
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Performance improvement

of pre-defined HMR

workflows in DRIHM

Maximilian Höb

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis

Performance improvement

of pre-defined HMR

workflows in DRIHM

Maximilian Höb

Supervision: Prof. Dr. Dieter Kranzlmüller

Advisor: Dr. Nils gentschen Felde
Dr. Michael Schiffers

Date: August 25th, 2015

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 25. August 2015

. .
(Unterschrift des Kandidaten)

Abstract

Hydro-meteorological calculations are one of the most complex computational tasks in high
performance computing today. One of the biggest challenges for this science department is to
predict flood events and thus to contribute to the protection of the population. DRIHM (Dis-
tributed Research Infrastructure for Hydro-Meteorology) is an EU-funded research project to
combine Hydro-Metrological Research (HMR) and Information and Communication Tech-
nology (ICT) objectives in order to model weather events and its influence on suburban
regions.

This thesis gives an understanding of the project, especially the requirements of the hydro-
meteorological science and its embedment in a supercomputing infrastructure. Several HMR
models are integrated into DRIHM. They can be configured and executed in the DRIHM
front end, a web portal, and directly in the back end via command line. However the back end
offers no possibility to compose models to a workflow, in contrast to the portal, which allows
compositions of up to three models.These workflows lead to performance problems when
submitted to grid resources because they are no real workflows but single model computations
in the back end. It will be pointed out that this chaining in the portal is very inefficient and
therefore very expensive with regard to computing time and transferred data.

To prevent increasing costs, lost time due to unnecessary data transfers and avoidable
queueing time a concept of a complete workflow in one submission was developed. Adapted
from this concept, three demonstration chains (demoChains) were added to the model repos-
itory. The first one is modularized and can handle all possible compositions of HMR models.
Therefore configuration and input files were created to guarantee a smooth execution of ev-
ery given workflow. The two other chains are pre-defined and cover the most important
models within DRIHM.

The thesis’ concept offers a framework to improve the performance of workflow executions
on any back end resource. Integrated into the web portal, it could give inexperienced users
a better understanding of the possibilities of chaining models within the DRIHM project.

vii

Kurzfassung

Hydrometeorologische Berechnungen sind eine der komplexesten Berechnungsaufgaben im
heutigen High Performance Computing. Eine der größten Herausforderungen für diese Wis-
senschaft ist es, Hochwasserereignisse vorherzusagen und damit einen Beitrag zum Schutz der
Bevölkerung zu liefern. DRIHM (Distributed Research Infrastructure for Hydro-Meteoro-
logy) ist ein EU-finanziertes Forschungsprojekt, welches die Ziele der Hydro-Metrologischen
Forschung (HMR) und der Informations- und Kommunikationstechnologie (ICT) kombiniert,
um Wetterereignisse und deren Einfluss auf suburbane Regionen zu modellieren.

Diese Arbeit stellt das Projekt, vor allem im Hinblick auf die Anforderungen der hy-
drometeorologischen Wissenschaft an und ihrer Einbettung in eine Höchstleistungsrechner-
Infrastruktur vor. Mehrere HMR-Modelle sind in DRIHM integriert. Sie können im DRIHM
Frontend, einem Web-Portal konfiguriert und ausgeführt werden, aber auch direkt im Back-
end über die Kommandozeile. Allerdings bietet das Backend keine Möglichkeit, Modelle zu
einem Workflow zu kombinieren. Im Gegensatz dazu ermöglicht das Portal das Verketten
von bis zu drei Modellen. Aber die Abarbeitung dieser Kompositionen im Backend führt zu
Leistungsproblemen, da es sich hier nicht um echte Workflows handelt, sondern um einzelne
Modelle, die an die Grid-Ressourcen geschickt werden. Es wird herausgestellt, dass diese
Verkettung im Portal sehr ineffizient ist und damit sehr teuer hinsichtlich der Rechenzeit
und der übertragenen Daten.

Um steigenden Kosten, verlorener Zeit durch unnötige Datenübertragungen und vermei-
dbaren Wartezeiten vorzubeugen wurde ein Konzept eines kompletten Workflows als ein
Modell entwickelt. Auf diesem Konzept basierend wurden drei Demonstrationsketten (de-
moChains) in die Modelle aufgenommen. Die erste ist eine modularisierte, die alle möglichen
Zusammensetzungen der HMR-Modelle verarbeiten kann. Dafür wurden Konfigurations-
und Inputdateien erstellt um eine reibungslose Abarbeitung jeglicher, gegebener Workflows
zu gewährleisten. Die beiden anderen Ketten sind vordefiniert und decken die wichtigsten
Modelle innerhalb DRIHM ab.

Das Konzept der Arbeit bietet eine Möglichkeit, um die Leistung der Workflow-Ausführung-
en auf jeder Backend-Ressource zu verbessern. Integriert in das Web-Portal könnte es uner-
fahrenen Benutzern ein besseres Verständnis der Möglichkeiten zur Verkettung von Modellen
innerhalb des DRIHM-Projekts geben.

viii

Contents

1 Introduction 1

2 Related Work 5
2.1 DRIHM project . 5

2.1.1 Hydro-Meteorological Research (HMR) 5
2.1.2 Integrating HMR resources in grid resources and HPC 6
2.1.3 Hydro-Meteorological models . 7

2.2 Executing models in DRIHM . 9
2.2.1 DRIHM front end: the portal . 10
2.2.2 DRIHM back end: the bash script start.sh 12
2.2.3 Grid environment . 14

2.3 Problem conclusion . 15

3 Efficient chaining of models in DRIHM 19
3.1 Concept . 19

3.1.1 Preparations . 20
3.2 Implementation . 21

3.2.1 Workflow as one model . 21
3.2.2 Loop for model executions . 22
3.2.3 The modularized demoChain . 25

3.3 Pre-defined model chains in DRIHM . 25
3.4 Results summary . 27

4 Summary 31
4.1 Evaluation . 31
4.2 Summary and outlook . 34

List of Figures 37

Bibliography 39

demoChain source code 41
1 demoChain01 . 41
2 demoChain02 . 46
3 demoChain03 . 47

ix

1 Introduction

Water passing rivers, landslides, floods in urban areas, destruction of infrastructure and risk
of human life: people have to deal with all these threats in all regions frequently and, due
to changes in the climate, such extreme weather events become also more intense. One of
the biggest challenges for Hydro-Meteorology Research (HMR) is to predict such events and
thus to contribute to the protection of the population.

Hydro-meteorological calculations are one of the most complex computational tasks in
High Performance Computing (HPC). Small computer systems do not have any possibility
to calculate such models accurately and promptly. Computing a weather event faster than
real-time can save lives and beware of massive destruction. Therefore, calculations in today’s
research are distributed to large computer centers mostly integrated in a grid infrastructure.
The present and distributed resources need to be connected efficiently. Such an infrastructure
is currently being investigated in the EU project DRIHM, Distributed Research Infrastructure
for Hydro-Meteorology. In this urgent and grid computing project, several research centers
all over Europe are involved. Appliance and monitoring of the project’s infrastructure is
assumed by the Munich Network Management Team at the Ludwig-Maximilians-University
of Munich (LMU) together with the Leibniz Supercomputing Centre (LRZ).

There are currently eight HMR models realized in DRIHM used to calculate the different
factors and influences in the development of a flooding. From the clouds textures, the
therefrom resulting rain, the discharge of the rivers and in the polders, up to the estimated
water levels in the cities, all those factors can be simulated. The chaining of these models
and the definition of the underlying basic data happens inside the DRIHM-project in a web
portal, which is realized as an abstract level over the real execution layer and which provides
thereby any certified user an ergonomic environment for such a submission.

As shown later in this thesis models can be chained in several ways based on two basic
model layers and one ensemble generator. Creating such a workflow of HMR models is
currently only possible in the portal, as shown in figure 1.1. These workflow creations are
actually several single model executions which only simulate a real model chain. Of course,
this consecutive execution results in a correct output, but as shown later it is inefficient and
consequentially expensive.

At the back end of the portal the settings made by the user are processed in several
steps. Miscellaneous preprocessing system calculations are provided on distributed clusters.
For this purpose an infrastructure has been established within DRIHM which automatically
creates its own environment on each cluster and ensures that all the models can access the
libraries and binaries needed to run correctly. Therefore various libraries were compiled
to replace wrong versioned or missing system libraries. Generally, clusters are used by
many various users for many different purposes. It is therefore impossible to install all
needed binaries and libraries on all these clusters, which would be necessary if they were
not transferred. Although calculations within DRIHM estimate an impact on nature and
population it is not the aim of any research to build various clusters with special requirements
only for one project. Also economic reasons play a big role by evaluating the direction of

1

1 Introduction

HMR ICT

DRIHM

Portal

GUI Console

single model

workflow

management layer

execution layer

Figure 1.1: Problem statement in the back end of the DRIHM portal

the development.

But not only the clusters are different. The models within DRIHM are very sensitive with
regard to the local environment, the used libraries or binaries and their versions. This needs
always to be considered when setting up the various environment variables. All necessary
files are transferred to the cluster before each calculation. The setup of the environment,
the verification of the model call, the execution of the model and the backup of the output
is monitored and executed by a bash script called start.sh, which forms the basis of every
model run on each cluster.

Start.sh can be called not only from the portal, but also directly from command line
which is especially helpful while debugging models. Therefore, the result of this thesis makes
a valuable contribution and allows developers to quickly perform a complete model check
and thus expose all effects to the models. Especially in a project in which many different
institutions participate and design models it is important to test new files regarding all
effects to other models and ensure that no interference is present throughout the entire
model framework.

To design such an instrument as simple as possible pre-defined model chains are imple-
mented into the DRIHM project within this thesis. These chains will help to determine if
there are problems with new releases of models and especially in which part of the execution
the failure comes up. On the other side, the pre-defined chains can be implemented into the
DRIHM portal as a demonstration to new and inexperienced users showing the potential
of the whole project namely to compose huge model workflows with only few clicks. To
design such an appropriate realization, a modularized chain will be added to the DRIHM
models, which can run every single model and almost all possible model combinations with
only specifying the names of the models. Based on this modularized chain two different
pre-defined chains covering the most used DRIHM models are also added.

Structure of the thesis In chapter 2 of this thesis the aim of the DRIHM project is dis-
closed, namely to build a bridge between HMR on the one hand and Information and Com-

2

munication Technology (ICT) on the other. In section 2.1 it is shown which HMR models
exist in this project, which computational requirements need to be provided and how DRIHM
overcomes the existing problems in the availability of computational power. It is also de-
scribed that models can be combined in workflows but not in every sequence. All available
models and their possible compositions are presented in section 2.1.3.

