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Abstract

Denial of Service attacks are a threat to computer networks. One variation of them
which is even more dangerous are Ampli�cation attacks. Although this attack type is
researched well, including multiple proposals to overcome the problem, new attack vec-
tors arise frequently. There are multiple approaches using di�erent detection methods
on the victim side. On the ampli�er side, where the problem has to be dealt with to
reduce the impact of such attacks, surveys present new a�ected protocols frequently.
However, the attacks adapt to the new situation dynamically and abuse other suscep-
tible faults. Therefore, we research the visual approach to gain knowledge about the
attacks on basis of an existing attack detection approach. Using the output data of
the detection software, we propose software that generates a graphical representation.
This can be used to evaluate the attacks within the ampli�er’s network to immediately
receive detailed information about them.



Zusammenfassung

Denial-of-Service-Angri�e haben sich zu Ampli�cation Attacks weiterentwickelt, wo-
durch die Gefahr für Netwerke steigt. Obwohl diese Art des Angri�s gut untersucht
ist und es viele Vorschläge zur Lösung des Problems gibt, entwickeln sich regelmäßig
neue Angri�svektoren. Für die Seite des Opfers gibt es mehrere Vorschläge mit unter-
schiedlichen Herangehensweisen. Auf Seiten des Ampli�ers, wo das Problem gelöst
werden muss um die Auswirkungen solcher Angri�e zu verringern, werden regelmäßig
neue anfällige Protokolle durch wissenschaftliche Untersuchungen vorgestellt. Dennoch
passen sich die Angri�e dynamisch an die neue Situation an und nutzen neue unbe-
kannte Schwachstellen aus. Daher forschen wir an einer visuellen Herangehensweise,
um Wissen über die Angri�e auf Basis eines existierenden Angri�serkennungsansatzes
zu erlangen. Wir stellen Software vor, die auf Basis der Ausgabe der Erkennungssoft-
ware eine graphische Repräsentation der Daten erstellt. Diese kann genutzt werden,
um die Angri�e im Netzwerk des Ampli�ers unverzüglich einzuwerten, um detaillierte
Informationen darüber zu erhalten.
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Chapter 1

Introduction

Nowadays, downtimes of individual systems or bigger parts of networks are dangerous
for business operations and even public safety. Thus, attacks on network infrastructures
are a threat to economics, as the internet is a crucial basis to all kinds of communication
as well as critical infrastructures.

Denial of Service attacks are one option for attackers to bring down a victim’s system
by exhausting its resources with a large amount of packets sent to it. Nonetheless, this
is also very resource-intensive for the attacker herself. Thus, attacks are commonly
conducted by several attackers at once, combining their resources. However, these
attacks have evolved to more advanced Ampli�cation attacks, which utilize the fact
that some kinds of requests entail a much larger answer. Combined with a forged IP
address or conducting the attack from within the victim’s network, this overwhelms
the target network very fast. There were many attempts to analyze �aws allowing for
these attacks. Previous work examined targets and evaluated impact. Despite attempts
to sanitize con�guration �aws [1, 2], new possibilities are found frequently [2]. Also,
attack detection [3, 4] is an important step, but not a �nal solution, as it does not allow
learning about the attacks because it lacks a comprehensible output.

As visualization evolves and facilitates evaluation of large amounts of data, we aim to
provice knowledge about these attacks this way. Therefore, our goal is to contribute
analysis options to the topic by implementing specialized visualization on basis of a
previous detection approach by Böttger [3].

Within this thesis, we use the female form for the attacker, while using the male form
for anything else, mainly the person of the network operator.
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1.1 Scienti�c questions

In this thesis, we propose a toolkit which informs about Ampli�cation Attacks in real-
time and helps analyzing and understanding them. That way, the underlying problems
in system and protocol design can be solved to prevent further exploitation. To achieve
this goal, we want to answer the following scienti�c questions. For each question, we
give additional background on its meaning here. We will refer to the question numbers
later again for an answer.

Q1 How can we e�ectively visualize ampli�cation attacks such that a network operator
can easily detect them? This question can be split into the parts of e�ective
visualization and some form of warning in abnormal cases. An answer to the
latter could be a warning system to alert the network operator in case of a detected
attack. Therefore, the attack has to be detected automatically to be able to classify
it as abnormal behavior. Following that, a warning has to be sent out using a
communication interface, e.g. a GSM gateway or a mail server. Then, the network
operator can check within the system for the cause of the alert. Therefore he can
use the timestamp of the message he received as a search criterion. Thus, our
task is to develop visualization that immediately informs about the main attack
parameters only requiring this information.

Q2 How can we recognize, which internal and external systems and networks are a�ected?
To allow for this, detailed investigation on the a�ected systems must be possible.
Therefore, we need information to classify the attack. Possible classi�cation
characteristics could be size and severity. Moreover, we require information
about a�ected services and systems. This data hat to be combined to be able to
focus on the important events immediately.

Q3 How can we react accordingly by shutting down or limiting access to systems or
services? This and the next question correlate to each other, as both seek for ways
of reaction to an attack. Here, we focus on short-term reactions like shutting down
services or taking systems out of the network. Therefore, we need the information
from Q2 and Q1 to be able to react and determine the a�ected systems and the
type and size of the attack to assess an adequate reaction.

Q4 How can an attack be investigated later in detail to learn from it? After remediating an
attack using Q3, we want to be able to investigate the attack in detail to determine
the root cause. Therefore, the visualization has to answer which systems and
services were a�ected, like in Q2, but we also need as much information about
the attack as possible. Therefore, we aim so store the event information for later
re-examination.

Q5 Does the visualization help to identify false positives or false negatives? Finally, we
want to be able to assess the alert to determine whether it was an attack and



Chapter 1. Introduction 3

di�erentiate it from false positives. In addition to that, we also want to interpret
other eye-catching tra�c for suspicious patterns. We will present ideas on how
to achieve this in chapter 6.

1.2 Outline

This thesis is structured as follows: In chapter 2, we will introduce the necessary terms
to understand the topic and present the basic components of our toolset. Next, we
will present related work in chapter 3, split up into approaches to detect Ampli�cation
attacks, a listing of vulnerable protocols as well as general and network security spe-
cialized visualization approaches. Following that, we will present our proposed System
Architecture in chapter 4, describing the black-box view of our design to facilitate the
understanding of the actual implementation in chapter 5. We will then check the de-
veloped system against our scienti�c questions to determine functionality coverage in
chapter 6. Finally, we will summarize our �ndings and propose open topics for future
work.
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Chapter 2

Background

Before diving deeper into the topic, we will use this chapter to clarify some important
terms we use in the following. Therefore, we �rst classify the term Ampli�cation attack
in the �eld of network attacks, talk about the environment and the prerequisites it needs
to ful�ll for the attack to work. We also discuss possible impact and detection options.

2.1 Attack classi�cation

Attacks on computer systems can be split into several groups according to di�erent
criteria [5]: By attack source, you can split the �eld of attacks into internal from direct
access to a system or application vs. external through some kind of network connection.
By impact, attacks can be classi�ed as data disclosure or manipulation, Denial of Service
(DoS), among several others. Data manipulation means that the attacker changes data
on the system purposefully to attain some goal, while data disclosure means copying
data from the system and maybe publishing it. Using a DoS attack, the attacker in some
way disables the attacked system or some service on it.

Other possible classi�cations contain the type of the attacked system or service, the
assessed impact severity, the exploited vulnerability or the pursued objective of the
attacker.

2.1.1 Denial of Service attack

As we have clari�ed above, a DoS attack aims at disabling the attacked system or a
service it o�ers. This can be achieved in several ways: to conduct a malformed packet
attack [6], the attacker could send a packet which has special impact on the victim
like a system crash, thus disabling it. An example would be the Ping Of Death [5]
attack, which abuses bugs in the network stack of a�ected operating systems to crash
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the victim’s computer using a bu�er over�ow attack. Apart from this, there are lots of
attacks that aim at overwhelming a target device by sending a large amount of packets.
These can be divided into Resource Depletion or Bandwidth Depletion attacks [6]. They
intend to overrun a host by sending large amounts of computationally intensive packets
or a host or network by sending a lot of, sometimes very large packets to fully saturate
the inbound network link of the victim. Our approach focuses on the detection of those
large amounts of packets, as detection is feasible on a network level for these attacks.
Malformed packet attacks can be better detected on the target host, as presented later
in chapter 2.3.

2.1.2 Distributed Denial of Service attack

A Distributed DoS attack (DDoS) di�ers from a normal DoS attack by making use of a
large amount of attackers. The Agent-Handler model [6] describes a common structure
used to conduct these attacks: the handlers are responsible for communication between
attacker and agents and therefore interconnected. The agents are also called secondary
victims or zombies. Therefore, the attacker has to send an instruction to a handler
controlling the required amount of agents to conduct an attack on the (primary) victim.
This way, the attacker cannot easily be detected, while controlling a large amount of
attacking devices.

2.1.3 Re�ected Denial of Service attack

A Re�ected DoS attack (RDoS) di�ers from the ones mentioned before by utilizing a
remote system as a tra�c re�ector for an attack. This can be achieved by forging the
source address of outgoing packets which require an answer by the receiver. Therefore,
the answer will be re�ected to the victim. The re�ector cannot easily detect the attack,
as it is indistinguishable from a legitimate request for him. In addition to that, neither
the re�ector nor the victim knows where the attack came from. [7]

Distributed and re�ected DoS attack schemes can be combined to a DRDoS attack,
making use of their joint advantages. [6, 8, 9]

2.2 Ampli�cation attack

An Ampli�cation attack belongs to the �eld of DoS attacks, as its aim is to �ood a
computer system, network or connecting link and thus make it unavailable to legitimate
users. However, instead of directly �ooding a system, rendering it unresponsive to
legitimate usage, it achieves this goal by using an ampli�er. An ampli�er can be any



Chapter 2. Background 6

Amplifier Network

Amplifying Server

Victim

Border Router
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Figure 2.1: Ampli�cation setup

service which answers with a higher amount of data than the query size1. As the
attacker generally aims at a remote system which she is outside of, she has to carry out
a re�ected DoS attack which is able to hit a remote target, usually achieved by sending
a forged source IP address with the query. Using this, the attacker sends queries to the
ampli�er which in return sends the ampli�ed answers to the victim. [6, 10]

Ampli�cation attacks can make use of several faults outlined later. Thus, it is possible
that the answer packet to a request is much larger, but it is also possible that an answer
packet is repeated many times. The di�erence in size or packet count is used to calculate
the Ampli�cation Factor α :

Tra�cToVictim [B]
Tra�cToAmpli�er [B] = α (2.1)

2.2.1 Impact

An Ampli�cation attack allows the attacker to �ood the victim with a lot of tra�c, only
spending a relatively small amount herself. Thus, she can run this type of attack even
with low resources on computing time and network bandwidth. Due to that, her attack
cannot be detected easily. For the ampli�er, the attack looks like legitimate tra�c which
cannot be separated from normal requests due to IP address spoo�ng. Therefore, without
any of the detection approached outlined during this work, he cannot distinguish the

1Apart from the amount of data, there are other possibilities to do an Ampli�cation attack which will
be outlined later in this chapter.
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attack from a high volume of tra�c or even notice it, depending on the size of the
attack and the usual load on his systems. The victim, however, can commonly detect
the attack quite fast, as the network link is expected to be saturated, because usually
the attacker selects an ampli�er with a much faster connection than the victim has.
Also, the internet provider of the victim could detect the attack due to suspiciously high
tra�c volume without any corresponding requests from the victim. Due to that, he
could block the ampli�er as a sender of the packets from his network, and thus make its
services unavailable to customers. This unavailability could imply sales or repudiation
losses, for example. In addition to that, costs could incur for the ampli�er by the high
amount of tra�c, or legal problems could arise. Therefore, an ampli�er network should
be protected against such attacks. [6]

2.2.2 Remediation

In chapter 2.1.1 we stated that the root cause of re�ection attacks is IP address spoo�ng.
Therefore, the IETF published BCP 38 [7] containing a solution to the problem. The
problem of IP address spoo�ng exists due to the fact that many routers do not verify the
source addresses of the incoming packets. Therefore BCP 38 proposes ingress �ltering,
which means that source addresses of packets are checked against a list of addresses
expected to arrive from that interface. If that would be done on every router, address
spoo�ng would be impossible. Although this proposal is more than 15 years old, the
problem still exists. Due to the fact that this solution cannot be incorporated by a single
network to solve the problem, but must be rolled out broadly, it does not help us.

