpression , Re[k-n] <18 &Re[k] > 2]

2Gamma[-1+n]
nsi= P2 («Cone filter E_k~2x) = FullSimplify[2 (nt/ ((k-1) 1t (n-k)1)) »

Gamma[-2 + k] Gamma[1l -k +n]

((((1-(2/s)) »0) /(Pix (1-(2/(3%5)))))"2) «]

2Gamma[-1+n]

9 (-1+n)n (-1+s)¢?

outfs}

(—2+k) (—1+k) n? (2—35)2

o= r3(«Cone filter E_kx) = ((3+s5-3) » ((¢+n) /Pi))/((3+s5-2)« (k-1))

n(—3+35)¢
(-1+k) 7w (-2+35)

out[9)=

niiz= P4 («Cone filter Var_ks) = FullSimplify[r2- (r372)]

9n (1-k+n) (-1+5)%¢?

out[12)=

(-2+k) (-1+k)?n? (2-35)2
nii1= ul(xCone filter Inner Integrate by E_ikx) =

Integrate[(1- (x/ (s%2))) » (x*(2%i-1)) % ((z*2-x*2)~(k-i-1)), {x, 0, z}]

ourii- ConditionalExpression |

-2+2k

1 1
z —Gamma[7+i]Gamma[k]+sGamma[i]Gamma[7+k]
2 2

Gamma[—i+k]]/

[ZSGamma[k] Gamma[l + k]], Re[i] < Re[k] &&Re[z] > 08&z = Re[z] &Re[i] > 0|
2

ni3= u2(xCone filter Outer Integrate by E_ikx) =

Integrate[(((1- (z72))~(n-k))/(273)) =

1 1
-2+2k | _ @ - i1 Kk G i1 G —+k G _3 k]
[[z ([2+1] [k] +s [i] [2+]| Gamma[-i + k] /
1
(ZsGamma[k] Gamma[;+k]]], {z, 0, 1}]

ours= ConditionalExpression |

Gamma [i] Gamma[§+i]Gamma[—2+k]

2-3k+k2 sGamma[§+k]

Gamma [-1 +k] Gamma[l—k-rn]}/

(4Gamma[—1+n]), Re[k-n] < 1&&Re[k] > 2}

Figure A.6.: Mathematica code of original photon mapping with cone filter

73

A. Appendix

2 | Cone Filter PM.nb

inis= u3 (xCone filter E_ikx) =
Fullsimplify[((nt/ ((i-12)t« (k=i-1) 1« (n-k) 1)) «4« (672) « (1- (1/5s)))/

((Pir2) « ((1-(2/(3%5s)))"2)) *
(([:?";m:[jiz_[r [§+i]' [—2+k])/[sGamma[%+k]]]

Gamma[-1i +k] Gamma[l-k+n])/ (4Gamma[-1+n]))]

s Gamma[iafi] Gamma[-2 + k]

9(-1+n)n(-1+s)¢?

JAREY

in19)= u4 (xCone filter Sum E_ikx) = FullSimplify[Sum[u3, {i, 1, k-1}]]

2-3k+k? Gamma [i] Gamma[§+k}

3(-1+n)n(-1+s)¢?
(-2+k) 7 (-2+35)

out[19]=
2= t1(xCone filter E_ix) = (¢/ (Pix (1-(2/(3%s))))) *n«»

((1/ (xk-1)) - ((Gamma[i+ (1/2)] * Gamma[k -1]) / (s + Gamma[i] Gamma [k + (1/2)])))

1 .
Gamma | 2+i| Gamma[-1+k]
né [1 \]

1+k s Gamma [i] Gamma[;—«]
out[22]=
P (1 _ L)
3s

in25)= t2 (xCone filter Sum EixEkx) = FullSimplify[Sum[r3«t1, {i, 1, k-1}]]

3n2 (-1+s) ¢?
(—1+k) 2 (—2+3S)

out[25]=
inzer= vl (xCone filter Var_kx) = FullSimplify[r4d + 2 xu4 -2 xt2]

out[26]= —((3 (—1+k—n) n (71+S) (1—3S+k (—4+65)) ¢2)/((72+k) (—1+k)2)'rZ (2—35)2))

Figure A.6.: Mathematica code of original photon mapping with cone filter

74

A.9. Mathematica code

Cone Filter PM.nb | 3

ni27;= v2 (*Cone filter Corrected PM Varx) =

1 1
n ¢?