Section 2.2 specifies how models and workflows can be started: from the scientists view
with the DRIHM front end (section 2.2.1) and from the developers view directly by using
the command line on a cluster (section 2.2.2). The chapter finishes in section 2.3 with an
introduction of the problem statement.

In chapter 3 a concept is developed, which integrates a workflow as a stand-alone model
into the DRIHM model infrastructure and improves the actual workflow procedure. The
idea and the setup of the execution environment for this enhancement is presented in sec-
tion 3.1. The implementation of the so-called demoChain (demonstration chain) is presented
in section 3.2 and detailed in section 3.2.1, where the developed modularized workflow as
one DRIHM model is introduced. The main element of the demoChain, a loop for the model
executions, is explained in section 3.2.2. Finally, two pre-defined demoChains are presented
in section 3.3. The chapter finishes with a summary of the attained results (section 3.4).

Chapter 4 summarizes the developed concept and evaluates its performance in section 4.1.
Afterwards, in section 4.2 the findings of this thesis are discussed and an outlook is given,
focused on the compatibility with the whole DRIHM framework now and in future.

3

2 Related Work

DRIHM is an EU-funded research project to combine HMR and ICT objectives to model
weather events and its influence on suburban regions. This chapter gives an understanding
of the project in section 2.1, especially of the requirements of the hydro-meteorological
science and its embedment in a supercomputing infrastructure. The integration of HMR
computations in present grid resources is detailed in section 2.1.2. All HMR models, which
are included into the DRIHM project, are outlined in section 2.1.3

In section 2.2 it is explained how these models and also complete workflows can be config-
ured and executed in the DRIHM front end (section 2.2.1) and in the back end via command
line (section 2.2.2). Section 2.2.3 provides an insight into the used grid environment.

It will be pointed out that a composition of models as one workflow is only possible in
the DRIHM portal and not within the back end, and so present the problem statement of
this thesis in detail in section 2.3, showing particularly that the chaining in the portal is
inefficient and expensive with regard to the computing time and transferred data.

2.1 DRIHM project

The DRIHM project faces up to the major problems in HMR: composing different models
to workflows and the availability of HPC systems [DCG+14]. Bringing both together could
push the whole scientific branch to a higher level. Gaining more computing power opens
new possibilities to current and to new scientist using HPC systems. Before DRIHM only a
few HMR scientist were able to compose different HMR models on a powerful resource. It
was and is a big barrier for many institutes to run huge and complex simulations.

Of course, in the last years the number of HPC systems all over the world increased very
fast. But with this development also the data volume increased rapidly, since HMR models
usually handle a big amount of data. More computing possibilities always invite scientists
to increase the detailing in persistent models. Particularly in HMR, where big landscapes
are modeled, the grid spacing of the domains can always be reduced. And this trend will
increase in the next years.

The newly created supercomputing centers will reach their upper load limit at a particular
time. At this point, the DRIHM project starts to build a bridge between existing grid
computing systems and the desire for more computational power on the side of the scientists
across all HMR disciplines. The project wants to set new standards of HMR in Europe
and possibly worldwide by establishing a new collaboration framework between HMR and
ICT scientists and by making a big step beyond the state of the art in composing weather
forecasting models [BPQ+12].

2.1.1 Hydro-Meteorological Research (HMR)

The hydro-meteorological science has made improvements in modeling over the last years,
e.g. new models to collect and analyze data were released. But the huge quantity and the

5

2 Related Work

certificated user

Computing
Resources

NGINGI

DRIHM
portal

HMR
data

...
(EGI, PRACE, others)

Figure 2.1: The modeled DRIHM infrastructure, based on [DRI15d]

complexity of datasets are stumbling blocks and change the handling of data. ”As a matter
of fact, observational data, HM models and ICT [..] resources are not generally available
at the same time and are often distributed in an uneven manner between different research
institutes, HM services and operational agencies” [BPQ+12].

But the data and the resources must be available in real-time to make reliable predictions
on weather events. It does not make sense to observe data if no simulation of a model is
possible and it is not economic to maintain a huge computing cluster if there are no datasets
to compute. Data sets must be available which means they must be easy to locate and the
needed permissions for use must be easy to obtain. It is also important to have a computing
environment which can handle different data types and an infrastructure which supports
HMR scientists during the computation. All this will be most important if the computation
is a realtime simulation and the results are supposed to help to prevent damage of urban
areas or even of human life in urgent cases [BPQ+12].

It is a really needed aim to deploy a simple and ergonomic interface for scientists to
compose their data sets and models while not taking care of any underlying e-infrastructure
and specific implementations of the HPC system. The DRIHM project is to close this gap
between the two departments HMR and ICT [BPQ+12].

2.1.2 Integrating HMR resources in grid resources and HPC

The DRIHM computing environment bases on a European grid computing infrastructure in
which several National Grid Initiatives (NGIs) collaborate. The goal of these NGIs is to

6

2.1 DRIHM project

wrf wrf-parallel meso-nhwrf-nmm

rfarm no ensemble

ribs hbvdrift

model layer 1
meteorological
models

ensemble
generator

model layer 2

hydrological
models

model layer 3

Figure 2.2: HMR models: overview and possible chaining

provide a reliable and secure e-infrastructure in the European countries and to establish a
Europe-wide grid and cloud infrastructure for scientific use [ND15]. A simplified view on
this infrastructure can be seen in figure 2.1 which shows the connection between a certified
user using the DRIHM front end and the computing resources with the needed HMR data
on other servers. A detailed insight into the distributed infrastructure will be provided in
figure 2.4 on page 9.

With the development of a user-friendly interface DRIHM aims to abstract provided HMR
services from the specified e-infrastructure. The implemented abstract level encourages mul-
tidisciplinary and international collaboration between meteorologists, hydrologists and other
potential scientists from other scientific areas. This HMR e-Science environment enables un-
known possibilities in the composing of different HMR models, processing tools and data.
Through this abstract level DRIHM will allow specialists to enter the e-Science environments
much more easily [DRI15d].

With the decision of not building up an own environment the responsibility for the re-
liability and maintenance of the used clusters lies with the operating company. It is more
cost-effective and robust than self-managed systems. Using external clusters only when
required is of course an optimum solution from an HMR point of view.

2.1.3 Hydro-Meteorological models

The DRIHM project offers with the presented infrastructure several HMR models which
can be computed alone or in a workflow where up to three models can be composed. The
possible workflows can compare up to one meteorological model with one or none ensemble
generator and one hydrological model. A categorization in these three layers is shown in
figure 2.2.

Meteorological models The meteorological models which are included into the DRIHM
framework are WRF-NMM, WRF-ARW, Meso-NH and RainFARM. All models run at kilo-
metric scale resolutions up to several hundred kilometers (mesoscale). The Weather Research
and Forecasting (WRF) model is a modern mesoscale numerical weather prediction system.

7

2 Related Work

Figure 2.3: Schematic diagram of the forecast chain for floods [DRI15e]

Two versions of the model exist differing in the description of their dynamical cores and in
the underlying grid schemes for the computations. Besides a sequential WRF model the two
main models are on the one hand the Advanced Research WRF (ARW, within DRIHM called
wrf-parallel) and on the other hand the Nonhydrostatic Mesoscale Model (NMM, included as
wrf-nmm). These models were and are developed by several US research centers [HCG+15].

The mesoscale non-hydrostatic model (Meso-NH), the fourth model in layer 1, is also a
non-hydrostatic mesoscale atmospheric model developed by a French laboratory. Another
planned French model, AROME, is not included in DRIHM in the current state. The Rainfall
Filtered AutoRegressive Model (RainFARM, in DRIHM rfarm) is a method for the realization
of stochastic rainfall downscaling. It can be easily applied to the rainfall forecasts provided
by the other mentioned meteorological models before as an ensemble generator [HCG+15].

Hydrological models Three different hydrological models are implemented in the DRIHM
project: DRiFt, RIBS and HBV. DRiFt (Discharge River Forecast) is a graded rainfall
outflow model based on a geomorphologic approach. The Hydrologiska Byráns Vattenbal-
ansavdelning (HBV) model is also a semi-distributed hydrological model developed by a
Swedish institute. RIBS (Real-time Interactive Basin Simulator) is a physically based dis-
tributed model which computes hydrologic basin responses to spatially distributed rainfall
inputs [HCG+15].

In figure 2.3 a complete, schematic diagram of a forecast chain is presented. The so-called
rainfall layer (cf. figure 2.2 layer 1 and 2) contains the combination of the different meteo-

8

2.2 Executing models in DRIHM

Possible, but only used for
selecting special resources

Via dedicated portlet

Science Gateway
gUSE/WS-PGRADE
portal.drihm.eu

RHMSS

LSFWeb Service

CIMA

Others

DLR

Web

LRZ
SuperMUC

GRAM-5SLURM

„DRIHM Binary
Repository“
drihm-tools.pub-
.lab.nm.ifi.lmu.de

Blue Joule
(Daresbury)

LoadLeveler

Zeus
(Poland)

Torque

Input data
& Con�g

Work�ow
Description

HMR Scientist
Develops model and
de�nes job inputs

Operations
Quality ensurance and testing before pro-
duction deployment. Uses the EGCF test-de�nes provides

deploysinput.tgz
Meta Scheduler

Gridway

Information Service

MyProxy Service

BDII
egee-bdii.cnaf.infn.it
bdii.hellasgrid.gr
bdii.ipb.ac.rs

myproxy.ipb.ac.rs

Grid Resource

 CREAM

GRAM-5

Interface

gLite WMS

LRZ ClusterGRAM-5

Local
scheduler

Repository providing static
data for a particular model
Applies same concepts as
DRIHM Binary Repository

Static Data RepositoryFedCloudrOCCI

Work�ow Design
& De�nition

Execution of Work�ow Tasks
Result

Interpretation

3D
Visualization

Statistics

Remote
visualization

Download for
local

visualization

Portlet for graphical
work�ow de�nition

Portlet for job
submission

Figure 2.4: DRIHM Distributed Computing Infrastructure [DRI15b]

rological models and the ensemble generator as shown. The discharge layer (cf. figure 2.2
layer 3) concerns the fusion of rainfall predictions (from the rainfall layer) with correspond-
ing observations, which are needed as an input for multiple hydrological models to enable
the before described production of river discharge predictions [DRI15e].