Thus, we focus on remediation of such attacks using a detection approach. Detection is
possible on the victim and ampli�er side. Solving the problem, however, is only possible
on the ampli�er, as the victim is not capable of acting against the attack. [10]

Additionally, the attack can be solved by disabling public reachability of a�ected services.
Thus, our approach focuses on �nding such services using visualization to be able to
eliminate the issues, as described in Q4. Within the related work chapter, we will
describe several examples and mitigation options.

2.3 Introduction to Security Software

Within this thesis, we heavily rely on two groups of security products: Intrusion Detec-
tion Systems (IDS) and Security Information and Event Management systems (SIEM).
Before we continue, we therefore have to clarify the terms. We thus describe the main
tasks and features of these two product types.

Viinikka et al. [11] give a broad introduction into the topic which we thus take as input.
According to them, the main reason for the necessity and development of such software
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is insu�cient access control to computer systems. Due to that, it is an IDS’ task to
detect events which breach the security policy. To achieve that, it analyzes the data
stream in question, which in our case is the data traveling through the network inter-
faces of the border router. Two di�erent approaches to detect suspicious events exist:
misuse-detection and anomaly-detection. The �rst one depends on a rule con�guration
representing the security policy as input, while the latter one tries to detect suspicious
events by reacting to anomalies within the data stream, and therefore needs no explicit
ruleset. Wherever we know the attacks we want to secure our systems against, we
should therefore de�ne rules for misuse-detection carefully to catch all cases. This
also applies to our approach. However, if we do not know which attacks to expect,
anomaly-detection can be an option to identify questionable actions. An IDS can have
a special task like monitoring one runtime environment or service, while it can also be
responsible for the security of single host (H IDS) or a whole network (N IDS). Therefore,
the existing systems have di�erent functionality. It is then the task of a SIEM system
to collect the alerts the di�erent IDS systems, also called sensors, created and combine
them to provide a global2 view of the security state. This is achieved by functions
like alert correlation, display and threat management. The collection of data from the
sensors is done by log�le analysis or exchange via speci�ed interfaces. A SIEM system
also has the responsibility to alert the network operator in con�gured cases, e. g. via
mail.

2.4 Software

As a practical part, we have implemented visualization for Ampli�cation attacks. There-
fore, we have chosen existing standard systems to build upon which we describe in
the following. As a general overview, we use Suricata for detection of Ampli�cation
attacks, Prelude as event storage and database functionality to close the gap by sup-
porting aggregated and sorted output to D3.js. Figure 2.2 on page 9 gives a graphical
representation of the system design.

2.4.1 Suricata IDS

Suricata [12] is a Network Intrusion Detection System (NIDS), also including an in-
trusion prevention module which allows it to detect and also block network tra�c
according to a prede�ned rule set. Suricata knows many high level protocols due to
its included protocol identi�cation, allowing for easy and complete rule creation on
a basis of protocol names instead of ports. For detected events, Suricata can log ad-
dress information to a �le, or even store the whole packet data. Likewise, it provides
interfaces to some other tools in the IDS �eld. However, Suricata is not able to output

2Global in this case means including all systems within the network or company.
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D3.js Graphing

Prewikka Web Interface, Alert View

Prelude
(SIEM) Data Storage, User Alerting

Suricata
(IDS) Detection, Alerts Prelude

Figure 2.2: Software

event data in any easily understandable form for large amounts of data. The Suricata
Engine is multi-threaded, thus scalable, and automatically splits the workload of packet
capturing, processing and detection onto multiple CPU cores, This allows for usage
also in large environments without con�guration or scalability problems. Suricata is an
open-source project maintained by the Open Information Security Foundation (OISF)
which is a non-pro�t organization, and supported by various development members.
As of writing the current version of Suricata is 2.0.8, released May 6, 2015. In many
of the base features like logging format or rule de�nition, Suricata is very similar to
SNORT IDS.

During the former work by Timm Böttger [3] which we build upon, the Suricata IDS
has been extended by Ampli�cation attack detection. Also, Suricata supports alerting
for con�gured network events using the IDMEF, a standard for alert exchange within
IDS systems. Due to these features, we reuse Suricata for the detection in this work.
We also de�ne an extension to the rule set and the standard IDMEF interface to include
additional information in chapter 4.

2.4.2 Prelude SIEM and Prewikka web interface

Prelude [13] is, as described by the authors, a "universal Security Information & Event
Management (SIEM) system", which itself is agentless. This means that it is not directly
able to detect network events. However, it is also universal which means that it can
basically work with any kind of input by evaluating output �les. Apart from evaluating
log �les, it also can receive IDMEF messages which is one of the reasons why we use
it. The knowledge Prelude learns from the attached input data is stored to the Prelude
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database which is designed according to the IDMEF message layout. This fact simpli�es
interface development, as it is easily comprehensible and well documented. Evaluation
of the database entries is possible within Prewikka, the web interface to Prelude which
allows for sorting, �ltering and grouping of alerts according to alert type, address and
time criteria. We therefore use Prelude as a database backend and Prewikka as a user
interface which we build visualization upon.

The current version of Prelude Open Source Edition (OSS) is 1.2.6, released August 2015
by Systèmes d’Information. There also is a Pro Edition which has additional features,
but is closed source and thus not usable for us as an extension basis.

2.4.3 D3.js

For the visualization tool, we need a highly extensible platform to build upon to create
a diverse set of graphs on top of it. As an input type, we require the import of tables
we receive as an output from Prelude database queries. Also, we require basic support
for aggregation of entries to reduce the number of database query de�nitions, while
still being able to rearrange graphs in any dimension to outline important details. For
usability of the visualization, we require �exibility to allow the network operator to
change the view to data range and types according to his needs to simplify analysis of
attacks.

As such �exibility can be achieved easier using a client-side solution, and we aimed
at integrating it into Prewikka which is running on the server-side, we looked for a
web-based solution and found the JavaScript Library Data Driven Documents [14, 15]
(D3) to support our requirements. D3.js, current version 3.5.6 released Jul 4, 2015, is
maintained by Mike Bostock as a GitHub project with many supporting developers and
released under the open-source BSD license. Complete developer documentation and
many examples on the internet further facilitate usage and extension of D3.js according
to our requirements.

To connect Prelude to the D3.js library, an interface is required to extract the datasets
from the database in an aggregated and sorted �le format which D3.js understands as
standard input. We will design and implement this as a part of this thesis, as outlined
in chapter 4. In chapter 3.2, we will present D3.js in more detail and justify our choice.
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Chapter 3

Related work

In the previous chapter, we introduced the necessary background which we now build
upon to outline the literature related to our work. We will split this into the following
parts: First, we will focus on Ampli�cation attack detection, where we will contrast
other approaches of Ampli�cation attack detection with our visualization. Afterwards,
we describe visualization toolsets which we evaluated during this work and outline
their di�erences which lead to the choice we introduced in chapter 2.4.3. Finally we
will look at visualization, where we compare existing attack visualization techniques to
our development. For reference within the evaluation, we will also present a subset of
protocols vulnerable to Ampli�cation attacks for a deeper understanding of the threat
and its forms. For each related work, we will give a short summary of the relevant parts
and subsequently set it in context to our approach.

The literature related to the IDMEF standard which forms the interface from Suricata
to Prelude will be outlined in chapter 4 together with the developed interface.

3.1 Ampli�cation attack detection

There were numerous previous approaches to detect Ampli�cation attacks. However,
many of them focused on detection at the victim. As we focus on attack visualization
at the ampli�er, only parts of these approaches are usable for us. Therefore, we will
�rst introduce the relevant parts of this side, and eventually concentrate on detection
approaches at the ampli�er. As DNS Ampli�cation attacks are a well-researched topic
due to numerous previous attacks [16], we will refer to these quite often. However our
approach is not protocol-speci�c.
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3.1.1 Victim-based detection

At the victim, detection of an Ampli�cation attack is quite easy, due to incoming tra�c
that cannot be matched to any existing connection on the edge router [17, 18]. The
exception is a network including externally reachable servers, which is also covered by
the research presented below. However, remediation is di�cult or not possible at all,
as the tra�c induced by it can utilize large amounts or all of the incoming bandwidth.
Due to that, legitimate tra�c cannot be transferred anymore. Therefore, a victim that
detected an Ampli�cation attack is dependent on his provider to block the tra�c on his
behalf [8].

Kambourakis et al. [17] propose a detection algorithm for DNS Ampli�cation attack
detection based on the matching of incoming and outgoing packets. They start by
classifying Ampli�cation attacks, like we do in chapter 2, but not as detailed, as they
do not di�erentiate between resource and bandwidth depletion. Subsequently, they
give examples of conducted attacks against DNS servers and explain how attacks are
conducted actually and describe the vulnerabilities within the DNS system allowing this.
Their general detection approach makes use of the fact that there has to be a DNS query
originating from their network to justify an answer, and answers without a query packet
are evil. Therefore, they operate on basis of a strict one-to-one mapping for DNS requests
and responses which they measure on an edge router of their network. If an incoming
DNS packet can be matched to an outgoing one, it is therefore legitimate. However, on
receiving an incoming packet with no preceding request, it is classi�ed malicious. If a
prede�ned amount of packets is reached, an alert is generated and the sender is blocked.
In their evaluation, their approach proves useful. However, the database keeping state
of the system grows very large, as they have to store source and target port and IP
addresses for every connection attempt. They conducted the evaluation and attack
simulation within their university network, which also was accessible via internet.

Sun et al. [18] improved that algorithm by not keeping state about every connection, but
only comparing the amount of incoming to outgoing packets. They argument that in
normal operation, the di�erence in number should be minimal due to the fact that there
exists a response to every packet. As they count packets within �xed length timeframes,
it could however happen that a response is captured in the timeframe following to the
one with the query. Thus, minimal di�erences can appear. Taking that into account,
they set a threshold to di�erentiate between normal operation and an attack scenario.
This way, they overcome the state keeping problem of Kambourakis et al. and create
a solution that uses a static amount of memory and low computing resources also on
heavy usage.

As both did detection on the victim side, their approach is not useful for us, because we
do have a request for every response. However, the comparison of incoming to outgoing
packets, although on a packet size and content level, can help us to classify an attack.



Chapter 3. Related work 13

The reduction on state keeping could however be useful to reduce the amount of data
processed for a summary graph.

3.1.2 Ampli�er-based detection

In chapter 2.1.1 we raised that RDoS attack detection on the re�ector is di�cult due to
the fact that the incoming RDoS queries are indistinguishable from legitimate tra�c.
Due to the shared structure between those and Ampli�cation attacks, this is also valid
here for the ampli�er. Due to that, there have been several approaches to facilitate this:

Rossow [2] published a survey of protocols vulnerable to Ampli�cation attacks, includ-
ing his �ndings about the number of vulnerable hosts on the internet. He also installed
honeypots for known vulnerabilities to determine their exploitation. Furthermore, he
conducted and evaluated measurements to �nd Ampli�cation attacks. His �ndings give
us a lot of information about actual attacks which we can use as input to determine
visualization requirements. However, our goal is a general approach, while Rossow
focused on a set of application layer protocols. Still, it gives us valuable input on possible
attack vectors, for example TCP, which we will describe in section 3.4.3. In addition to
that, his �ndings inform about the actual �aws which enable an attacker to abuse the
mentioned services as ampli�ers.