272 (2-3s)? -2+k

((-7+8k) (-1+n) +24 (-1+k-n) s+18 (1-k+n) s?) +

1 2 (s . - eI
6 nGamma[-1+k] (lefer‘enceRoot[Functlon[{y, 0}, {(1+20)%y[n] +

Gamma[fa-k]
(-1-40-80%) y[1+0] +4A2y[2+0] =0, y[1] =0, y[2] = ~}]] [k] -
a4

4 pifferenceRoot [Function[{y, A}, {(1+7) (1+2a)?y[A] +

(-1-50-8n2-80%) y[1+n] +4n*y[2+0] =0, y[1] =0, y[2] = 1}]][k])
4

o
272 (2-35)?

out[27)=

! ((-7+8k) (-1+n) +24 (-1+k-n)s+18 (1-k+n) s?) + !

-2+k Gamma[§+k]

n ¢?

2

6nGamma[-1+k]? (Dif'Fer‘enceRoot[Function[{y, 0y, {(1+2r:1)2ym] +
(-1-40-80%) y(1+n] +4n2y[2+n] =0, y[1] =0, y[2] = —}]] (k] -
4
4 pifferenceRoot [Function[{y, n}, {(1+#) (1+20)%y(a] +

(-1-50-802-80%) y[1+n] +4n’y[2+0] =0, y[1] =0, y[2] = E}]][k])

ni2s)= var (xCone filter Original PM Varx) = FullSimplify[vl +v2]

1

oues): — N ¢

272 (2-35)?

2

1-13n+k (8-k-8k?+46n-23kn+8k*n+12 (1+2k) (-1+k-n)s+18k (1-k+n) s?)
(—2+k) <71+k)2

+

—————————6nGamma[-1+k]? [Differ‘enceRoot[Function[{y, Ak, {(1+20)%y(A] +
Gamma[§+k]2

(-1-4n-80%) y[1+0] +402y(2+0] =0, y[1] =0, y[2] = —}]] (k] -

4 pifferenceRoot [Function|[{y, n}, {(1+n) (1+20)%y(n] +

(-1-5n-802-80%) y[1+n] +40°y[2+0] =0, y[1] =0, y[2] = ;l}]][k])

Figure A.6.: Mathematica code of original photon mapping with cone filter

75

	Introduction
	Computer graphics
	Rendering
	Local illumination
	Global illumination
	Photon mapping
	Survey of the previous work
	Mathematical and statistical prerequisites
	Integral
	Variance
	Order Statistics

	Application of Order Statistics to Photon Mapping

	Theoretical study
	Constant kernel/No filter
	Original PM with constant kernel
	Corrected PM with constant kernel

	Epanechnikov kernel
	Silverman/Quartic kernel
	Cone filter
	Triangle kernel
	Corrected photon mapping with cone filter
	Original photon mapping with cone filter

	Gaussian filter
	Specialized differential filter

	Empirical study
	Signal to noise ratio
	Pseudo signal to noise ratio

	Conclusions and Future Work
	Conclusions
	Future Works

	List of Figures
	Bibliography
	Appendix
	Prerequisites
	Original PM with constant kernel
	Corrected PM with constant kernel
	Epanechnikov kernel
	Silverman/Quartic kernel
	Corrected photon mapping with cone filter
	Original photon mapping with cone filter
	Gaussian filter
	Mathematica code