Hydraulic models The water level, flow and impact layer addresses the execution of hy-
draulic model compositions in different modes. These models can estimate river stage, dis-
charge and impact generated by a flood event. Within DRIHM the models Mascaret/RFSM
and Delft3D are designated to fulfill this requirement, but they are not part of the mentioned
e-infrastructure at the moment and are not considered in this writing.

2.2 Executing models in DRIHM

The DRIHM project introduces an abstract layer for the scientific users, who set up and run
their models in a web portal. The real computation is done in the back end of DRIHM on
the distributed grid resources all over Europe with a bash script. Figure 2.4 portraits the
DRIHM Distributed Computing Infrastructure (DDCI) to control and execute these models.

9

2 Related Work

This extensive figure shows the complete process starting with the design of a model run in
the ’Science Gateway’, the DRIHM front end and followed by the tethered resources all over
Europe. They are accessed via PRACE (Partnership for Advanced Computing in Europe)
Research Infrastructure, EGI (European Grid Infrastructure) and others. The figure also
shows the authentications barriers to grant access to submit a job to the grid resources. The
connected ’DRIHM Binary Repository’ is a LMU managed server which provides all needed
software. Finally, the scientist who does not gain insight to this process on the back end,
can access the results of his job on the web portal.

In figure 2.4 all processes from the scientist’s action in the front end to the real execution
in the back end can be followed. This distributed computing infrastructure is the main
achievement of the DRIHM project, a middleware which makes any scientist able to run
any kind of complex HMR models within minutes. Within the front end web portal the
certificated user can simply choose from the mentioned HMR models and do all configurations
with only a few clicks. Models can also be combined to a workflow in this place.

The next sections present the scientist view on the front end and afterwards the execution
on the back end.

2.2.1 DRIHM front end: the portal

The developed front end presents the user several tools to adjust and run HMR models. A
model depended portlet covers all possible settings and parameter definitions. In figure 2.5 a
tab of the WRF-ARW configuration is shown in which the selection of an appropriate basin
and the definition of up to three domains locate the area in which the model calculates its
simulations. These are together with the resolution of the computation, the grid spacing
level, the most important set screws for this model. For all models of layer 1 (cf. figure
2.2) also time steps of the calculation points and more important the physic, diffusion and
dynamic options of each run need to be defined. With these settings the input data for the
model is measured from a preprocessing system like WPS (WRF Preprocessing System).

In the portal the input for models from layer 2 and 3 needs to be selected out of a list if
no model from layer 1 is included in the workflow. Theses input files are pre-calculated on
a special case, the 2011 flood in Genoa. A main part of the DRIHM calculations are based
on this case because it is very good documented and included into the DRIHM database.

All settings to make a model execute are made in the web portal, an abstract layer front
end. The user clicks are translated into several setting files which are added to the model
run. These setting files are extensively depending on the model, but the DRIHM portal
reduces a real huge amount of coding time for any scientist to a more user-friendly, easy and
quick configuration in a browser. The portal back end servers also create all other needed
files to run the model in the back end of the project like additional information files on the
basin.

Not only the starting and configuring of a model can be done in the portal also the
monitoring is an important function included in DRIHM. The status of any own model run
and the results of the calculations are presented in a monitoring page where every run, single
model or workflow, can be traced. An example is shown in figure 2.6. Also the standard
output and error output from the cluster, which the model was computed on, are integrated
there. The user gains insight what steps of the model ran successfully or also where an error
occured. Therefore the portal includes a feedback function a scientist can react on and adapt
the configurations of the run if the result is not satisfactory.

10

2.2 Executing models in DRIHM

Figure 2.5: Screenshot from the DRIHM portal web front end configuring WRF-ARW
[DRI15c]

Figure 2.6: Screenshot from the DRIHM portal web front end monitoring a workflow
[DRI15c]

11

2 Related Work

start
start.sh script

data-store

fetch input file
from server

call model script

execute model
upload output

to server

exit
start.sh script

preparations

model execution

preparations

scp

scp

Figure 2.7: Chart of the start.sh script and its main operations

The real execution environment is covered and the user has no insight into the computation
of the pre-processing systems, the model run on the clusters and the output management.
Due to the implemented grid environment also the location of the included cluster is not
selectable and not even visible. The user is also not able to know that the models in a
workflow he designed in the portal are not calculated in one execution on one cluster. They
are all separate and single executions on potentially different clusters. Already at this point
the main problem crystallizes namely that workflows are not handled as workflows but as
different single model runs. This will be detailed in section 2.3.

2.2.2 DRIHM back end: the bash script start.sh

Starting a simulation of HMR models in the DRIHM portal is as shown an abstract execution.
On the portal’s back end several processes are started which can also be started directly on
the console. At the end, every job submission from the portal results in a very simple
command line execution on the destinated resource. The main part of the execution is a
bash script file, the so-called start.sh. It follows a strict syntax which also could not be
changed for this thesis:

./start.sh <model> <jobid> <input> <output>. Besides the name of the model a
job id number needs to be specified as well as an input and an output filename. With this
information every model can be started on any resource.

12

2.2 Executing models in DRIHM

start
start.sh script

data-store

fetch input file
from server

call model script

extract input file

is model
parallel?

sequential execution

batch model
execution to scheduler

wait for completion

post computations and
compress output files

upload output
to server

exit
start.sh script

basic checks and
sync repositories

preparations

model execution

true

false

prepare environment,
copy model binaries

repack input
extract configuration.tgz

repository server local repository

scp

scp

rsync

Figure 2.8: Chart of the start.sh script and its operations in detail, based on figure 2.7

The start.sh script All needed checks and definitions to run a model are made in this
script. The chart in figure 2.7 shows the main operations made by start.sh. For a complete
look at all steps of the execution plot the chart in figure 2.8 includes all intermediate steps.

The script will be transferred to any cluster in the e-infrastructure with the addition of
some elementary files. This includes keys for the synchronization of the model’s binaries as
well as libraries or precompiled system binaries. They are essential because as mentioned
before HMR models a very sensitive and necessarily need a precise defined system environ-
ment. Due to the fact that not all clusters have a comparable set up (e.g. different operating
system, different system libraries, modules or binaries) several gigabytes are moved to the
relevant cluster. If the cluster does continuous computations the transferred data is possi-
bly to stay on its storage system and is only synchronized on each call of start.sh to stay
up-to-date.

Preparations Before a model can start its actual computation the transferred system data
must be integrated, paths and local variables must be set. With the call of start.sh also
several parameters are assigned as shown. The most important parameter besides the model
is the name of the input file, which needs to be fetched from the data-store, a back end
server in the DRIHM e-infrastructure. Afterwards, if it is available there at all, the script
checks the syntax and the local environment for all needed parameters. Anywhere an error
occurs the following exit is trapped by a tidy function which removes all transferred data
but start.sh, as well as the temporal job directory of the model. To avoid any changes on
the local repository, which contains libraries, model and other binaries as well as the actual

13

2 Related Work

model scripts, every model computes in this temporal directory, the so-called jobdir. The
model binaries are copied there and could also be changed by a model execution without
any influence on other runs because the repository itself stays untouched.

It is possible to avoid all this data to be removed in case of debugging by setting a
parameter in start.sh. After all checks are made and the local repository is updated the
preparation of the execution environment starts. This includes to set all path variables, like
the ld library path to make the libraries and binaries available the model script might need.

Each model needs configuration files specifying the input. The start.sh script standardizes
this and forces all configuration files to be included in an archive named configuration.tgz
and to be located in the same directory as start.sh. From there it is extracted into the
jobdir of the model. Because several models can be combined in several ways the output
files from one model and the expected input files for the next differ usually in the needed
filename. Therefore a ’mapping.txt’ file can be added to the configuration files containing a
mapping route of the input file which effects a repack of the input archive. The input itself
is unpacked from the actual model script which is called from start.sh afterwards.

Model execution The model scripts differ in the execution layout, particularly if they have
a parallel part. In figure 2.8 the shown grayed part is executed by the model script. The
meteorological models wrf-parallel, wrf-nmm and meso-nh compute in parallel and might
only have a sequential part at the end of the script. All others are completely sequential.
HMR models like wrf-parallel tend to be very big simulations. That is why they need a very
fast connected and well performing platform for their computations. Therefore, as shown in
section 2.1.2, European grid resources are integrated in DRIHM. For one model run at least
32 physical cores are needed and the computation can still run up to 48 hours and longer if
the detailing is increased. To run more models at once, several nodes need to be available.
The detailed execution environment is presented in section 2.2.3 as well as the job scheduler,
which starts and controls the parallel jobs on the used clusters.

Completing the computation of a model, the generated output is compressed to an archive,
which is transferred to and stored in the data-store. After this transfer the start.sh finishes
with the already mentioned tidy function.

2.2.3 Grid environment

The grid resources are granted by EGI and are located in Croatia, Germany, Greece, Italy,
Macedonia, the Netherlands, Serbia, Spain and Poland [EGI15]. A powerful and the most
used resource in this thesis is the Linux-Cluster provided by the Leibniz Supercomputing
Centre of the Bavarian Academy of Sciences and Humanities (LRZ) in Germany, running
with the Globus Toolkit 5, which includes among other things software for data and job
management or security [VA12]. The other resources are accessed with gLite (Lightweight
middleware for Grid Computing), another middleware [DCG+14].

To access grid resources certificates are needed. Without them any try to send a job to
a resource is refused. All these clusters are included in a well performing grid environment
which provides a fast and scalable possibility to use present resources reasonable and efficient.
The LRZ cluster for example consists of several segments with different types of interconnects
and different sizes of shared memory. The DRIHM used segment is a MPP cluster with 16-
way AMD-based nodes and Infiniband interconnect [LRZ15]. The Cluster runs its jobs in
parallel using mpi and the job scheduler SLURM.

14

2.3 Problem conclusion

start
configure workflow

in DRIHM portal

data-store /
repository

send job files to grid
resource via gLite

exit
workflow finished

computation for the first model on one grid resource

preparations:
e.g. sync, fetch input, ...

scp

call start.sh script for
first model on cluster

create mapping and
configuration files

send job files to grid
resource via gLite

computation for the second model on one grid resource

preparations:
e.g. sync, fetch input, ...

call start.sh script for
first model on cluster

create mapping and
configuration files

send job files to grid
resource via gLite

computation for the third model on one grid resource

preparations:
e.g. sync, fetch input, ...

call start.sh script for
first model on cluster

make output and
logs visible in portal

batch model to
local scheduler

rsync

scp

rsync

scp

rsync
model execution

and upload output

model execution
and upload output

model execution
and upload output

portal back end

create configuration
and input files

batch model to
local scheduler

batch model to
local scheduler

european grid resources

Figure 2.9: Chart of the execution of a portal-defined workflow on grid resources

For large-scale parallel programming the message passing interface (mpi) is the most
heavily used paradigm at the moment and is certainly used at the LRZ and in all DRIHM
models. To control the parallel jobs the LRZ and other clusters use SLURM (Simple Linux
Utility for Resource Management), an open-source manager designed for clusters of any
scale. The main functions are to allocate access to resources (like computer nodes), provide
a framework for managing a parallel job on a set of the allocated nodes and to queue
pending jobs within a cluster. Today it provides its workload management on many of the
most powerful clusters worldwide [Sch15]. To batch jobs to SLURM it was integrated into
start.sh and is at the moment of writing the only supported scheduler within DRIHM.