Böttger (et al.) [3, 4] contributed a software solution that is able to detect ampli�cation
attacks. Therefore, they extended the Suricata IDS to support detection of ampli�ed
packets. The implementation is based on pair�ows, which represent the communication
between one source within the ampli�er network and a target outside of it. A pair�ow
is de�ned using the IP addresses of source and destination hosts, the source port and
the number of packet payload bytes sent from server to client and vice versa. This data
is then used to calculate the ampli�cation factor for corresponding pair�ow. Using their
implementation, they conducted measurements at the border of the MWN network,
which interconnects the Munich research institutions and universities to each other and
the internet. Using the captured data, they developed criteria to classify the packets:

Request and Response Packet Size Similarity is used to determine the similarity
of packet sizes of request and response. They arguments that an attacker is limited
to a small set of queries which lead to an ampli�ed answer. Therefore, the packet
size must be very similar. Due to that, also the packet size of the responses is
expected to be very similar, as a small set of queries results in a small set of
answers. Therefore, they calculate the proportion of lengths for incoming and
outgoing packets separately and combine it into this criterion. They evaluated
that packets exceeding a threshold of 75% are most likely ampli�cation attacks.

Request and Response Payload Similarity is used to determine the packet content
similarity using a zip compression algorithm. They calculate the similarity by
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zipping the concatenated packet data and then comparing the length of the com-
pressed packets to the length of the uncompressed packets. Finally, the delta
between the calculated value and 1 is the result. Again, this is done for queries
and responses separately and based on the mentioned argumentation.

Unsolicited Messages: A host that receives unsolicited tra�c usually answers with
ICMP port unreachable messages and thus tells the sender that it didn’t expect
the packet. Thus, the number of these ICMP messages is an indicator that there
probably is a type of RDoS attack ongoing.

IP Spoo�ng: They argue that IP spoo�ng can be measured by comparing TTL values
of incoming packets from the attacker to conducted hop count measurements to
the victim. If these numbers are not equal, they classify the corresponding pair�ow
as susceptible. However, outgoing measurements are not always possible due to
blocking �rewalls or overloaded victims. In addition to that, there is guessing
involved to interpret the incoming TTL values. We will outline this in detail later,
when we describe the visualization of this criterion.

Within the thesis by Böttger [3], also a scoring system was proposed to use size similarity,
unsolicited messages and IP spoo�ng as indicators. For the subsequent paper, Böttger
et al. [4] disregarded the two latter criteria as not precise enough. Therefore, also
the scoring system was dropped. Using these described values, they conduct another
measurement to give proof of their criteria. They conclude with a list of limitations of
their approach, which, however, are mostly of hypothetical nature. For the visualization,
we will use all of their proposed criteria, as they give important or at least supporting
information.

3.2 Visualization toolsets

Data Visualization is a relatively young research �eld which is being heavily worked on.
We therefore picked up two di�erent approaches that meet our general requirements
from chapter 2.4.3 and the scienti�c questions. We compared their work and goals to
each other and evaluated them against our requirements.

The aforementioned D3.js visualization framework is presented by Bostock et al. [15]
in a paper describing their goals and starting points. They start by describing a set
of disadvantages of other toolsets, including their previous work on ProtoVis which
they wanted to overcome by their new approach. The �rst problem was the breaking of
existing standards by toolsets building upon and encapsulating these and thus making
them unavailable for the developer. Thus, knowledge about standards is wasted and new
users have a long learning phase. This eventually leads to low e�ciency. Inferior docu-
mentation and restricted debugging possibilities combined with the former argument
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result in impaired accessibility. Additionally, encapsulation can lead to reduced expres-
siveness and performance drawbacks by not utilizing other optimized technologies. Due
to that, it was their goal to develop a new toolset with compatibility, debugging and
performance on their minds to overcome aforementioned problems. Therefore, their
approach, D3.js, is rather a visualization framework, as it only interfaces preexisting
functions. It depends on existing browser technologies like CSS, SVG and HTML to
format the page and its elements and to create a graphical representation. Therefore,
it also makes use of existing interaction and animation technologies of modern web
browsers. Next to a data import interface which is also capable of aggregation and
sorting, it has a prede�ned set of graph layouts and a set of high-level modules for
special visualization. In the remainder of the paper they introduce their design in detail,
compare code samples of several approaches and evaluate usability and performance,
where their approach scores well and works as expected. As this approach meets our
requirements by a preexisting set of graphs and samples we can rely on and also allows
for other graphs by its framework design, we will utilize D3.js for our visualization.

A di�erent approach that could have been useful within this thesis was introduced
by Wongsuphasawat et al. [19] towards the end of the thesis. They contribute the
Voyager visualization browser which utilizes a data-driven design. This means that the
data to be visualized is selected �rst, and only subsequently a set of possible graphs
is shown by the system which the user can select. They want to enable users to look
at previously disregarded data or views. This is achieved by providing automated
graph generation within a browser-based proposal system. In the remainder of the
paper, they present their user interface and recommender system and compare their
approach to a conventional approach using manual graph de�nition. They conclude
that their approach facilitates and encourages broader exploration of data due to its
recommender system and automated graph generation. Voyager does, however, not
include all graph types we will de�ne in chapter 4.4. Its approach does for example deny
an easy extension by geographical maps or other specialized graph types. Therefore,
it is not a candidate for us, although it o�ers interesting additional functionality. The
system looks promising for visualization of an unknown dataset. Therefore, it would be
interesting for us to further evaluate the header �elds and content of packets belonging
to Ampli�cation attacks, as it could facilitate additional evaluation. However, packet
data would have to be preprocessed and formatted for Voyager which could only be
done by evaluating a large dataset of Ampli�cation attacks and therefore is out of scope
for this thesis.

3.3 Visualization approaches

In this section we will outline other visualization approaches and check their ideas for
applicability to Ampli�cation visualization.
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Yu et al. [20] present a visualization analysis tool focused at detection and analysis of
DNS Ampli�cation attacks. Their approach also includes an IDS system for detection
and a very basic SIEM-like database for packet storage. The database is evaluated by a
GUI using an algorithm to count UDP packets that belong to DNS port 53 which they list
within a graph. The time-series representation displays packet count per timeunit and
therefore shows a sudden raise in the graph for suspicious events. As an Ampli�cation
attack consists of a lot of packets, the GUI alerts the network operator visually or
acoustically when a prede�ned threshold of such packets is exceeded, letting him view
the graph and decide on an action. In addition to that, the GUI allows �ltering, grouping
and sorting of the events as well as displaying packet content. These are noticeable
similarities to our approach, as they give additional information for diagnosis of the
attack. However, their setup can be overwhelmed by an attack very fast, as there is
no limit in packet storage, like in Böttger [3]. Also, they do not di�erentiate between
legitimate and evil tra�c, but just count packets. Thus, high usage of a service could
be misclassi�ed as a false positive. Also, by just focusing on the known port, attacks
to other services can be missed, leading to false negative classi�cations. However, the
approach of displaying the number of packets is useful to analyze the development
of an attack and compare events, if based on decent criteria. The operator alerting
functions can be improved for di�erent use cases by allowing for messages to be sent
to a communication gateway. This would also allow alerts via E-Mail or SMS which are
more useful when the system is not under constant supervision. Using a preexisting
SIEM system to include the visualization into also allows it to be used for other purposes
as well, in contrast to this approach, which developed their own specialized system.

Shiravi et al. [21] contribute a broad review of network security visualization systems.
They start o� describing the importance and advantages of visualization for network
security, as well as the usability requirements. After presenting possible data sources
for network security assessment and visualization, they present a list of visualization
systems. The systems are chosen according to suitability for network security visual-
ization, contribution of new techniques and are required to be checked for usability.
In their opinion, a visualization system should be use-case driven and support in an-
swering speci�c questions to its domain. Data sources should be utilized according to
requirements. They arrange their �ndings according to a taxonomy of operational area
and begin with the two parts of host and network monitoring, which give the most
valuable input for us. First, IPs and also Port numbers can be aligned using two axes,
which greatly improves informative value due to less aggregation, while saving space.
Magni�cation or zooming can be utilized to drill down into lower levels for deeper
analysis, while providing an aggregated complete system view.Also, logarithmic scales
or sophisticated grouping can help to emphasize on important details, while saving
space. This can be used for both node representation and data alignment. Colors should
be used not only for graph styling, but also information encoding in a comprehensible
way which means that they should be self-explanatory and sustained within the whole
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system.Filteringhelps to keep track of the important developments, while suppressing
unimportant information. However, automated �ltering must make sure that no neces-
sary information is hidden from the network operator. This can also be a problem for
learning algorithms, which possibly withhold a slowly developing attack. Correlation of
internal to external address data could help to analyze data �ows.Interactive charts allow
for a deeper understanding of the data, while 3D graphs in most cases give no additional
advantage on an information or usability basis over thoroughly designed 2D graphs.
The ideas we extracted above could be usable for Ampli�cation attack visualization as
well. Later in the paper, they present more specialized visualization types, which are not
of interest for us. One example is a visualization of DNS tra�cwhich however focuses
on the application layer too much to be generalizable. Summing up, they provide a re-
quirements list, developed from detected issues and a lookout to networks development.
They see the biggest problems in scalability, as system output should be able to present
a high-level alert overview easily understandable by humans. They present a sorted
table of their �ndings for future reference. In the end, they also mention privacy as
an issue visualization has to deal with. However, they propose pseudonymization as a
solution, which cannot be used in conformance with the German Data Protection Act
due to reversibility.

3.4 Vulnerable protocols

In this part, we present a selection of protocols susceptible to Ampli�cation attacks.
As we described, the general solution to RDoS attacks would be the implementation
of ingress �ltering on every edge router of a network. However, the vulnerabilities
can also be solved within the a�ected protocols. Therefore, we present a taxonomy of
faults in the following, enriched by a selection of protocols as examples. Thus, taking
advantage of our proposed visualization is possible due to better knowledge of the faults.
This helps the network operator to reduce weaknesses.

3.4.1 General properties and categorization

Problems within the protocol design can allow Ampli�cation attacks which are often
di�cult to �x without breaking important properties of the design. The fault can also
be a problem within the actual implementation or its con�guration, thus only a�ecting
a sub-group of all services of that type, mostly identi�able by a system �ngerprint [10].
Depending on the exact problem, the maximum reachable or typical Ampli�cation
Factor is limited which can also be used as a categorization.

We will classify the protocols we look at in the following according to these criteria,
as this provides important facts for the visualization con�guration and evaluation and
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required reactions to an attack:

3.4.2 Connectionless protocols

Connectionless protocols do not establish a bidirectional connection before sending
actual data by design. Therefore, they are not capable of verifying the authenticity of
the request which renders them vulnerable to IP spoo�ng and thus re�ection attacks.
The impact can be reduced by including state establishment into the application layer
protocol. However, this is not always possible easily due to a broadly used speci�cation.

The list of protocols vulnerable to Ampli�cation attacks basically contains all UDP based
protocols. In the following, we will present two examples which are subject to the �aws
outlined in chapter 3.4.1.