2.3 Problem conclusion

The complete workflow as shown in section 2.2.2, precisely in figure 2.8, is to be repeated each
time a model run is called. If a user defines a workflow in the portal with the maximum of
three models, the whole start.sh procedure is executed three times. A chart of this execution
is shown in figure 2.9. This is obviously very ineffective because especially all preparation
steps are iterated.

Furthermore, in a distributed grid infrastructure all files must be transferred to each
cluster. For this reason such an execution produces a huge amount of traffic. In figure 2.9
it is marked with rsync for the transfer of the DRIHM repositories and scp for the fetch of
the input and the put of the output file to the data-store. Of course, if a cluster is used
frequently, a local storage is provided which only needs to be synchronized every time a

15

2 Related Work

start
configured workflow

in DRIHM portal

data-store /
repository

config and send job
to resource

exit
workflow finished

model-computation on first resource

scp

config and send job
to resource

config and send job
to resource

include result in portal

sync

scp

sync

scp

sync

model execution

portal
back end

grid resource

model-computation on second resource

model execution

model-computation on third resource

model execution

computation for the first model

scp

computation for the second model

computation for the third model

sync

model execution

model execution

model execution

model execution (complete workflow)

scp

grid resource

workflow preparations

start
pre-defined workflow

in DRIHM portal

config and send job
to resource

exit
workflow finished

include result in portal

portal
back end

current workflow improved workflow

vision

Figure 2.10: Comparison between a portal and a resource managed workflow

model runs. But the data transfer is likely to last long and meanwhile blocks all allocated
nodes on the cluster. In times of increasing electricity rates the costs are one limiting factor
of executing science models on HPC clusters. Therefore, it is essential to be as efficient as
possible.

Submitting a job to a grid resource is controlled by a scheduler. So every workflow like
shown in figure 2.9 is scheduled three times only to access a cluster. Thereby another problem
comes up with the authentication of the certificates of the user who started the workflow in
the portal. To access any grid resource a complete authentication procedure is necessary.
The obligatory two certificates, one for the DRIHM project and one for the European grid
resources at all, will be checked for every single model run via gLite, in the workflow in
figure 2.9 also three times. Depending on the registration authority grid certificates need to
be renewed approximately every 24 hours due to security reasons. A submitted workflow in
the portal can so fail if the first computation takes too long and for the following models
the certificates are not renewed in the portal. This problem cannot occur if a workflow is
submitted in only one transmission.

A workflow composed in the DRIHM portal is also not efficient because every single model
runs as a single job. And because all clusters are managed by a job scheduler the model
executions are sorted in potentially huge queues with waiting times up to several hours
or days each time. If no parts of the cluster are reserved for DRIHM executions, which
would certainly effect higher costs, real-time simulations are often not possible without any
prioritization. Especially in a peak time a workflow would have to wait three times in such
a scheduler. This is not efficient and, if a result is needed urgently, of course unacceptable.

16

2.3 Problem conclusion

In the end, also debugging model updates in such an unreserved cluster environment is
not feasible. Trying to find a possible error somewhere while always waiting up to hours till
the error occurs costs certainly man and computing hours and needs to be improved.

Vision Comparing these problems, a vision of an improvement is designed in figure 2.10,
which leaves most of the mentioned disadvantages behind. The figure illustrates a the state
of the art workflow in comparison with the idea of an enhanced workflow transmission. On
the left side in this figure the current workflow submission is shown, which is managed by
the DRIHM portal.

It becomes apparent that for every model in the workflow a separate transmission including
separate data transfers is needed. This is done by design of the DRIHM project, which is
constructed to include also models which cannot be executed on every included cluster within
the DDCI, but need a special execution environment, e.g. some impact models (hydraulic
models) compute on windows based servers.

However, taking as a basis, that all models can be computed on the same resources and in
the same basic environment, an improvement of the current workflow is obviously possible.
This can be assumed for all possible model chains shown in figure 2.2 on page 7.

To reduce the current job transmissions and data transfers another kind of model com-
position will be developed: a complete workflow in only one transmission as shown on the
right in figure 2.10. At first glance the improvement of the workflow is visible. The needed
synchronization calls and data transfers are minimized and the job submission scheduler is
entered only once. This adaption would improve the performance of every HMR workflow
within DRIHM in its described state.

17

3 Efficient chaining of models in DRIHM

This chapter will present the concept and the implementation of a real workflow in the
back end, which avoids the mentioned problems before in section 2.3, namely unnecessary
data transfers and avoidable queueing times. The concept of this workflow is presented
in section 3.1, which summarizes the advantages and exposes, that the complete workflow
as a whole is handled like a single model. Therefore, the so-called demonstration chain
(demoChain) is implemented like any other model within DRIHM and henced controlled by
the start.sh script.

The needed preparations to include the demoChain as one model are shown in section 3.1.1.
It will be pointed out that this is similar to the preparations shown before for any other single
model. The resulting back end workflow will be implemented as a modularized chain, which
can contain all possible model chains within DRIHM. All preparations for this purpose, e.g.
a model chain check or configuration file arrangements, are detailed in section 3.2.

To enable all possible model combinations and to make any chaining of models more
efficient a loop containing only essential functions replaces the current model execution and
is shown in section 3.2.2. The specifications of the modularized demoChain, which is added
to the DRIHM framework as an executable model, are presented in section 3.2.3. Based
on this modularized workflow two pre-defined chains are also added as static models into
DRIHM. They cover the most important HMR models and are introduced in section 3.3.
The chapter concludes in section 3.4 with a summary on the developed demoChains.

3.1 Concept

In section 2.3 the problems of the state of the art DRIHM workflow were presented in detail.
The main fact is the non-existence of a complete workflow queue in the back end. Therefore,
all workflows are computed in single runs, one for every included model (c.f. figure 2.9 on
page 15), and it is impossible to use the existing infrastructure at an optimum. Of course,
this is done by design of the DRIHM project, but for comparable models it is consumptive
of time, because of avoidable traffic and transmissions. This will be optimized with the
addition of the demonstration chains to DRIHM.

At the moment of writing, all models within the DRIHM project can be executed on the
same clusters and in the same environment. So any model chain can be improved, because
all models have the same basis. To reduce the amount of traffic every workflow, which
consists of up to three different models (according to figure 2.1.3 on page 7), is combined
into one model as shown in figure 3.1. This leads to a significant reduction of traffic because
the mentioned repositories need to be transferred or synchronized only once instead of three
times. Also intermediate results will be managed on the resource locally and will not be
transferred to the data-store and fetched from there again for the next model, which was
impossible while running a workflow in single executions.

The second main effort is the reduction of the waiting time at the scheduler for accessing
a grid resource. If transmitting only one model, which includes the whole model chain,

19

3 Efficient chaining of models in DRIHM

start
pre-defined workflow

in DRIHM portal

data-store /
repository

create configuration and
input files for first model

exit
pre-defined workflow

finished

computation for the first model

model preparations:
e.g. copy config files, ... scp

call start.sh script for
first model on cluster

computation for the second model

model preparations:
e.g. repack input, ...

computation for the third model

make output and
logs visible in portal

sync

model execution

model execution

model preparations:
e.g. repack input, ...

model execution

preparations

e.g. sync and
prepare environment

model execution (complete workflow)

upload output
to data-store

scp

send job files to grid
resource via gLite

portal back end grid resource

Figure 3.1: Chart of the execution of a pre-defined workflow as one model, compare to fig-
ure 2.9

the workflow will be queued only once and therefore reduces the waiting time and the
authentication barrier detailed in section 2.3.

3.1.1 Preparations

The model chain developed in this thesis is likely to be a model script itself. It is processed
by the start.sh script like any other model script. The preparations as shown in figure 2.8
on page 13 are exactly the same. The demoChain also creates a temporal job directory in
which the single models within the chain have their own job directory. The data structure
of the working directory is very similar, just with one added layer to combine all models’
directories. Also the mentioned tidy function, which cleans up all data, only needs to remove
the temporal directory of the demoChain which includes all other files.

As shown in figure 3.2 the structure of the complete demoChain is based on the execution of
any other model shown in figure 2.7 before. The start.sh script prepares the same execution
environment like for any other model. As detailed in chapter 2 before the main problem,
which makes the model chaining inefficient, is that all models are run in a separate call of
the start.sh script, in which many steps need to be run several times. To avoid this the
main idea behind the developed model chaining in this thesis is to run all operations and
function only one time. The file synchronization within the preparations section is one of
the most traffic and cost consuming part. This is eliminated due to the fact that all model

20

3.2 Implementation

executions of one workflow and not only one single model are based on one synchronization
call as shown in figure 3.2. This is the greatest benefit of this concept.

But also this call of the start.sh script needs to fulfill the syntax requirements which de-
mand e.g. a given input file when calling the script, which will be fetched in the preparations
section. The fetching of this input file from the data-store server is done as one of the first
steps even before synchronizing the local repository. This is specified in the start.sh script
and could not be changed for this concept. But before the script knows which models within
the demoChain will be executed, which is read from a file afterwards, the input should be
fetched from the data-store. This is not possible. Therefore a blank input file was placed
in the data-store which should be specified in every demoChain call as the input filename.
Every user should be aware of that. Of course, every other input can also be fetch without
correlating the correctness of the start.sh script. But this input is as mentioned discharged
and to save traffic and time it is not recommendable to use another input because the size
of these files can increase to several gigabyte depending on the appropriate model.

3.2 Implementation

After these preparations are done the already known model execution starts by calling the
appropriate model script. In case of the demoChain it is a bash script which includes all
needed functions to run a complete workflow. Before the first model can start some additional
preparations need to be done.