The Domain Name System (DNS) is a service that translates addresses to addresses of
another type, e.g. Domain Name to IP Address, and delivers additional information on
request. The DNS servers are structured in a tree layout. Each server is responsible
for a small subspace of the domain tree and thus stores information about that part.
When receiving a query, it answers using information from the database or responds
with an upstream DNS server which is a parent in the tree. However, DNS servers
can also directly respond to queries not part of their subtree. In this case, they request
the information from the upstream servers on their own and respond to the client
with the �nal result. This feature is called recursion [22, 23]. The DNS server can also
be con�gured to cache this information for later usage. If a server answers recursive
queries from any host on the internet, it is said to do open recursion. Kambourakis et
al. [17] show that DNS is susceptible to Ampli�cation attacks due to several reasons:
First of all, it has to be fast with low overhead, as most other services heavily depend
on it. This is a design problem due to the fact that the behavior is de�ned in the DNS
RFCs [22, 23]. Apart from this, DNS servers con�gured to do open recursion on behalf
of a querying client allow for no additional data to be exchanged between the forged
source address and the server between query and �nal answer. Combined with the DNS
features which allow storage of large amounts of additional data within the database,
this allows for relatively small queries for a large dataset to be sent from the spoofed
source address of the victim to an open recursive DNS server, resulting in a very large
answer in return. Ampli�cation factors for DNS can be up to 40 due to the EDNS0 [24]
extension which allows for DNS packets of up to 4KB size. As DNS Ampli�cation is a
relatively well researched topic, we used it within the evaluation setup 6 during this
thesis. It also supports a high diversity of query and answer packets. For more details
on DNS ampli�cation, we refer to the ICANN which described an attack [16] and an
advisory [1] to �x the issues by disabling open recursion.

Another UDP example is Network Time Protocol (NTP) which o�ers the current time
to requesters. As shown by Kührer et al. [10], it is susceptible to Ampli�cation attacks
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due to additional commands that are often available in the default con�guration and
unprotected from re�ective DoS attacks in older versions. NTP allows for very high
Ampli�cation factors of up to 4670 and, in contrast to DNS, has a relatively small set
of commands and thus di�erent query packets. Due to this, it results in a low diversity
within the answer packets, as packets contain identical content. We therefore use it
within the evaluation setup 6 during this thesis to assess similarity as an indicator.

Two surveys [2, 3] and one extended investigation [25] of susceptible UDP-based proto-
cols give a more complete reference, showing that many important and frequently-used
protocols are vulnerable to Ampli�cation attacks.

3.4.3 Faults of connection oriented protocols

Yet, there are other a�ected protocols beside UDP. An example is TCP, as outlined by
Kührer et al. [10] which should not allow for a successful Ampli�cation attack by its
connection oriented design. TCP requires a 3-way handshake to succeed on connection
establishment before exchanging data. The handshake starts with a SYN packet from
the client initiating the connection to the server, containing a random sequence number
s#A. The server then has to answer with a SYN/ACK packet containing the ACK number
s#A + 1 and a random sequence number s#B . To establish the session, the client has to
answer with an ACK packet containing sequence number s#A + 1 and ACK number
s#B + 1. This protocol design should render Ampli�cation attacks impossible, as the
connection is teared down when an unexpected packet is received. However, there are
implementations which reply to an incoming SYN request with up to 20 repetitions of
the SYN/ACK packet, if these are not answered. This enables an attacker to successfully
conduct an attack which has an Ampli�cation factor of about 20.

3.5 Summary

In this chapter, we have presented two sets of approaches: First, we looked at detection
approaches. Following that, we justi�ed the selection of our chosen visualization toolset
D3.js. As a last point, we outlined other attack and security visualization approaches,
partly speci�c to Ampli�cation attacks. We outlined the advantages and downsides of
all systems and highlighted interesting ideas that could be useful for our approach.

In general, visualization and detection approaches are not really comparable. However,
detection has speci�c downsides that can be overcome with visualization building on
top of it. This includes human comprehensibleness, as emphasized by Shiravi et al. [21].
This enables the network operator to detect suspicious activity that would have been
unrecognized otherwise. However, the evaluation of visualization also is a very time-
consuming task. Therefore, the combination with detection is a win-win approach to
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utilize the advantages of both �elds.

We also have to note that standard network visualization usually focuses on performance
and link utilization in general and over time. Included statistics that rely on more than
size and timestamp of the packets, if any, usually focus on the source and target networks
and protocols or depend on prede�ned groupings. For attack visualization, only some of
these graphs are useful, while others have to be extended to be meaningful. Relying on
our research questions and the previous chapters about existing visualization methods,
we will elaborate on the graphs we will implement.

As a general rule the graphs have to be detailed enough to allow for speci�c investigation
of an attack, while still giving a good overview to easily recognize one. We will solve
this by a set of graphs that gives a general overview, while having the option to view
additional details using links to other data sources and also have special �lters to show
detailed information about similarities and a�ected systems and services.
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Chapter 4

System architecture

In this chapter, we will describe the system architecture we developed during this
thesis. Therefore, we will give a detailed description of the used software and developed
interfaces, but do not talk about the actual implementation, which will be covered in
the subsequent chapter.

We have to note that our selection of IDS and SIEM systems, as outlined in chapters 2.3
and 2.4, is only one possible choice of systems. Thus, the system design we outline below
can be transferred to any other systems in the �eld, which support the requirements
mentioned before. Of course, other choices therefore can replace the IDMEF or the
outlined interfaces, depending on software support or willingness to implement. To
ease replacements we will, however, clearly state which data is to be sent along the
interfaces using a black-box approach.

Within the following chapters, we will use speci�c keywords for important terms, which
we describe here:

event is used as an abbreviation to any Ampli�cation attack, detected or undetected.

alert is de�ned as one single message from the Suricata IDS to Prelude SIEM. In our
case, one alert only contains information belonging to one event.

set of alerts means all IDMEF messages belonging to one event, in our case one Am-
pli�cation attack.

4.1 System overview description

During the thesis, we have used Suricata and Prelude to develop Ampli�cation attack
visualization based on D3.js, as outlined in chapter 2.

We had to develop and extend several interfaces between the software pieces to achieve
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that goal. First, the current Ampli�cation attack detection implementation by Böttger [3]
was not con�gurable, as it contained hard-coded values. It also did not fully make use
of the IDMEF standard to alert Prelude, due to the fact that he evaluated the data
from log �les during the former work. Therefore, we designed an extension to the
existing interface to fully transfer the knowledge about the detected Ampli�cation
attacks within Suricata to Prelude. Additionally, we de�ned additional Suricata rules to
gain information about packets that could be related to Ampli�cation attacks, but were
not detected by previous approaches.

For Prelude, we developed extensions to gain additional knowledge about the IP ad-
dresses our alerts contain. As such, we de�ned location information and Autonomous
System Numbers as interesting. In addition to that, we made hop count measurements
and included ICMP alerts from Suricata.

On top of that, we developed the visualization, making use of all of the above mentioned
datasets. Therefore, we developed an interface to extract data from the Prelude database
in a compatible input format to the visualization framework D3.js.

The complete structure of the system is shown within the Evaluation in chapter 6.1 on
47.

In the following, we will describe our work in detail, starting from the lowest level and
�nishing with the visualization.

4.2 IDS: Suricata

4.2.1 Suricata-Prelude IDMEF interface

To send data from Suricata to Prelude, we use the "Intrusion Detection Message Ex-
change Format" (IDMEF), which is both a data exchange format and a de�nition of
exchange procedures for IDS systems. The work on that project was started with the
goal to create a common standard protocol suited for the exchange of datasets between
IDS/SIEM products and thus make them interoperable. The development group of the
IDMEF aimed at creating an IETF standard, but stopped working on it before reach-
ing that goal. Their work �nally led to the experimental RFC4765 and informational
RFC4766, which describe the standard and an XML based implementation.

This protocol is supported by Suricata as a sender and Prelude as a receiver as well as
the Prelude database, which is designed using the same structure to store the data. We
will use this for the exchange of Ampli�cation attack data from Suricata to Prelude. In
the following, we �rst describe the IDMEF standard in general. As there already is a
Suricata interface to Prelude, we will use this and build upon it to support additional
values important for Ampli�cation attacks, which we will describe. Additionally, we
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will introduce new values used only within the Prelude database to store additional data
that we generate in conjunction with data received from Suricata.

4.2.1.1 IDMEF introduction

The aim of the Intrusion Detection Exchange Format Working Group (IDWG) was
to create the above mentioned interoperable standard to enable interaction between
di�erent IDS/SIEM systems in order to improve information exchange.

The starting condition was a market of non-interoperable systems from di�erent ven-
dors, often aiming or focused at detection of special intrusions, or just used for a small
subset of the systems within a network. Additionally, there are systems focusing on
di�erent points within a network, e.g. hypervisor hosts, routers, �rewalls, servers
and end-user systems. All of these can have di�erent operating systems or protection
requirements induced from their network environment or usage, e.g. monitoring a
special application, service or runtime environment or the general system. This leads
to a variety of Host and Network IDS systems. The advantage is having specialized
systems for di�erent use cases. The downside is that it is not possible to exchange
information from these systems due to missing interfaces. Thus, a network operator
cannot easily correlate, compare and distinguish di�erent attacks, but must manually
check for similarities on spec. This leads to a lot of additional work, but can also result
in overlooking or misdiagnosing attacks or important details.

To overcome this, the IDWG proposes a standard for message exchange and procedures
specialized for use within IDS/SIEM systems by the set of supported data types and its
data structure. This enables the exchange of alerts about attacks between the supported
systems.

4.2.1.2 Ampli�cation attack extensions

In a former work [3], which we will build upon, the Suricata IDS, used as a network
intrusion system sitting at the border router of the ampli�er network, has been extended
to detect Ampli�cation attacks. However, this happened on a manual and out-of-band
approach and thus did require additional steps for evaluation and did not inform the
network administrator in real time nor in an easily comprehensible form. Due to this,
we developed visualization for the Suricata data to ease understanding and evaluation.
As a basis to extract data, we use the IDMEF standard, which is already supported by
Suricata.

In its original implementation, Suricata sends every single packet belonging to a detected
attack as a separate IDMEF message. In the former work, packet collection has been
limited to 100 packets per Ampli�cation attack (pair�ow) within 10 minutes, as these
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give the necessary information about the attack and limit storage to an acceptable
amount. This also limits the number of packets sent via IDMEF.

There was another thesis ongoing at the same time, which aims at including on-line
detection of Ampli�cation attacks to overcome the usability problems of the imple-
mentation by Böttger. Therefore, we worked together to pass all data required for the
visualization to Prelude via IDMEF.

In addition to the sending of raw packets as described above, we de�ne a set of advanced
IDMEF messages based on it to transfer the important information about Ampli�cation
attacks. As the receiving system, we will use Prelude SIEM to collect and store the alerts
generated by Suricata, as it fully supports the IDMEF standard and its database design
is based on the standard as well. This makes the extension easily comprehensible due to
the matched design. Additionally, this extension allows for realtime data transfer and
evaluation at runtime because of the database design.

Ampli�cation attack detection consists of three phases in the mentioned Suricata Im-
plementation with the changes applied that are in current development:

1. Detection of the attack: Here, Suricata waits for the number of packets from a
pair�ow to reach a prede�ned packet and bytes threshold, as well as an ampli�ca-
tion factor based on the ratio of incoming and outgoing bytes. If the ampli�cation
factor is reached, Suricata classi�es the pair�ow as suspicious and starts to cap-
ture packets in phase two. Otherwise it disregards the pair�ow. We de�ned an
IDMEF message which noti�es Prelude about detection at the end of phase one.

2. During the packet capturing phase, Suricata captures a con�gurable amount
of packets and stores them until the end of the phase. Then, packet similarity is
determined, as it is an indicator for an Ampli�cation attack. This is done by a
compression routine, which takes the raw packet data as input and outputs the
compression ratio, which is then used to calculate the similarity index. As similar
data is highly compressible and random data is not compressible at all, a high
compression ratio means a high similarity. As the end of the phase, Suricata sends
an IDMEF message with the calculated similarity indices of packet length and
packet content similarity.