3.2.1 Workflow as one model

The main idea behind implementing this demoChain is to design it modularized. This
means that one script can catch all possible workflow-calls without changing the script
itself. For this reason a loop was integrated which repeats all necessary steps, but only the
elementary ones. The reduced amount of function calls maximizes the advantages regarding
the calculating time and transferred data. But to prepare the environment for such an
execution some other steps need to done ahead.

Workflow preparations Because the demoChain covers all possible model compositions also
configuration files must be available for any combination. This means that for all possible
workflows and parts of them separate input files, configurations files and mapping files needed
to be pre-configured. Because these configuration files are very small, they are usually only
text files, it is not recommendable to fetch them separately. This would again produce more
traffic and obviously take more time to transfer them. Therefore they are all fetched within
only one tared and gzipped archive and they are extracted into the job directory of the
demoChain. From there the required one will be copied into the root directory from start.sh
within the model execution loop and renamed to configuration.tgz, where it is expected.

Delivered workflow revision As mentioned in section 2.1.3 not all models can be chained
in any order or at all. Hence a formal logic needs to be implemented to make sure that the
given models are on the one hand combinable and on the other hand exist at all. The models
are specified in an extra file named models.do, which needs to be readable and located in

21

3 Efficient chaining of models in DRIHM

start
start.sh script

data-store

fetch input
from server

call model script

workflow preparations
loop for model

executions
upload output

to server

exit
start.sh script

preparations (details see figure 2.8)

model execution (complete workflow)

preparations

scp

scp

scp

Figure 3.2: Chart of the modularized demoChain, based on figure 2.7

the same directory as the start.sh script. This file contains one model name per line and
nothing else.

After the model script parses the specified models from the models.do file into an array
the models are categorized in the three model layers like shown before in figure 2.2 on page 7.
From each layer only one model can be executed in every workflow. But not all layer must
be set and layer 2 can also be skipped or a single model can be specified. To return the
sorted order a temporal array with three items is defined with a specified starting value.

For each given model the affiliation to the layers is checked. If a model fits into a layer and
the corresponding item in the temporal array (e.g. array[0] for layer 1) has still its origin
starting value, the tested model is set on this position. Otherwise the check exits with an
error. It also exits if no layer the model belongs into could be found, which implies that
the model does not exist or is spelled wrong. This is repeated for each given model in the
models.do file.

After all models are checked the temporal array includes up to three ordered models and is
returned to the demoChain model script again where it is written back into the initial array.
But before the models can be executed an input must be fetched for the first model. For
every model a pre-composed input file is available on the data-store. Because the file names
have a clear structured syntax no other information for the fetch of the input is necessary.
For example the input file for wrf-nmm is simply named demo.input.wrf-nmm.tgz.

After the input is located in the job directory the model execution can start running a
loop over all given models.

3.2.2 Loop for model executions

As mentioned before it was the primary objective of this thesis to avoid all unnecessary
operations. Of course, it was reasonable to develop the model execution in a loop which can
exclude as much preparation work as possible. The section before described the required
steps to prepare the execution environment. At this point the entire environment is prepared
in a way that all models can repeatedly use this setting in the same configuration. Thereby

22

3.2 Implementation

start
start.sh script

data-store

fetch input
from server

call model script

read models in array
and check running order

is model
array empty?

fetch all configs and
input for first model

upload output
to server

exit
start.sh script

preparations

model execution (complete workflow)

true

false

preparations

scp

scp

scp

model execution
set jobdir and

copy model binaries

set configuration file
for running model

repack input and
extract configuration file

call modelscript

sequential or
parallel execution

compress output and set
as input for next model

loop for model executions

workflow preparations

Figure 3.3: Chart of the modularized demoChain, based on figure 3.2

any possible workflow can compute to the end without any changes on the local environment.

To ensure modularization the execution of any model within a workflow has to be a
periodic process. In figure 3.3 the complete loop is shown in detail with the white boxes
in the gray area named loop for model executions. As long as the created array with the
ordered models is not empty the loop is entered and is driven by one model. The name of the
model is saved to a variable and due to a very good naming scheme in the repository another
function can create a temporal working directory named like the model and copy the model
binaries there. This is very important like in any other single model runs (cf. section 2.2.2)
because all executions of models within a workflow can guarantee that no influences on the
repository is made and the correctness of the whole DRIHM computation is not touched.
The copied binaries, scripts and other needed files can now be used by the called model
script.

23

3 Efficient chaining of models in DRIHM

Mapping the input All DRIHM models produce an output file which is always a gzipped tar
archive. But there is no clear structure regarding the naming of the files and the directory
tree creation within DRIHM. The output files from wrf-nmm and wrf-parallel, which in
fact contain nfc files of the same data-structure, are named and placed within this archive
completely different. Both outputs, from wrf-nmm and wrf-parallel, can be used as an input
file for all following models. To ensure that an output from such a model can be used as an
input for another a mapping of the archive’s content is needed.

The start.sh script has a function implemented to perform this. The needed information
is written in a mapping.txt file which contains only one line with the old and the new name
and location. This file is gzipped together with the model’s configuration files, which include
all needed configuration and rainfall or terrain parameters for the model calculation. This
differs within the models from one text file to a complete data set of the basin in the region
of Genoa.

To ensure that all models can be combined in workflows every possible combination needed
to be pre-implemented. All these configuration files of all model combinations are fetched
from the data-store (cf. section 3.2.1) as one archive and extracted to the temporal working
directory of the demoChain as mentioned before. Because the model names can be addressed
in the demoChain script an efficient syntax was implemented, which includes in all config-
uration file names a combination of the current and, if a prepended model exist, the name
of this model. From the demoChain temporal directory the proper configuration file can be
easily copied to the model’s temporal directory at this point of the loop. For example, if the
model drift is called after a run of the model rfarm, the corresponding configurations file is
named configuration.ribs.rfarm.tgz and can thus be fetched and processed very simply.

Afterwards, the needed configuration file is extracted and the input file is repacked as
defined in the mapping file. The mapping function again packs an archive of the input files
because this input archive is not unpacked before the model scripts do this. Because this is
a specification of the start.sh script it is also applied to the demoChains. All needed files for
the model computation are at this point of the loop in the temporal directory of the model
and the model can start its actual computation.

Model execution Every model script runs its computation like in every single run. The
execution is similar to the grayed boxes in figure 2.8 on page 13. But the input file differs
in each run of the loop. Fortunately, the start.sh script innately passes the location of the
input file to the model script in a variable. The loop renews the path to the before mapped
input file for each model. Here again, no adjustments on the model script were necessary.

The differentiation whether a model is parallel and batched to a scheduler or runs sequen-
tially is also accomplished by the model script itself. At this state of the DRIHM project the
only models which compute in parallel are the models from layer 1: wrf-parallel, wrf-nmm
and meso-nh. Only they can be queued into a scheduler like shown in figure 3.1. The others
run their computation directly on the resource server. When finished, the fetching of the
output files and their compression back to an archive is controlled and finished by the model
script.

To make an output accessible by the start.sh script, its location is again written to a
variable. To continue in the loop the same path is set to the variable of the input file.
Afterwards, the loop can start again with a new model or finish.

24

3.3 Pre-defined model chains in DRIHM

Exiting the loop When the models’ array is empty the workflow is finished. Then the
gzipped output of all model computations is collected and gzipped again to a new archive
containing all single outputs and the complete workflow output. This is the last action from
the demoChain script after which the start.sh script takes the control again on all remaining
commands. One of them is that the output archive is uploaded to the data-store. From
there it can be accessed and used to debug the models or the complete workflow. Start.sh
finishes afterwards with a deletion of all temporal files as explained in section 2.2.2 before
and completes the whole run.

The loop includes all necessary steps, which are sufficient for a correct run of every model.
All model scripts developed for and included in DRIHM have as a major requirement that
no changes to the system environment are permitted. Thus it is not required to reset
the environment after a model run. Would a model script change any local variables the
finishing start.sh script could also not work correctly in all single runs. It is assumed that
this is always controlled by the developers on the one side and the technical authority at
LMU on the other. Therefore, this implementation is not responsive to such changes and
assumes that the correctness of the local environment stays valid.

3.2.3 The modularized demoChain

demoChain01: all possible workflows With the guarantee of a correct and stably imple-
mented new model the demoChain was added to the DRIHM framework with the model
name demoChain01 and can be run from the same gateways like any other model. At the
current state of DRIHM it was not possible to chain any combination with the model meso-
nh because no configuration and no input files could be prepared. Furthermore, the workflow
wrf-parallel - ribs leads to an error precipitated by an incompatibility of the two models in
the DRIHM framework. This problem should be solved by the developers within the scope
of the project.

3.3 Pre-defined model chains in DRIHM

This thesis has the objective to implement two pre-defined model chains for DRIHM. This
task was extended by the concept of the modularized chain presented in the last sections
instead of hard coded script files. Due to the introduction of a simple file to compose the
models the pre-defined chains arise from only few lines of code. With the specification of the
models to be calculated in the models.do file by writing them there one model per line, two
chains were added. They cover the most important models within DRIHM. All implemented
demoChains are listed in figure 3.4 including the modularized demoChain01 for all workflows.

Data set for the demoChains All calculations in the demoChains base on the 2011 flood
event in Genoa. Within DRIHM the basin around Genoa and the recorded rainfall values
are available. They have been integrated in the front end and can be configured by the
user. For this thesis all models were configured manually in the front end. The resulting
configuration files were transferred to the back end and repacked to be used in all possible
workflows as shown.

To avoid too long computations in one model the configurations were set to minimize the
running time. The main time period for all models is set to a six hour period, from midnight

25

3 Efficient chaining of models in DRIHM

wrf-parallel wrf-nmm

rfarm

ribs drift

model layer 1
meteorological
models

ensemble
generator

model layer 2

hydrological
models

model layer 3

rfarm

demoChain02 demoChain03

* * * *

*

* * *

demoChain01

Figure 3.4: Chart of the modularized and the two pre-defined model chains

to six o’clock on November 4th, 2011. In conjunction with this, the result can certainly
not produce any authoritative results for real flood predictions, but is sufficient to show
any user the functionality of the DRIHM models and that the result is correct. Also the
physical configurations were limited and set to a minimum. The period of 6 hours could not
be chosen shorter because some models require this as a minimum input time to compute
without an error and to get reasonable results. Within these limitations and prospects the
existing configuration and input files represent all important components of DRIHM in its
current state.

demoChain02: wrf-parallel - rfarm - ribs This demoChain consists of three models, one
from each layer. The workflow bases on a pre-calculated input file, including the mentioned
data sets of the flood in Genoa for the wrf-parallel calculation. To the model rfarm some
required files need to be added, e.g. the observed rain values in the correspondent time,
which are prepared in the respective configuration file.

The last model ribs finishes this workflow by issuing river discharge levels at six locations
in the suburban area of Genoa. Due to a bug in one of the contributing models, the result
of the workflow is computed without any error, but only with discharge levels of zero cubic
meters per time. This was reported to the developer but has not been solved at the moment
of writing.

The complete code of the demoChain02 script, which is called by start.sh, is very short
and simple, because it is based on the modularized demoChain01, and is shown in listing 3.1.
The demoChain02 script executes demoChain01 after creating the models.do file.

This file is created in the mydir directory, the root directory of any DRIHM computation
on any resource where also start.sh is located. After the three models, which are to be
executed, are written into the models.do file, the demoChain01 is called within the same
bash (due to the dot before the script name) without any parameter. The called script
expects the models.do file and reads the specified models from there. It is the same call

26

3.4 Results summary

Listing 3.1: demoChain02 code

1 MODELSDO="$MYDIR/models.do"

2

3 echo "wrf -parallel" >> $MODELSDO

4 echo "rfarm" >> $MODELSDO

5 echo "ribs" >> $MODELSDO

6

7 . $MODELDIR/demoChain01.sh

start.sh would run the demoChain01 if selected. Afterwards, the so composed workflow will
be executed as detailed in section 3.2.

The code of demoChain03 is similar to the shown code of demoChain02, only with changed
model names in the models.do file, and can be seen in the appendix 3.

demoChain03: wrf-nmm - rfarm - drift The last demoChain is also a workflow containing
three models, again one from all three layers. Like the demoChain02, its input covers the
same time period, but is calculated especially for wrf-nmm. After the ensemble generator
rfarm, the last model is drift. Its output includes several files, but the most interesting is
the development of the river discharge level at the footbridge Firpo in Bisagno, a quarter
of Genoa. The progress of this destructive flood predicted by this demoChain workflow can
be seen in figure 3.5 in the first graph a. This visualization is created by a tool which is
integrated into the DRIHM portal and can be used to observe any other result.

Also ribs produces output files which can be visualized. The growth of the discharge level
at two different locations can also be seen in figure 3.5, in the graphs b and c. The time
period of these graphs is shorter, because no data from the model rfarm was added.

As shown in the code of demoChain02 before, it is assured that a composition of any other
not pre-defined chain is very simple and can be done by every authorized DRIHM user in
the back end. It is only necessary to create a models.do file containing one model per line
in the same directory as the start.sh is placed.

3.4 Results summary

This chapter introduced a new model, which was added to the DRIHM framework, to run
complete workflows with up to three models in one call. For every run no additional infor-
mation is needed, in particular no configuration or input files. They are all pre-calculated
and available for any model combination.

The complete implementation code can be seen in the appendix 1 of this thesis. In the
sections before it was shown which measures needed to be realized to enable such an economic
and easy to understand solution of the given problem, which were in detail unnecessary data
transfers, avoidable scheduler waiting times and a complete non-realization of workflows in
the back end. This also ergonomic implementation adds a new model script, which only
needs the names of the models within a text file, to run a correct and exemplary workflow.

The modularized demonstration chain model demoChain01 and the pre-defined ones de-
moChain02 and demoChain03 are already part of the DRIHM framework. They can be

27

3 Efficient chaining of models in DRIHM

Figure 3.5: Output-visualization from the demoChain workflow wrf-nmm rfarm drift and
wrf-nmm ribs, designed in the DRIHM front end [DRI15c]

28

3.4 Results summary

HMR ICT

DRIHM

Portal

GUI Console

single model

workflow

management layer

execution layer

Figure 3.6: The solved problem statement of this thesis based on figure 1.1

started from any back end server to illustrate the possibilities of the DRIHM project by
composing different models to a workflow or run a single model to get a specified insight.

As told in the sections before, all valid combinations are covered by this solution (except
the mentioned models, which cannot be combined in its current state in section 3.2.3). For
all these workflows and single runs configuration and input files were added to the data-
store and can be accessed from any execution of the start.sh script on any resource, also
worldwide.

The next chapter will discuss and evaluate the concept as well as its implementations and
will also respond to possible challenges which come with this development.

29

4 Summary

Chapter 3 introduced a new model into the DRIHM framework, which renewed the current
state of composing models to a workflow with a concept that allows all models to be executed
within one call and within one transmission to one resource. The achieved speed up of current
workflows was done within the requirements of the start.sh script which forced to use the
given environment and did not allow any serious changes to start.sh and to the existing
model scripts.

This chapter will give a summary and evaluate the concept given in section 3.1 regarding
the main facts in section 4.1. Afterwards, in section 4.2 the findings of this thesis are
discussed, focused on the compatibility with the whole DRIHM framework now and in future.

As pointed out, every workflow composed in the DRIHM portal was separated in single
model runs (cf. figure 2.9 on page 15). This thesis had the goal to form a possibility to run
a complete workflow within one submission, what succeeded with the given concept. This is
not only possible in the back end of DRIHM, it could also be integrated into the front end as
a fast running, pre-defined demonstration case in the DRIHM portal. Therefore, this thesis
offers a complete framework with configuration files for each single and composed run, as well
as the required input files. If integrated into the portal, such a pre-defined workflow could
give inexperienced users an understanding of the possibilities of chaining models within the
DRIHM project.

4.1 Evaluation

The presented concept is one possible solution to approach the given problem. Of course,
this needs to be considered in several views. In the last chapters different perceptions were
mentioned in which performance improvements could be achieved. They are summarized in
this section.

Data set At first sight, it is very comfortable to have pre-defined configuration and input
files. In any execution of the demoChain no configuration files or input adaptions must be
considered. They are all available and processed automatically. But due to the fact that
they are pre-defined it is not possible to change anything in one configuration file without
verifying that all others are still correct. Especially the time period is hard coded for all
model computations within the demoChains and needs to be changed very carefully. Also
the basin is determined and set to Bisagno in Genoa. An adaption to any other region would
change all setting files. This is certainly possible but associated with a lot of configuration
work.

Maintenance One objective of the concept is to provide a simple maintenance feasibility,
to test all models on impacts regarding their operativeness when changing the environment
or other models. This is very important and the demoChain is a real improvement. But to

31

4 Summary

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 24 32 48 72 96 144 >144

Cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f a
ll

jo
bs

,
w

hi
ch

 st
ar

te
d

w
ith

in
 th

e
tim

e
in

te
rv

al

hours [a]

0

5

10

15

20

25

30

pe
rc

en
ta

ge

cores per job

[b]

Figure 4.1: Average queueing time of submitted jobs at the LRZ MPP-cluster1 in 2014,
provided by LRZ

guarantee the correctness of this test, the enclosed configuration and input files need to be
updated if the appropriate model is affected by an update. This must always be taken into
account. The relevant files are saved in the data-store, but any modification should always
be done by the developers of the depending model directly, because they know their models
in details and need the same files for their test stage in any case.

Queueing time Another improvement is the saving of time if not entering the grid resource
scheduler several times. Reducing this from three times to one is obviously an enhancement,
including the connected authorization problems based on the certificates’ life-times.

The queueing time improvement would be maximized if also the scheduler times of the
DRIHM model executions could be modified. But this was not considered within this thesis.
Although, all parallel models would enter a separate queue on the corresponding cluster, it
is not an enhancement in the current state of DRIHM to combine all models on one resource,
because only the models of layer 1 are parallelized and only they need more than one node
allocation on the clusters.

A modification of all workflows is not reasonable before more models run in parallel.
Then, based on an e-infrastructure that includes shared resources, which are really used
from different scientists and projects and thereby having a relevant queueing time, it would
be of course an improvement to allocate computing nodes only once. In figure 4.1 a the
average queueing time of submitted jobs at the LRZ MPP-cluster1 in 2014 is summed up
in a diagram. Including the right part b of the figure, it becomes apparent, if more nodes
are required, the waiting time increases up to several days, which of course will also apply
to the DRIHM models in future. In this case an improvement of the current situation is
unavoidable.

But until then, the current infrastructure prefers the current realization for the huge
computation workflows. Because the models differ completely in their performance envi-
ronment, the DRIHM e-infrastructure includes dedicated servers for certain models. The

1Die entsprechende Infrastruktur (das MPP-Cluster) wurde 2015 im Rahmen eines DFG-Großgeräteantrags
ersetzt, um die langen Wartezeiten zu minimieren.

32

4.1 Evaluation

binaries

libraries

binaries

libraries

binaries

libraries

binaries

libraries

0

2

4

6

8

10

12

14

16

Gigabyte
18,9 GB

7,4 GB

demoChain
workflow

DRIHM portal
workflow

input

input/output

input/output output

input

18

Figure 4.2: Transferred data in a DRIHM portal workflow in comparison with the same
workflow as a demoChain

non-parallelized models are not submitted to the powerful clusters in the grid, which are not
built for sequential computations. The models calculate on smaller solutions.

So it is a substantial consideration how and especially where the models are submitted.
The current realization in DRIHM is an agreement over all participating institutions. The
developed concept in this thesis aims to be a contribution to further enhancements and can
improve the whole DRIHM performance if the development pursues such a direction.

Traffic reduction Although it might not be possible to transfer this concept to the whole
DRIHM structure at the moment, it should be taken note of the opportunities to reduce the
real huge amount of traffic. This needs to be taken into account more and more if other
resources are added to the infrastructure and the synchronization is no synchronization any
more, but a real transfer with every submission of a job. This is not unlikely because it
cannot be assumed that all clusters can provide an static local storage and thus, depending
on the connectivity of the cluster, the transfer time can be huge compared to the running
time of the model. This would obviously make any computation slow and expensive.

In figure 4.2 the transferred data of a three model workflow from the DRIHM front end is
compared with the same workflow composed as a demoChain. As shown, the portal workflow
transfers three times the data which needs to be transferred in the optimized demoChain. In
detail, these are three times 3.5 gigabyte for the binaries and 1.9 gigabyte for the libraries,
so totally 16.2 gigabyte only for the DRIHM files.

Within the demoChains, the file sizes of the input files are chosen very small to be eco-
nomical, but in extensive cases the input and the output files increase up to several gigabyte,
which are computation volumes these models are designed for. In the example in figure 4.2

33

4 Summary

the transferred input and output files in the DRIHM portal workflow had a size of 2.6 gi-
gabyte and in the to this input adapted demoChain, with the same first input file, only 2.0
gigabyte. This economy depends on the fact, that all intermediate results are only trans-
ferred to the data-store server at the end of any demoChain and not fetched again for every
following model, but stored locally during the complete workflow.