3. During the statistics phase, which lasts as long as the remaining lifetime of the
pair�ow, statistics data is being generated and sent to Prelude in regular intervals
and at the end of the pair�ow. These contain all data from phase one. The length
of a pair�ow is also con�gurable.

We de�ned a set of four IDMEF messages, which contain the necessary data about
Ampli�cation attacks sent from Suricata to Prelude:

End of phase 1: Send an IDMEF alert message, using the values of the (pair)�ow and
Suricata. Apart from these, set
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CreateTime to the detection time

Classification to "Amplification Attack threshold reached"

Assessment to

Impact to

severity=info

impacttype=dos

Action to

actioncat=notification-sent

Confidence to

rating=low

AdditionalData to

type=integer meaning=packet_count_in

type=integer meaning=packet_count_out

type=integer meaning=packet_size_in

type=integer meaning=packet_size_out

type=real meaning=amplification_factor

During phase 2: Send an IDMEF alert message, using the values of the (pair)�ow and
Suricata. Apart from these, set

CreateTime to the incoming time of the packet

Classification to "Amplification Attack packet"

Assessment to

Impact to

severity=info

impacttype=dos

Confidence to

rating=low

AdditionalData:

send the packet header and content in the default layout of

Suricata (alert_prelude)

End of phase 2: Send an IDMEF alert message, using the values of the (pair)�ow and
Suricata. Apart from these, set

CreateTime to the detection time

Classification to "Amplification Attack packet similarity"

Assessment to

Impact to

severity=info

impacttype=dos

Action to

actioncat=notification-sent
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Confidence to

rating=low

AdditionalData to

type=integer meaning=packet_count_in

type=integer meaning=packet_count_out

type=integer meaning=packet_size_in

type=integer meaning=packet_size_out

type=real meaning=amplification_factor

type=real meaning=similarity_size

type=real meaning=similarity_content

End of phase 3: Send an IDMEF alert message, using the values of the (pair)�ow and
Suricata. Apart from these, set

CreateTime to the detection time

Classification to "Amplification Attack statistics"

Assessment to

Impact to

severity=info

impacttype=dos

Action to

actioncat=notification-sent

Confidence to

rating=(set to low, medium, high depending on similarity)

AdditionalData to

type=integer meaning=packet_count_in

type=integer meaning=packet_count_out

type=integer meaning=packet_size_in

type=integer meaning=packet_size_out

type=real meaning=amplification_factor

4.2.2 Con�guration �exibility

There were hard-coded values in the Ampli�cation attack detection code developed
by Böttger, [3], namely a count of exactly 100 packets to be analyzed to classify an
Ampli�cation attack, as well as a lifetime for a detection cycle (pair�ow) of ten minutes.
The number also in�uences the number of packets sent to Prelude. In order to allow
the visualization to be as �exible as possible, we wanted to eliminate such restrictions.
Consequently, we designed the interface from Suricata to Prelude to allow for arbitrary
values here. For both of the values, we had two choices where to de�ne them:

• Ampli�cation attack detection rule: this way, we could de�ne separate values
for each detection rule, allowing for di�erent values e.g. for di�erent IP address
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ranges or ampli�cation factors. However, the implementation e�ort could be
high, as currently the values are hard-coded in a part of Suricata that is not called
on a per-rule basis.

• Suricata main con�guration: Here we can de�ne values, which are valid system
wide and therefore a�ect every detection rule. It should also be easy to read
the value from that �le on start of Suricata due to its included con�guration �le
parser.

As the actual implementation of the Suricata extensions was carried out during another
thesis at the same time, we added support for both options to the de�nitions in the
previous chapter by the naming scheme.

4.2.3 Advanced ruleset

The Ampli�cation attack detection ruleset, as developed by Böttger, [3], was extended
during this work due to two requirements:

To allow detection of false negatives, we added an additional rule with lower thresholds,
which helps us by also informing us about events that may represent an attack. To
distinguish these from alerts using the default ampli�cation factor of 5, we send a lower
severity for these. Thus, that can be used as a �lter criterion within Prelude.

The signi�cance of ICMP unreachable errors, which inform the sender of a packet
that it could not be delivered, was also evaluated during former work [3, 4]. However,
it could not be concluded that those occur for every Ampli�cation attack, and thus
were left out as a criterion in the subsequent article [4]. As they still give additional
information to evaluate an attack if they appear, we decided to include them into Prelude
and the visualization for evaluation. Therefore, we included a detection rule for ICMP
unreachable errors into our ruleset to generate corresponding alerts to be stored within
the Prelude database.

4.3 SIEM: Prelude

The Prelude SIEM system has some drawbacks, which we have to overcome: although
the database scheme allows storing almost any interesting attack information due to
its �exible design, per default it does not store any address information apart from IP
addresses, port numbers and protocols.
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4.3.1 Location and domain names

In addition to the aforementioned extensions, there is additional data about physical
and logical network topology, which can be used to learn about similarities of attacks:

• Domain Names can inform about similarities or connections among the attacked
systems also if they are part of di�erent networks and thus have di�erent IP ad-
dresses. A possible application could be highly redundant or distributed systems,
e.g. Content Delivery Network (CDN) servers.

• Autonomous System [26] (AS) numbers can give additional information, if at-
tacked systems are not within the same IP subnet and do not share parts of the
Domain Name, but still belong to the same organization and thus reside within
the same AS.

• Location information in the form of GPS coordinates or city and country names
can give additional information about attacks that focus on the same physical
target area. As the IPv4 address space is very scattered by now [27], it does not
necessarily allow for inference about location similarities. Thus, location data
can be useful to overcome this. Human readable data like country and city names
can be used within the detailed view of Prelude to give additional information or
as a search or grouping criterion, while GPS coordinates can be used to generate
a map displaying the a�ected systems.

We will store these datasets within Prelude for the following reasons:

• Performance is greatly increased by local, o�ine storage of the datasets, in
contrary to requesting them on demand.

• Sorting and grouping is done within the Prelude database. Therefore, the
database has to contain the necessary datasets. With data fetched on demand, a
two-step process would be necessary, which is not desirable due to performance
and system complexity.

• Availability and correctness can only be ensured with o�ine data, as IP address
assignment is not static, but subject to change on disposal. Therefore, additional
data could not represent the state at the time of packet capture anymore, if
requested on demand.

We could also keep track of all these pieces of information within the ampli�er network.
However, the network documentation is more precise and correct in most cases. Thus,
this approach is not tracked further.

In the following chapter, we will propose a scheme extension to the Prelude database
to store this information.
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4.3.2 Path length

While traveling through the network, each packet passes a number of nodes, called
hops, on its path from source to target host. The length of the path is de�ned as the
number of nodes the packet passes, for example routers, therefore called hop count.

Each IP packet contains a value1, representing how many hops it can travel before it
gets discarded. Therefore, each hop on the path from source to target decrements this
number. If we know the initial TTL value, we can tell how far the packet traveled.
As most systems start with a default value for each packet sent out, we can guess the
hop count2. Also, we can measure the distance to any IP using traceroute. Comparison
of the outbound measure to the TTL values of incoming packets can give additional
information about anomalies. Therefore, it can be expected that for an Ampli�cation
attack, in most cases the guessed hop count of the incoming packet does not match
the outgoing measurement value. However, due to technologies like Network Address
Translation, asymmetric routes and packet �ltering, we may not always get the correct
information, if any. Therefore, Böttger et al. [4] left out this rating. However, using
additional information about autonomous systems, hop count and location-speci�c data,
this information could be valuable for manual evaluation.

The captured incoming Ampli�cation attack packets contain the TTL or hop count
on receipt. Therefore, this information is stored within the Prelude database already.
Thus, we need to determine the corresponding hop count from our detection host to
the victim by a traceroute measurement and store that information in the database as
well. Eventually, we can determine the delta for further investigation.

4.3.3 Anonymization concept

As Germany’s Data Protection Act (Datenschutzgesetz) [28] does not allow storing
of personalized data without consent of the a�ected individual. Personal data also
contains IP addresses and domain names, as they can be used to identify a person.
However, storing is allowed for inevitable reasons for the necessary timeframes. For
a system like ours, more than one week cannot be justi�ed. Therefore, that data has
to be anonymized in the system to eliminate this possibility after this timeframe. This
can be achieved by deleting the last bits of the IP address or the lower-level part of the
second level domain name of the stored data. After this, it is not possible anymore to
reliably fetch the information mentioned in the last paragraphs using the anonymized
data. Because of this, we have store the additional data within the Prelude Database
before we anonymize the addresses. Apart from this, we gain an increasing system

1The value is called TTL for IPv4 and hop count for IPv6.
2The implementation of Böttger [3] states an usual hop count of 20 from source to target, while most

operating systems start with initial values of 64, 128 or 255.
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performance using this approach, as all relevant data does not have to be queried for
on-the-�y when needed, but instead is stored locally. The concept we developed for
anonymization will be outlined in chapter 5.2.2.

4.3.4 Search history

Over time, a lot of datasets can be stored within a SIEM system like Prelude. Grouping
and �ltering the data is one choice to �nd the necessary information. However, it could
be necessary to re-interpret earlier checked datasets of attacks later again to apply new
knowledge or compare them to other events. Thus, storing links to datasets which
were opened earlier eases future reference. As Prelude does not have such a feature, we
incorporate it, allowing re-opening exactly the same view. To facilitate separation, a
timestamp of initial opening is stored alongside.

4.4 Visualization

In the �rst parts of this chapter, we described how to collect the attack data and store it
for future usage. Within this chapter, we will describe the visualization we created on
basis of our data de�nition and the interface to the Prelude database. Eventually, the
proposals within this chapter will be fundamental to answer the scienti�c questions.
We will outline this in the next chapter.

4.4.1 Interface de�nition

The data transfer interface, called "Prelude to Visualization" (P2VIS) in the following, is
responsible for data exchange from Prelude to the visualization toolset D3.js. As prereq-
uisites, we have a MySQL database used by Prelude on the server side, which contains
the attack data. On the client side, we have JavaScript-based visualization, which can
take all kinds of formatted text �les as input. However, due to the �exible database
layout of Prelude which allows us to store all kinds of datatypes, we cannot easily query
for the relevant datasets and pass them to D3.js. In chapter 4.2.1.2, we describe the
datasets sent to Prelude via IDMEF and therefore also stored in the database, as it uses
an identical layout. Now, we will describe which data we need for the visualization, as
we have to aggregate it to be able to pass it to the visualization.

As described in chapter 4.2.1.2, the database stores an amount of full packets belonging
to the Ampli�cation attack. Additionally, it contains a �xed set of messages containing
statistical information for each event. For the visualization, however, we only need
parts of this information for each event, combined from the alerts stored in the database.
As the server side contains a database for storage of the event data, while the client
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side does not, we want to utilize the database performance to process the stored data.
This allows us to gain better system performance and minimize the amount of data sent
from the server to the client.

To create the visualization graphs we de�ne in the next chapter, we need the following
pieces of information for each event, which we can combine from the stored set of
alerts:

ID Database ID of the IDMEF alert named "Ampli�cation attack packet similarity".
This is the �rst entry which is unique and contains all information about the
attack. Only the information about the total size of the attack is missing, as this
is contained in the �nal statistics message at the end of the pair�ow. This data is
then joined via SQL queries. The other way round, this value combined with the
timestamp allows to link back to the attack within Prelude.

timestamp Timestamp of the classi�cation of the attack, containing date formatted as
"YYYY-MM-DD HH:MM:SS" to incorporate it into time series graphs or �lter the
event data by time.

src_ip contains the IP address of the ampli�er within our network. As the original
source cannot be determined due to IP address spoo�ng, this information is not
available to us.

dst_ip contains the IP address of the victim, which receives the ampli�ed answers.

src_port contains the port number of the ampli�er from where the ampli�ed response
packets are originating.

dst_port contains the port number of the victim which receives the answers.