The saved amount of transferred data only for this workflow is about 11.5 gigabyte, what
is equivalent to a reduction of 62 percent. Also the number of file transfers is reduced from
six to two, and from three synchronization calls to one.

Portability The implemented demoChain could be successfully tested in a new, not in the
DRIHM e-infrastructure integrated production system, located at the University of Virginia,
in the context of DRIHM2US. Another EU-funded project, which fortifies the cooperation
between Europe and the USA for the development of a HMR e-infrastructure and thus en-
sures the permanent and effective availability of data and models across scientific disciplines
and particularly across the Atlantic [DRI15a]. Instead of the via EGI or PRACE used clus-
ters in Europe, this cluster was accessed with the grid middleware Genesis II, on Extreme
Science and Engineering Discovery Environment (XSEDE) developed by the Virginia Cen-
ter for Grid Research [XSE15], which is not integrated in the DRIHM framework yet and so
all jobs had to be submitted manually to test the demoChain there.

A workflow of rfarm - drift could be computed without any changes to the demoChain
or start.sh code. This is of course a success of the design of the start.sh script and the
complete DRIHM project. But it became apparent that DRIHM computations, which need
no additional files and parameters with the execution call like the demoChain, are very
simple to realize in a not directly accessible environment like this US cluster. So instead of
transferring configuration files for any test in a complicate way through the used middleware,
the demoChain fetches the needed files simply itself from the data-store and enable so quick
executions on foreign clusters.

4.2 Summary and outlook

In summary, this writing shows another way to submit HMR models, joined as a DRIHM
workflow to one grid resource in one transmission and added therefore three models to the
DRIHM framework.

The roundup of the evaluation points out two facts: the concept of this thesis offers on
the one side a new kind of workflow submission, but on the other site it cannot be integrated
into the whole the DRIHM project in its current state. Although the EU project is well-
thought-out, its infrastructure can still be improved. This might happen, when the complete
project is reviewed and new recommendations influence the progress of the project. Then
an adaption of the scheduler process to execute the models might be also reviewed and parts
of the developed concept might be integrated.

Changes on this concept of the demoChain and its implementation are also possible and
possibly helpful. The requirements and specifications of start.sh, on which all model scripts
are based, will always be a limitation. A complete restructuring of the DRIHM project is of
course not reasonable.

But a simple improvement could be implemented very fast if the models would be grouped
corresponding to their execution type regarding a sequential or parallel execution and de-

34

4.2 Summary and outlook

pending on how many nodes the execution needs. Afterwards one node allocation and one
job submission per group would improve the named facts in section 4.1, especially if more
models would run in parallel. This adjustment would be very easy to realize through all
models and could improve the performance of all workflow computations noticeably.

The implemented demoChain would be ready to be integrated as a real demonstration
chain into the DRIHM portal. With the pre-defined workflows the demoChain is very suitable
for any kind of manual or simple demonstration on how models can be composed without
worrying about any configuration details.

Going one step further, some configuration parameters of the demoChain concerning model
details could be extended from the pre-defined packages and included into the DRIHM portal.
This would be an enhancement for any user, who could then make changes on the results of
the demoChain workflows, but still without configuring a complete model chain from scratch.

However, with the further development of DRIHM and especially the integration of the not
yet included models, this demoChain might not be able to cover still all models. Because the
concept is based only on models, which can be executed on one resource with one execution
environment, no model which needs other specifications could be added to the demoChain
framework. But due to an already integrated function, which checks the given demoChain
models, this would not have any influence on the correctness of the demoChain.

35

List of Figures

1.1 Problem statement in the back end of the DRIHM portal 2

2.1 The modeled DRIHM infrastructure, based on [DRI15d] 6
2.2 HMR models: overview and possible chaining 7
2.3 Schematic diagram of the forecast chain for floods [DRI15e] 8
2.4 DRIHM Distributed Computing Infrastructure [DRI15b] 9
2.5 Screenshot from the DRIHM portal web front end configuring WRF-ARW

[DRI15c] . 11
2.6 Screenshot from the DRIHM portal web front end monitoring a workflow

[DRI15c] . 11
2.7 Chart of the start.sh script and its main operations 12
2.8 Chart of the start.sh script and its operations in detail, based on figure 2.7 . 13
2.9 Chart of the execution of a portal-defined workflow on grid resources 15
2.10 Comparison between a portal and a resource managed workflow 16

3.1 Chart of the execution of a pre-defined workflow as one model, compare to
figure 2.9 . 20

3.2 Chart of the modularized demoChain, based on figure 2.7 22
3.3 Chart of the modularized demoChain, based on figure 3.2 23
3.4 Chart of the modularized and the two pre-defined model chains 26
3.5 Output-visualization from the demoChain workflow wrf-nmm rfarm drift and

wrf-nmm ribs, designed in the DRIHM front end [DRI15c] 28
3.6 The solved problem statement of this thesis based on figure 1.1 29

4.1 Average queueing time of submitted jobs at the LRZ MPP-cluster1 in 2014,
provided by LRZ . 32

4.2 Transferred data in a DRIHM portal workflow in comparison with the same
workflow as a demoChain . 33

37

Bibliography

[BPQ+12] Bedrina, T., A. Parodi, A. Quarati, A. Clematis et al.: ICT approaches
to integrating institutional and non-institutional data services for better under-
standing of hydro-meteorological phenomena. Natural Hazards and Earth System
Science, 12:1961–1968, 2012.

[DCG+14] Dagostino, D., A. Clematis, A. Galizia, A. Quarati et al.: The DRIHM
Project: a Flexible Approach to Integrate HPC, Grid and Cloud Resources for
Hydro-Meteorological Research. SC14: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 536–546, 2014.

[DRI15a] DRIHM2US.eu: Distributed Research Infrastructure for HydroMeteorology to
United States of America (DRIHM2US), June 2015. http://www.drihm2us.eu/
images/documents/RI-313122-DRIHM2US_FACT-SHEET.pdf.

[DRI15b] DRIHM.eu: D5.2: Report on the Inventory of Deployed Services,
May 2015. http://www.drihm.eu/images/Deliverable/drihm-dwp5.

2-20120228-v2-lmu-report_on_the_inventory_of_deployed_services.

pdf.

[DRI15c] DRIHM.eu: DRIHM front end web portal, June 2015. http://portal.drihm.

eu/.

[DRI15d] DRIHM.eu: Objectives of the DRIHM e-Science environment, April 2015. http:
//www.drihm.eu/index.php/project/objectives/.

[DRI15e] DRIHM.eu: Schematic diagram of the forecast chain for floods, April 2015.
http://www.drihm.eu/images/chain.bmp.

[EGI15] EGI.eu: EGI-DRIHM:Collaboration, June 2015. https://wiki.egi.eu/wiki/

EGI-DRIHM:Collaboration/.

[HCG+15] Hally, A., O. Caumont, L. Garrote, E. Richard et al.: Hydrometeorolog-
ical multi-model ensemble simulations of the 4 November 2011 flash flood event
in Genoa, Italy, in the framework of the DRIHM project. Natural Hazards and
Earth System Sciences, 15:537–555, 2015.

[LRZ15] LRZ.de: Leibniz Supercomputing Centre: Overview of the Cluster Configu-
ration, April 2015. http://www.lrz.de/services/compute/linux-cluster/

overview/.

[ND15] NGI-DE.eu: German National Grid Initiative, April 2015. http://www.

ngi-de.eu/.

39

http://www.drihm2us.eu/images/documents/RI-313122-DRIHM2US_FACT-SHEET.pdf
http://www.drihm2us.eu/images/documents/RI-313122-DRIHM2US_FACT-SHEET.pdf
http://www.drihm.eu/images/Deliverable/drihm-dwp5.2-20120228-v2-lmu-report_on_the_inventory_of_deployed_services.pdf
http://www.drihm.eu/images/Deliverable/drihm-dwp5.2-20120228-v2-lmu-report_on_the_inventory_of_deployed_services.pdf
http://www.drihm.eu/images/Deliverable/drihm-dwp5.2-20120228-v2-lmu-report_on_the_inventory_of_deployed_services.pdf
http://portal.drihm.eu/
http://portal.drihm.eu/
http://www.drihm.eu/index.php/project/objectives/
http://www.drihm.eu/index.php/project/objectives/
http://www.drihm.eu/images/chain.bmp
https://wiki.egi.eu/wiki/EGI-DRIHM:Collaboration/
https://wiki.egi.eu/wiki/EGI-DRIHM:Collaboration/
http://www.lrz.de/services/compute/linux-cluster/overview/
http://www.lrz.de/services/compute/linux-cluster/overview/
http://www.ngi-de.eu/
http://www.ngi-de.eu/

Bibliography

[Sch15] SchedMD.com: Slurm Workload Manager, April 2015. http://slurm.

schedmd.com/.

[VA12] Vachhani, Milan K. and Kishor H. Atkotiya: Globus Toolkit 5 (GT5):
Introduction of a tool to develop Grid Application and Middleware. International
Journal of Emerging Technology and Advanced Engineering, 2:174–178, 2012.

[XSE15] XSEDE.org: Extreme Science and Engineering Discovery Environ-
ment (XSEDE) - Genesis II, June 2015. https://portal.xsede.org/

knowledge-base/-/kb/document/bbfb/.

40

http://slurm.schedmd.com/
http://slurm.schedmd.com/
https://portal.xsede.org/knowledge-base/-/kb/document/bbfb/
https://portal.xsede.org/knowledge-base/-/kb/document/bbfb/

demoChain source code

1 demoChain01

Listing 1: demoChain01 model script

1 ################################

2 # #

3 # modularized demoChain script #

4 # #

5 ################################

6

7 ###

8 # functions runModel , checkChain

9 ###

10

11 #

12 ## runModel creates the jobdir , copies the binaries , sets the

13 ## configuration file , repacks the input and executes the model

14 #

15 function runModel {

16 #Setting JOBDIR for $1-execution!