L3_proto contains the ISO/OSI Layer 3 protocol version, as sent within the IP header.
For IPv4, this corresponds to 4, while it corresponds to 6 for IPv6. 3

L4_proto contains the ISO/OSI Layer 4 protocol, as sent within the IP header. For TCP,
this corresponds to 6, while it corresponds to 17 for UDP. The full set of numbers
is de�ned by the IANA 4 and the assignment is de�ned in BCP 37.

AS_num contains the autonomous system, which the destination IP is part of, as
determined by querying an external database of whois records.

as_name lists the owner of the AS number which contains the target IP address, usually
an internet provider or large network, for fast investigation.

3The Prelude SIEM stores ipv?-addr within its database. However, we use the original protocol numbers
here to create an interoperable system. Within the next chapter, we convert the values to human readable
terms.

4http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml



Chapter 4. System architecture 32

loc_lon and loc_lat contain the values required to position a target host on a geo-
graphical map based on the location information outlined below.

loc_country is set to the unique country code which the target IP address is inside of
according to whois records.

loc_city and loc_region (optional) contain the city and the region (e.g. US State).

dom_name is set to the fully quali�ed domain name of the target, as determined by a
reverse DNS query using the IP address.

amp_factor contains the calculated ampli�cation factor by the IDS system.

sim_size is set to the similarity in packet length as calculated by the IDS system. The
type is a decimal number in the range [0,1], where 0 means totally di�erent and
1 means identical.

sim_content is de�ned like above, but we take the similarity of the packet content this
time which is determined by compressing the data and comparing compressed
length to original length.

packet_count_in and packet_size_in contain the number or total size of packets
incoming from the spoofed source address to the ampli�er. As the total packet
size is supposed to grow with every statistical alert, we take the most recent one.

packet_count_out and packet_size_out contain the number or size of packets being
sent to the victim.

icmp_count is set to the number of ICMP unreachable packets received from the
victim during the attack. Therefore, the timestamp value is used to correlate the
alerts.

ttl contains the value from the TTL or "hop count" �eld of the most recent incoming
packet from the IP header.

hop_count is set to the number of hops determined by a traceroute call to the victim
IP.

We have to implement an interface which takes the alert data as input and generates
an output �le including this information. The naming scheme within the interface uses
the values proposed here in bold font.

4.4.2 Graph description

Using the data we outlined above, we build the following set of graphs. For your
reference, we included �gure 4.1 to display the main graph types. They are sorted by
the suggested order of viewing here.
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Figure 4.1: Graph types

Events per day shows a time-series line chart where the x axis represents the vi-
sualized timeframe, while the y axis illustrates the number of events for each
timestamp. Depending on the length of the timeframe, grouping has to be applied
to make the graph readable, as we must be able to determinate a unique value
for each timestamp. The exact scaling therefore depends on the graph type, the
timeframe and the expected values. Because we use a time-series chart which dis-
plays a curve representing the corresponding events counter for each timestamp,
we need at least two pixels width for every timestamp displayed to allow rising
and falling within the graph.

Similarity is displayed by a set of two pie charts for packet length and content simi-
larity. Here, we use the classi�cation suggested by Böttger et al. [4] and map a
similarity of smaller than 0.75 to low, while we map the other values to high.

Events by Ampli�cation Factor is a bar graph, listing the number of events for each
ampli�cation factor, which is rounded to integer values for each event.

Number of Events by packet count (in,out) is represented by a bar graph which
displays a number of events per packet count represents the distribution of at-
tack size in packets. In order to di�erentiate very small from very large attacks,
logarithmic scaling of the x axis which represents the packet count can be useful.
The graphs must be separated for incoming and outgoing packet counts, due to
the fact that some Ampli�cation attacks work by repeated packets, as outlined in
chapter 3.4.3.

Number of Events by packet size (in,out) is a bar graph like above. However, it
depends on the overall packet size of an event. This graph is necessary to be able
to determine the size of an attack. Both sets of the packet graphs use the identical
scales on the x axis and are arranged in one column to be comparable.

ICMP packets count is equal to one of the ampli�cation factor graph and displays
the number of ICMP packets received that could be mapped to an event.

TTL+Hop Count is again equal to the previous one. However, only the delta of the
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outbound measurement and the value read from the incoming packet is displayed
here.

IP Layer Protocol refers to the layer 3 protocol used for transmission of the packet.
We create a pie chart from the data to represent the distribution of protocols
via the slices. Here, we translate the IP version 4 and 6 of the input to readable
expressions IPv4 and IPv6 in the graph. If other values are read on the input, they
are grouped into an others slice.

Network Layer Protocol depicts the layer 4 protocol and is split into TCP, UDP and
others, while the remainder is con�gured equally to the last described graph.

Destination/Source IP is a set of three pie charts that allow selection and viewing of
distribution of events among the �rst three octets of an IPv4 address.

Destination/Source Port is depicted as one pie chart, where each slice represents a
port number.

The graphs presented above provide the important information to detect and classify
an Ampli�cation attack and determine ampli�er and target. The additional values we
added to the P2VIS interface, however, can help us to determine correlations of the
events. We implemented several new graphs as follows:

AS Number

Top-level Domain

Country Code

Beside of viewing various data items at once, the network operator also has to be able
to narrow down the selection according to relevant criteria. We have two possibilities
to achieve that: Within Prelude SIEM we can �lter the data according to all criteria,
as the Prewikka web interface allows to select �elds and values of all types within
its database using its integrated �ltering engine. Based on these facts, it then only
shows the relevant database entries to the user. Finally, we could pass this list to the
visualization as input. The other possibility is to export all data via the P2VIS interface
to the visualization and build the visualization such that �ltering is possible there. The
�rst proposal has the advantage of being able to reuse the �ltering engine, while it has
the downside of having to reload the visualization every time a newly applied �lter
changes the data. The second proposal necessitates re-implementing �ltering on the
client. This o�ers an improved responsiveness for the client. This means that graphs
can be changed on the �y without reloading the page using client-side �ltering. Thus,
the network operator can directly see changes within the graphs while applying �lters,
which promises faster exploration of the data. The downside is that all data has to be
loaded into the visualization at once. However, this only happens once on opening,
while the other approach would send a subset of the data on every change of �lters.
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We therefore decided for the client-side approach. To reduce the amount of data we
have to load and thus increase system performance, we added the possibility to select a
timeframe to visualize. This should be the �rst restriction the network operator sets, as
outlined in Q1 in chapter 1.1. We therefore add one more element to the visualization:

Table At the bottom of the graph page, a table is included. It contains the set of selected
records by the currently applied �lter. The list is sorted by the total size of the
attack, with the largest attack on top. It includes the following values:

Alert timestamp

IP Addresses of source and target

Domain Name of target

Similarity indices for content and length

Ampli�cation factor

Total packet count and size

Position mapped to the IP address as city, region and country.

The table contains links to Prewikka via the alert ID and to various other infor-
mation sources: By clicking on the IP address, a view is opened containing the
correlated address data we speci�ed. The domain name link points at a whois
service, which can be used to gain information about the owner of the device
from the records. The last column, position, opens a map with a marker at the
position recorded for the host.
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Chapter 5

Implementation

Within the previous chapter we described the system architecture of the visualization
system, focusing on a black-box view and giving additional details where necessary. In
the following, we will describe the actual implementation. We noted that some parts are
implemented as part of another thesis. It was still a work in progress when we submitted
this work. Therefore, this chapter will not contain the data exchange interface using
the IDMEF from Suricata IDS to Prelude SIEM.

5.1 Suricata IDS advanced ruleset

Here, we describe the con�guration changes within Suricata for the described advanced
ruleset.

To send alerts from Prelude to Suricata, Suricata has to be built with Prelude support
included. Additionally, in the main Suricata con�guration alerting has to be enabled
and con�gured to include full packet data for later evaluation:

# alert output to prelude (http://www.prelude-technologies.com/) only

# available if Suricata has been compiled with --enable-prelude

- alert-prelude:

enabled: yes

profile: suricata

log-packet-content: yes

log-packet-header: yes

# load rule file containing the rules specified below

rule-files:

- ampl-detect.rules
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The Suricata detection rule proposed by Böttger [3] only allows capturing of Ampli�ca-
tion attacks within Suricata according to �xed thresholds. In chapter 4.2.2, we already
proposed an extension which allows for a �exible change of these variables. Addition-
ally, we add another Ampli�cation attack detection rule with lower thresholds to also
store these attacks within Prelude DB. As Böttger et al. [4] stated that an attacker has
several choices to evade detection by staying under the proposed thresholds of total
tra�c or ampli�cation factor.

alert ip any any -> any any (msg:"Amplification Attack"; amplification:

byte_ratio 5, byte_threshold 10000000, packet_threshold 25;

sid:1; rev:1; priority:1;)

alert ip any any -> any any (msg:"Amplification Attack"; amplification:

byte_ratio 3, byte_threshold 10000000, packet_threshold 25;

sid:2; rev:1; priority:2;)

This additional rule allows the network operator to evaluate those events separately
to identify false negatives, which was a goal of Q5. Therefore, the network operator
is encouraged to add a rule with lower thresholds and evaluate the additional events.
In order to avoid being overwhelmed by data, the values of this additional rule can
be slowly reduced, starting from the proposed values of the default rule proposed by
Böttger [3]. Also, the proposed visualization allows �ltering for values of total size
and ampli�cation factors, which facilitates evaluation. It is most promising to reduce
the ampli�cation factor, as there are ways to undermine this quite easily by sending
additional garbage tra�c to the ampli�er.

Additionally, we include alerts about ICMP destination unreachable packets [29] with
another rule:

alert icmp \$EXTERNAL_NET any -> \$HOME_NET any (msg:"ICMP unreachable";

icode:3; itype:3; classtype:misc-activity; sid:1; rev:1;)

The proposed set of rules allows us to collect all important data from Suricata within
Prelude.

5.2 Prelude SIEM

5.2.1 Data storage

In addition to the data outlined above, we have proposed additional useful information
in chapter 4.3, which cannot be transferred from Suricata as the data does not exist in
there. Therefore we will generate the data directly and pass it to the Prelude database.
There are multiple sources1 of information available on the internet and also for local

1http://ipinfo.io/, http://www.infobyip.com/, https://www.whatismyip.com/ip-address-lookup/
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downloading that contain all information de�ned in 4.3.1. As we require current data
at the time of request, we decided to query the online sources instead of mirroring a
full copy to reduce download overhead while maintaining data freshness. However, we
have to generate the traceroute data de�ned in 4.3.2 ourselves, as it is dependent on the
network structure. Then, both sources of data can be included into the databases in the
same way.

We had two possibilities to extend Prelude: �rst, we could request and add the infor-
mation on the �y within Prelude when it receives the alert, which has the downside
of slowing down the database insertion process. This could be a problem for a heavily
loaded system. Alternatively, we could add the information later, which does not slow
down the alert insertion process. If this is done in regular and short intervals, we can
also expect to receive current data and allow fast analysis of the data using the visual-
ization, which incorporates these additional datatypes. Therefore, we close the second
possibilitiy and implemented a Cronjob which selected all IPs from the database which
currently did not have the additional data stored using a MySQL query. For these IPs,
we now request the additional information from a web service or generate it locally,
depending on the type. Then, we dissect the data into the separate �elds to be able to
insert them into the database. The Cronjob runs in intervals of 10 minutes, which is the
default pair�ow lifetime, to have full information within the database at the latest at
the end of the pair�ow.

Per default, Prelude does store such values within its database. To support storage and
also anonymization which is introduced in chapters 4.3.3, 4.3.1 and 4.3.2 while reducing
overhead to a minimum, we extended the database scheme. In the following, we will
highlight our changes in bold font style and include the necessary default Prelude
tables for understanding.

In the added table Address_Data, we store the aforementioned additional datatypes.
This table is searchable due to the ID �eld _add_ident is also available in the Address
table, which Prelude uses to store address information. You may notice the table Addi-
tionalData, which is able to store almost any datatype. However, searching and linking
the requested value always makes use of the "meaning" �eld, which would slow down
performance. Thus, we decided to add another table for our purposes. As the table is
only evaluated by P2VIS and not by Prewikka, the table will not interfere with the rest
of its functionality.

5.2.2 Anonymization

The anonymization uses the extended database structure we proposed in �gure 5.1.
There, we added one table Address_Data that depends on the Address table. Within
these two tables, we �nd the �elds address and dom_name that have to be anonymized
as described in chapter 4.3.3. Therefore, we use a Cronjob which daily connects to the
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* _message_ident : bigint(20) unsigned
* _parent_type : enum('A','H')
* time : datetime
* usec : int(10) unsigned
* gmtoff : int(11)

CreateTime

* _message_ident : bigint(20) unsigned
* _index : smallint(6)
* ident : varchar(255)
* spoofed : enum('unknown','yes','no')
* interface : varchar(255)

Source

* _message_ident : bigint(20) unsigned
* _index : smallint(6)
* ident : varchar(255)
* decoy : enum('unknown','yes','no')
* interface : varchar(255)

Target
* _message_ident : bigint(20) unsigned
* _parent_type : enum('A','H','S','T')
* _parent0_index : smallint(6)
* _index : tinyint(4)
* ident : varchar(255)
* category : enum('unknown','atm','e-
mail','lotus-notes','mac','sna','vm','ipv4-
addr','ipv4-addr-hex','ipv4-net','ipv4-net-
mask','ipv6-addr','ipv6-addr-hex','ipv6-
net','ipv6-net-mask')
* vlan_name : varchar(255)
* vlan_num : int(10) unsigned
* address : varchar(255)
* netmask : varchar(255)
* add_ident : bigint(20) unsigned
* is_anonymized : bool

Address

* _message_ident : bigint(20) unsigned
* _parent_type : enum('A','H')
* _index : tinyint(4)
* type : 
enum('boolean','byte','character','date-
time','integer','ntpstamp','portlist','real','st
ring','byte-string','xml')
* meaning : varchar(255)
* data : blob

AdditionalData

* _ident : bigint(20) unsigned
* messageid : varchar(255)

Alert

* _message_ident : bigint(20) unsigned
* _parent_type : enum('A','H','S','T')
* _parent0_index : smallint(6)
* ident : varchar(255)
* category : enum
* location : varchar(255)
* name : varchar(255)

Node
* _message_ident : bigint(20) unsigned
* _parent_type : enum('S','T')
* _parent0_index : smallint(6)
* ident : varchar(255)
* ip_version : tinyint(3) unsigned
* name : varchar(255)
* port : smallint(5) unsigned
* iana_protocol_number : tinyint(3) unsigned
* iana_protocol_name : varchar(255)
* portlist : varchar(255)
* protocol : varchar(255)

Service

* _message_ident : bigint(20) unsigned
* ident : varchar(255)
* text : varchar(255)

Classification

* _add_ident : bigint(20) unsigned
* dom_name : varchar(255)
* AS_num : bigint(20) unsigned
* as_name : varchar(255)
* loc_lon : double
* loc_lat : double
* loc_country : varchar(255)
* loc_region : varchar(255)
* loc_city : varchar(255)
* is_anonymized : bool

Address_Data

Figure 5.1: Database Scheme (The highlighted values were added)

database and searches for alerts with an age of more than 6 days and the is_anonymized
�ags not set. This is possible by joining the tables CreateTime, Address and Ad-
dress_Data. For those, it toggles the �ags and anonymizes the datasets, as described in
chapter 4.3.3. Thus, we can still retrieve all information we stored before, but do not
store personalized data anymore. This facilitates long-term evaluation.

5.2.3 Prewikka �lters

Within the last chapters, we added data to the Prelude database. Now, we will focus on
how to �lter the data to be able to extract the relevant set. Per default, Prewikka groups
the data according to the source and target addresses and the alert classi�cation, in our
case Ampli�cation attack or ICMP message alerts. The address grouping automatically
puts all alerts for one combination of addresses into one group. However, we must notice
that Prelude does not know the concept of pair�ows, which means that it aggregates
multiple alerts. The downside of this is that we cannot di�erentiate pair�ows, while the
advantage is that we can easily recognize an accumulation of attacks by the counts of
alerts which Prewikka presents in front of the classi�cation, as shown in �gure 6.3 on
page50 within the evaluation. We therefore present a set of �lters that can be con�gured
inside Prewikka:
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Single messages for each event To just see one single message for each event, Pre-
wikka can be �ltered by the string "Ampli�cation attack packet similarity" within
the "text" �eld in the classi�cation column. Within this alert type, we see every
piece of information about Ampli�cation attacks except for the total statistics.

Combined view of Ampli�cation attacks and ICMP alerts To �lter for all ampli-
�cation alerts, the �lter from above has to be extended by the other classi�cations
listed in 4.2.1.2.

time �lters for selection of graph data in the left bottom corner of the Prewikka
interface there is a �lter for time values. There, the output can be limited to a
number of elements or a timeframe. For the timeframe, the end date and the
duration has to be entered. These values then de�ne the starting point.

Using these �lters, the database can be evaluated easily and the data representation
focuses on Ampli�cation attacks.

5.2.4 Search history

For the search history, the problem is split into the parts alert view of Prewikka and
visualization view. The implementation of the search history within Prewikka was done
with a background script recording the requests sent to the server via HTTP GET and
storing them in a link list next to the timestamp of opening. Using this link list, the
network operator can re-open the saved view later. Therefore, the original HTTP GET
request is re-sent to Prewikka by the user clicking on one of the saved links.

For the Visualization, we were not able to come up with a solution. Therefore, the
only current option is to save it on the client side by creating a printout. We tried
to implement saving on the server-side using the screenshot feature of html2canvas.
Although basically working, it was not usable for our visualization, as the graphs were
stored without values and therefore empty. As a future goal, we therefore propose to
solve this problem using the following approach: It would be most useful to store the
actual �lters set by Cross�lter to the server together with the timeframe of the selected
data. Thus, on reopening the graph, the �lters could be loaded from there and re-applied.
In addition to that, it would ease comparison of di�erent timeframes if a �lter could be
re-used within another data selection.

5.3 Prelude to Visualization interface

Within the previous parts of this chapter, we extended Prelude to include all data we
require for visualization. Here, we present our interface P2VIS that reads the required
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timeline_unit timeline_unit_factor
min 60

hour 3600
day 86400

month 2592000
year 31536000

Table 5.1: Time Conversion

datasets from the database and processes them to �nally output the aggregated data as
described in chapter 4.4.1.

As we outlined in chapter 4.3.3, the Prelude database is split up into a unique table for
every kind of information, like source and destination IP addresses, ports, timestamps,
classi�cation and many more. Please refer to �gure 5.1 on 39 for a detailed view of
the tables that are important for us. This means that we have to join several tables to
achieve the desired output. To achieve this, we designed a MySQL query that produces
the output speci�ed in chapter 4.4.1. As an output format, we use a table-like format, as
database queries generate a table as output and thus conversion to formats like XML or
JSON2 would be an additional step. Thus, we decided to use CSV3 �les, as those are easy
to generate from database output and supported by our chosen visualization toolset
D3.js. Shortly described, P2VIS, which is implemented as a Python script, carries out
the following steps:

1. Send a MySQL query to the database, joining the relevant tables using the alert
ID as an identi�er

2. Store the query result in a Dictionary

3. Output the result to the visualization, formatted as CSV

P2VIS takes three variables to select the timeframe as input, as speci�ed in the end of
chapter 4.4.1:

timeline_end is the time of the most recent alerts still to be included, formatted as
Unix timestamp.

timeline_unit speci�es the unit for the next �eld and is one of the values noted in
table 5.1.

timeline_value speci�es the length of the timeframe to be selected, starting from
timeline_end and extending into the past.

2JavaScript Object Notation
3comma-separated value
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Therefore, the timeframe is selected as the interval4

[timeline_end − (timeline_unit_f actor ∗ timeline_value ); timeline_end] (5.1)

if timeline_unit is not unlimited. Otherwise, no timeframe is applied, which means that
all alerts are fetched from the database.

The P2VIS script is then called from the visualization web site, which passes the time
values to it and uses the output as CSV input for graph generation.

5.4 Visualization

The visualization takes the data described in chapter 4.4.1 as input and creates the graphs
presented in chapter 4.4. There, we also argumented to re-implement �ltering on the
client due to an expected gain in usability. Thus, we had the options of implementing
manual entry �lter �elds like in Prewikka or interactive graphs, which enable the user
to �lter on speci�c criteria by clicking on the graph. Due to usability, we decided for
the second option. We therefore reuse the JavaScript libraries Cross�lter.js [30] and dc.js
(Dimensional Charting) [31], which o�er the required functions. Cross�lter enables
us to build graphs with coordinated views, which means that �ltering on a criterion
in one graph immediately adapts the other graphs part of the same dashboard to the
�lter. The authors claim that it can easily �lter datasets in the range of millions. Thus,
we expect very good performance. For the actual graphical representation of the data,
Cross�lter depends on a visualization toolset to pass the data to. Here, we use DC.js,
which interfaces Cross�lter to get visualization data. It then passes to D3.js for the actual
representation, as outlined in �gure 5.2. Therefore, DC.js includes a set of standard
graphs including the types we show in �gure 4.1 on page 33. At the time of writing, the
current versions were Cross�lter.js 1.3.11 dated Oct 3, 2014 and dc.js 2.0.0-beta.18 dated
Aug 25, 2015.

For reference, we present the graphing environment and one graph that displays the
distribution of ampli�cation factors here. The �rst step is to create the surrounding
JavaScript environment using D3.js and Cross�lter, which only has to exist once and
can be extended by additional graphs:

// load input data from P2VIS interface

d3.csv("p2vis.py?timeline_end=&timeline_unit=&timeline_value=",

function (data) {

// input data formatting

var dtgFormat = d3.time.format("%Y-%m-%d %H:%M:%S");

4timeline_unit_factor speci�es the number that corresponds to one unit of timeline_unit in seconds
and can be read from table 5.1
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D3.js graphical representation

dc.js Interface

Cross-
�lter.js

data �ltering, sort-
ing and aggregation

Figure 5.2: Visualization: JavaScript Libraries

var dtgFormat2 = d3.time.format("%a %e %b %H:%M");

data.forEach(function(d) {

d.dtg1 = d.timestamp.substr(0,10) + " " + d.timestamp.substr(11,8);

d.dtg = dtgFormat.parse(d.timestamp.substr(0,19));

// Define additional input data here

});

// load the data into crossfilter

var facts = crossfilter(data);

var all = facts.groupAll();

// define the graph data values and groupings here

// count all the facts

dc.dataCount(".dc-data-count")

.dimension(facts)

.group(all);

// define the graphs here

// Render the Charts

dc.renderAll();

});



Chapter 5. Implementation 44

Next, we create an HTML anchor for the graph in the web page the graph should be
included. This webpage must also contain the JavaScript code outlined here and load
the outlined libraries.