17 if [[$1 == "wrf -parallel"]] ; then

18 JOBDIR=$ORIGJOBDIR/wrf

19 else

20 JOBDIR=$ORIGJOBDIR/$1

21 fi

22

23 # copy binaries to JOBDIR

24 if [[$DEBUG -ge 1]] ; then echo "Preparing Enviroment for $1

... "; fi

25 if [[$1 == "wrf -parallel" || $1 == "wrf -nmm"]] ; then

26 ORIGMYDIR=$MYDIR

27 MYDIR=$ORIGJOBDIR

28 prepare -environment -cp -bin $1

29 MYDIR=$ORIGMYDIR

30 else

31 prepare -environment -cp -bin $1

32 fi

33 if [[$DEBUG -ge 1]] ; then echo "done."; fi

34

35 # copy the correct configuration file in MYDIR , where it is

expected from repackInput

36 if [[$DEBUG -ge 1]] ; then echo "Preparing configuration file

for $1 (after $2)... "; fi

37 if [[$1 == $2]] ; then

38 cp $ORIGJOBDIR/configuration.$1.tgz $MYDIR/configuration.tgz

41

demoChain source code

39 if [[$DEBUG -ge 1]] ; then echo "$ORIGJOBDIR/configuration.

$1.tgz $MYDIR/configuration.tgz"; fi

40 else

41 cp $ORIGJOBDIR/configuration.$1.$2.tgz $MYDIR/configuration.

tgz

42 if [[$DEBUG -ge 1]] ; then echo "$ORIGJOBDIR/configuration.

$1.$2.tgz $MYDIR/configuration.tgz"; fi

43 fi

44 # extract configuration file and repack input if necessary

45 repackInput

46 if [[$DEBUG -ge 1]] ; then echo "done."; fi

47

48 # start execution of model: call model script

49 if [[$DEBUG -ge 1]] ; then echo "Starting execution of $1...

"; fi

50 . $MODELDIR/$1.sh

51 if [[$DEBUG -ge 1]] ; then echo "done."; fi

52

53 if [[$DEBUG -ge 1]] ; then echo "Collecting $1 -output ... ";

fi

54 # save output as original file and for the next model as

INPUTFILE

55 cp $OUTPUTFILE $INPUTFILE

56 cp $OUTPUTFILE $ORIGJOBDIR/output.$1.tgz

57 if [[$DEBUG -ge 1]] ; then echo "done."; fi

58

59 }

60

61 #

62 ## checkChain checks given models and returns an ordered array

63 #

64 function checkChain {

65

66 if [[$DEBUG -ge 1]] ; then echo "Checking models for correct

chaining ... "; fi

67 LAYER1 =(wrf wrf -parallel wrf -nmm meso -nh)

68 LAYER2 =(rfarm no -ensembler)

69 LAYER3 =(ribs drift hbv)

70 ALLOWED =1

71

72 # define function to print syntax information for models.do

file

73 function printChaining {

74 echo "ERROR: specified models can not be combined!"

75 echo " "

76 for model in $(seq 0 $((${#MODELS[@]} - 1)))

77 do

78 echo " ${MODELS[$model]}"

79 done

80 echo " "

81 echo "Please compose models as shown:"

82 echo " "

83 echo " LAYER1 [wrf | wrf -parallel | wrf -nmm | meso -nh]"

42

1 demoChain01

84 echo " LAYER2 -> [rfarm]"

85 echo " LAYER3 -> [ribs | drift | hbv]"

86 echo " "

87 echo "Maximum 1 model from each layer. Please change models

in models.do file!"

88 exit -1

89 }

90

91 # helping function to search an object in an array

92 function contains () {

93 local seeking=$1; shift

94 local in=1

95 for element; do

96 if [[$element == $seeking]]; then

97 in=0

98 break

99 fi

100 done

101 return $in

102 }

103

104 # define array to store the order of models

105 # Index 0 is first model ...

106 TMPMODELS =([0]= none [1]= none [2]= none)

107

108 # Test all models from models.do if a model from the same layer

is already

109 # set. If not , set the model in the array , so this position is

blocked.

110 # exit through printChaining if a model is unknown or layer is

already set.

111

112 for model in $(seq 0 $((${#MODELS[@]} - 1)))

113 do

114 if [[$DEBUG -ge 1]] ; then printf "Sorting ${MODELS[$model

]} in chain"; fi

115 if $(contains ${MODELS[$model]} "${LAYER1[@]}") ; then

116 if [["${TMPMODELS [0]}" == "none"]]; then

117 TMPMODELS [0]=${MODELS[$model]}

118 printf " - chaining OK\n"

119 else

120 printf " - ERROR: already chained ${TMPMODELS [0]} in

LAYER1\n"

121 printChaining

122 fi

123 elif $(contains ${MODELS[$model]} "${LAYER2[@]}") ; then

124 if [["${TMPMODELS [1]}" == "none"]]; then

125 TMPMODELS [1]=${MODELS[$model]}

126 printf " - chaining OK\n"

127 else

128 printf " - ERROR: already chained ${TMPMODELS [1]} in

LAYER2\n"

129 printChaining

43

demoChain source code

130 fi

131 elif $(contains ${MODELS[$model]} "${LAYER3[@]}") ; then

132 if [["${TMPMODELS [2]}" == "none"]]; then

133 TMPMODELS [2]=${MODELS[$model]}

134 printf " - chaining OK\n"

135 else

136 printf " - ERROR: already chained ${TMPMODELS [2]} in

LAYER3\n"

137 printChaining

138 fi

139 else

140 printf " - ERROR: model does not exist\n"

141 printChaining

142 fi

143 done

144

145 # Set new array with correct order as new MODEL array and

remove nones

146

147 if [[$DEBUG -ge 1]] ; then

148 printf "Starting Execution of chained models:"

149 none=(none)

150 MODELS =(${TMPMODELS [*]/ $none})

151 for model in $(seq 0 $((${#MODELS[@]} - 1)))

152 do

153 printf " ${MODELS[$model]}"

154 done

155 echo " "

156 fi

157 }

158

159 ###

160 # prepare models ’ array , configurations and first input

161 ###

162

163

164 # Fetch configurations files from Server

165 if [[$DEBUG -ge 1]] ; then echo "Preparing Configurations for

$1... "; fi

166 cd $JOBDIR

167 myCopy "FETCH" "demodata/demo.configurations.tgz"

168

169 # Extract configuration files in $JOBDIR

170 tar -xzf $INPUTFILE

171 if [[$DEBUG -ge 1]] ; then echo "done."; fi

172

173 # read models.do file in an array , one line , one model

174 MODELFILE=$MYDIR/models.do

175 if [[! -r $MODELFILE]] ; then

176 echo "ERROR: expected models.do does not exist or is not

readable!"

177 echo "Please put the >models.do < file in $MYDIR and make it

available!"

44

1 demoChain01

178 exit -1

179 fi

180 MODELS =($(cat "$MODELFILE"))

181 if [[${#MODELS [*]} < 1]] ; then

182 echo "ERROR: models.do does not include a model; it ’s empty!"

183 echo "Please write one model per line in the >models.do < file!"

184 exit -1

185 fi

186

187 # sort models in a correct order and check if all models exist

188 checkChain

189

190 # The first models needs an input , which is fetched here

191 if [[$DEBUG -ge 1]] ; then echo "Getting input for ${MODELS

[0]}..."; fi

192 myCopy "FETCH" "demodata/demo.input.${MODELS [0]}. tgz"

193 if [[$DEBUG -ge 1]] ; then echo "done."; fi

194

195 ###

196 # execute the model

197 ###

198

199 # Save original JOBDIR to write it back

200 ORIGJOBDIR=$JOBDIR

201

202 # Save the last executed model to get later the correct

configuration file

203 PREVMODEL=${MODELS [0]}

204

205 # starting the loop , executing model after model

206 for model in $(seq 0 $((${#MODELS[@]} - 1)))

207 do

208 if [[$DEBUG -ge 1]] ; then echo "$1: Starting ${MODELS[$model

]}"; fi

209 runModel ${MODELS[$model]} $PREVMODEL

210 PREVMODEL=${MODELS[$model]}

211 if [[$DEBUG -ge 1]] ; then echo "${MODELS[$model]} finished."

; fi

212 done

213

214 #

215 # generate output -file

216 #

217

218 # Set original JOBDIR and collect output archives

219 if [[$DEBUG -ge 1]] ; then echo "Collecting Output from $1... "

; fi

220 JOBDIR=$ORIGJOBDIR

221 cd $JOBDIR

222 tar -czf $OUTPUTFILE output .*

223 if [[$DEBUG -ge 1]] ; then echo "done."; fi

224

225 # Output is uploaded in start.sh to server

45

demoChain source code

2 demoChain02

Listing 2: demoChain02 model script

1 ################################

2 # #

3 # demoChain02 script #

4 # #

5 ################################

6

7 #

8 ## Writing pre -defined models in models.do file

9 #

10

11 if [[$DEBUG -ge 1]] ; then echo "Setting up models.do file ...";

fi

12

13 TMPMODELS="$MYDIR/models.do"

14

15 echo "wrf -parallel" >> $TMPMODELS

16 echo "rfarm" >> $TMPMODELS

17 echo "ribs" >> $TMPMODELS

18

19 if [[$DEBUG -ge 1]] ; then echo "done."; fi

20 if [[$DEBUG -ge 1]] ; then cat $TMPMODELS; fi

21

22 #

23 ## run demoChain02 via demoChain01

24 #

25

26 . $MODELDIR/demoChain01.sh

46

3 demoChain03

3 demoChain03

Listing 3: demoChain03 model script

1 ################################

2 # #

3 # demoChain03 script #

4 # #

5 ################################

6

7 #

8 ## Writing pre -defined models in models.do file

9 #

10

11 if [[$DEBUG -ge 1]] ; then echo "Setting up models.do file ...";

fi

12

13 TMPMODELS="$MYDIR/models.do"

14

15 echo "wrf -nmm" >> $TMPMODELS

16 echo "rfarm" >> $TMPMODELS

17 echo "drift" >> $TMPMODELS

18

19 if [[$DEBUG -ge 1]] ; then echo "done."; fi

20 if [[$DEBUG -ge 1]] ; then cat $TMPMODELS; fi

21

22 #

23 ## run demoChain03 via demoChain01

24 #

25

26 . $MODELDIR/demoChain01.sh

47

	Introduction
	Related Work
	DRIHM project
	Hydro-Meteorological Research (HMR)
	Integrating HMR resources in grid resources and HPC
	Hydro-Meteorological models

	Executing models in DRIHM
	DRIHM front end: the portal
	DRIHM back end: the bash script start.sh
	Grid environment

	Problem conclusion

	Efficient chaining of models in DRIHM
	Concept
	Preparations

	Implementation
	Workflow as one model
	Loop for model executions
	The modularized demoChain

	Pre-defined model chains in DRIHM
	Results summary

	Summary
	Evaluation
	Summary and outlook

	List of Figures
	Bibliography
	demoChain source code
	demoChain01
	demoChain02
	demoChain03