<div id="dc-factor-chart">

<h4> Events by Amplification Factor

<span>

<a class="reset"

href="javascript:factorChart.filterAll();dc.redrawAll();"

style="display: none;"> reset

</a>

</span>

</h4>

</div>

We then de�ne the graph and map it to the HTML anchor created above.

var factorChart = dc.barChart("#dc-factor-chart");

Next, we add graph data to the data function de�ned in the general template:

data.forEach(function(d) {

d.factor = d3.round(+d.amp_factor,0);

// in this case, round input data to integer values

});

Finally, we create the graph inside the D3 environment:

// input data for factor graph

var factorValue = facts.dimension(function (d) {

// additional conversion or combination of input data is done here

// for the more advanced graphs

return d.factor;

});

var factorValueGroup = factorValue.group()

.reduceCount(function(d) { return d.factor; });

// Factor bar graph

factorChart

// define graph size

.width(480)

.height(150)

.margins({top: 10, right: 10, bottom: 20, left: 40})

// define graph data

.dimension(factorValue)
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.group(factorValueGroup)

// graphical formatting

.transitionDuration(500)

.centerBar(true)

.gap(1)

.x(d3.scale.linear()

.domain(

d3.extent(data, function(d) { return d.factor; }))

)

.elasticY(true)

.xAxis().tickFormat();

We will skip the other graph types here and point to the o�cial documentation. Above,
we added comments where the code has to be changed to achieve the desirable outcome.

In the next chapter, we will describe and evaluate the set of described graphs from
chapter 4.4 in detail.
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Chapter 6

Evaluation

In this chapter, we will evaluate our system design against the scienti�c questions
de�ned in chapter 1.1. Our black-box approach used in chapter 4 for the system archi-
tecture facilitates this as it clearly speci�es the outcome.

We mentioned before that we only speci�ed the extension of the interface from Suricata
to Prelude, while the implementation was part of another thesis aiming at real-time
detection within Suricata. As of writing this, that part was not yet done. Therefore, we
cannot use this interface for evaluation. Thus, we are limited to verifying our goal by
comparing the de�nition from chapter 4.2.1.2 to the necessary and existing information
about ampli�cation attacks, as described in chapter 3.1.2. For the P2VIS interface and
the Visualization, we have to generate data manually due to that. Within this chapter,
we will describe where we did that exactly and what we did.

The evaluation therefore is split into three parts: in the �rst part, we evaluate all data
input interfaces and de�nitions to check data coverage. Following that, we focus on the
P2VIS interface, which we check separately due to its importance for the visualization.
As a last point, we determine usability of the visualization and propose further additions.
We added �gure 6.1 to give an overview over all interfaces and �ow of data.

For all parts, we will check our speci�cation for feature coverage against the corre-
sponding scienti�c questions introduced in chapter 1.1.

6.1 Test system

During this thesis, we used a development system consisting of six PCs. Each PC was
run by an 8-core CPU and 16GB of RAM. The PCs contained a 4-port gigabit ethernet
card and were running a modi�ed version of Grml Linux [32] to suit networkers’ needs.
Using these PCs, we created a test setup to conduct ampli�cation attacks that consisted
of an external network to simulate the internet and an internal network, called ampli�er
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Figure 6.1: System structure

network within this thesis. Within the test setup, each PC had a role, which we describe
in the following. A graphical representation of the development system is shown in
�gure 6.2.

Attacker The attacker PC was set up with an IPTables rule to change the source
address of all outgoing requests to the victim’s. Therefore, we could use legitimate
applications to send requests to the Ampli�er.

Victim The Victim PC received all ampli�ed answers to the attacker’s requests. It was
therefore used only passively to analyze incoming tra�c using Wireshark [33]. In
addition to that, it was used to send out ICMP unreachable messages and answer
to hop count measurements.

Border router The border router separated the outside network of victim and attacker
from the internal network, where the ampli�er sat. It therefore had two network
links connected to gigabit ethernet switches for the two networks. On this PC,
also Suricata and Prelude were running to scan for attacks.

Ampli�er The ampli�er was sitting on the other side of the border router compared to
the attacker and was running an NTP and DNS server con�gured to be susceptible
to Ampli�cation attacks.

record keeper For DNS ampli�cation, we used an external record keeper for the am-
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Figure 6.2: Test system setup

pli�ed DNS record. Therefore, on this PC another DNS server was set up to serve
requests, in our case open recursive requests from the Ampli�er.

We used the development system to con�gure Suricata and Prelude to work together
and �nally collect ampli�ed packets within the Prelude database. Due to the fact that
the interface from Suricata to Prelude was not �nished when we submitted this the-
sis, we were unable to incorporate it to do complete measurements. Therefore, we
manually generated the additional IDMEF messages using the interface de�nition from
chapter 4.2.1.2 to manually generate these additional alerts within the Prelude database.
Based on these, we developed and tested the P2VIS interface.

6.2 Data input

For the data input de�nition, we relied on the speci�cation of ampli�cation attacks
and interesting data by Böttger (et al.) [3, 4], but also added our own ideas, as outlined
below the list. Their work de�ned pair�ows, which inform about the addresses of
a�ected systems. In addition to that, they evaluated the following criteria, although
they dropped some of them as not usable for automatic detection.

Similarity in size and content of request and response packets

ICMP unreachable messages

hop count measurements
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Moreover, we searched for additional identifying data that gives new information. Due
to the fact that we focus on visualization and do not aim at extending the actual detection,
we were restricted to information we could generate out of the existing data. The only
de�ned datasets within the de�nition of Böttger (et al.) were IP addresses and port
numbers, as the other data originated from measurements. Due to that, we searched for
data that can be generated from those pieces of information. As such, we found domain
names, autonomous system numbers and location information from whois databases
can describe connections and similarities between systems we wouldn’t know on basis
of IP addresses. However, we decided to only maintain these pieces of information from
the external network, which the victim is part of. We argued that the internal network
documentation should exceed the information we could get. Thus, we do not have any
additional identifying information for devices on the internal network. This means that
correlation has to be done on a manual basis here, which is possible by using the IP
address knowledge about the network structure. To overcome this, we suggest to build
an interface to the network documentation similar to what we did with the external
network in chapter 4.3.1 and include the data into P2VIS and the visualization.

Out of the presented information, we created the set of graphs described in chapter 4.4,
which means that we included all data we had available. This means that the evaluation
is limited to the actual usage of the data which will be checked in the following chapter.

6.3 P2VIS interface

The P2VIS interface uses a MySQL query to query the Prelude Database for the necessary
data and outputs it to the visualization in an aggregated form, as outlined in chapter 4.4.1.
Currently, it only transfers the data used within the graphs. Using this design, we avoid
transmission overhead while providing the required information. To provide additional
information about detailed packet data we include the alert ID to link back to the alert
representation within Prewikka. Using this approach, we combine the advantage of
no data overhead within the graph data with the ability to get detailed information on
request.

Using the link from the Visualization to Prewikka thus enables us to view detailed
information about the attack. Within Prewikka, we are presented with a list of alerts
belonging to the event we selected which can be seen in �gure 6.3. This contains the
speci�ed IDMEF messages from chapter4.2.1.2, as well as the captured packets. Using
these, we can evaluate the packet contents and full headers, which can be seen in �g-
ure 6.4 and 6.5. This facilitates in-depth analysis of an attack and also allows for manual
comparison to other attacks on basis of the packet content. The information within the
additionally speci�ed alerts can be used to analyze the chronological development of
an attack, by comparing the statistical values among the alerts.
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Figure 6.3: Prelude alert overview

This partly answers Q4, as the network operator gains in-depth information about all
packets belonging to an attack for later analysis. This helps �nding the root cause
of an attack to �nally solve the problem by �xing the responsible con�guration or
implementation issue. In case of a design problem, it facilitates understanding the
weakness so that it can be investigated. In-depth analysis also allows exploring possible
false positives or false negatives using the same approach. This was one goal of Q5. The
determination of false positive or false negative suspects and earlier attacks, however,
will be examined within the following chapter.

Also, the interface is limited to Ampli�cation attacks due to �xed comparisons within
the MySQL select statements. This was a design choice due to our special use case. For
similar attacks, like the mentioned RDoS attacks, the interface could be reused easily, as
they basically are of the same structure, but do not have noticeable ampli�cation factors.
As general information, Prewikka, if used for the collection of other alerts apart from
Ampli�cation attacks, includes basic graphs informing about events on a timescale and
the distribution of event types within a timeframe. For more specialized cases, however,
the structure of P2VIS could be reused to build more advanced graphs using our set of
features. The graphs, however, would have to be built as necessary.

6.4 Visualization

The visualization was designed with the goal in mind to include all available information
and presenting it in an understandable way. Therefore, we now have to evaluate if it is
suitable to analyze ampli�cation attacks. Thus, we work though the list in chapter 4.4.2,
which was sorted by the order of �ltering we suggest. Where appropriate, we describe
alternative orders of �ltering. For all graph types, we include an image showing the
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Figure 6.4: Prelude packet detail
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Figure 6.5: Prelude packet header and content
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Figure 6.6: Events per day graph

described behavior. If a graph is very similar to another one, we refer to that instead
and describe the di�erences in detail.

Events per day displays one year worth of sampled random data in this example. Due
to the long timeframe, the graph has very steep curves, but there is still a separate
value recognizable for each day. Due to this, we can �nd suspicious events quite
easily. The selected timeframe limits the data to about 6 weeks. This �lter is
attached to the other graphs as well, which means that all graphs now only
display data that is within these time limits.

The count of events per day as a metric was preferred to count of packets or bytes due
to two reasons: First, there is no chance that smaller attacks get out of sight because of
a single, large attack. Second, an ongoing attack will be represented as multiple events
due to the limited pair�ow lifetime. Thus, after timing out, a new event will be recorded.

Alternatively, we o�er a possibility to �lter for large attacks with the "Events by packet
size" graph we will outline below. If the network operator wants to use such �lter, it
should therefore be the �rst choice to �lter for large attacks using that graph. Including
graphs for both metrics, however, would be problematic due to screen size limits, as all
main graphs should �t onto one screen.

Similarity is a set of pie charts for size and content similarity. As this is the only
critical value Böttger et al. [3] proposed, which is not preselected for us, we select
it directly after limiting the timeframe. Within evaluation we recognized that
it could have been useful to split up the range of values further. That way, also
smaller similarity indices could be selected. It is, however, easy to change the
value or add another level within the graph de�nition.

Events by Ampli�cation Factor displays a bar for each ampli�cation factor. The
height describes the number of events in the current selection having this factor.
High ampli�cation factors pose a threat to the system no matter of the attack size,
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Figure 6.7: Similarity (size) graph

Figure 6.8: Events by ampli�cation factor graph

because an attack can be extended by the attacker easily. She could for example
increase the number of devices used within a bot net. Thus, we propose to �lter
on the highest factors �rst and evaluate the corresponding attacks.

Number of Events by packet count (in,out) displays a bar for each packet count. In
the shown example, we selected the larger half of captured events. This allows us
to point at the correlation between the incoming and outgoing packets: we must
have huge amount of repeated packets within the selected events, like described
in chapter 3.4.3 for the TCP protocol. To allow for such comparisons, we scaled
the x axis representing the packet count equally for both graphs, although we do
not have any events for most of the values on the incoming graph.

Number of Events by packet size (in,out) is designed equally to the last graph and
therefore not printed here. At the "Events per day" graph, we shortly introduced
that this graph can be used to select large attacks, which is possible by limiting the
graph displaying the outgoing data to the desired values. It could be argued that
the graph displaying the inbound values is not necessary, as �ltering is possible
within the ampli�cation factor graph due to their correlation. However, this way
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Figure 6.9: Events by packet count graph
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we would lose the information about the distribution of values over the events
displayed.

ICMP packets count and TTL+Hop Count can be used to further isolate an attack
to evaluate the occurrence of abnormalities.

All of the following elements can be used for �ltering as well. However, their main
purpose is of informational nature: Each shows a distribution of the selected set of
events according to their respective values. In the following, we will describe some use
cases next to the graphs:

IP Layer Protocol is also displayed as a pie chart equal to the similarity graphs, using
the values IPv4 and IPv6. It could be used to �lter the overview e.g. to recognize
IPv6 con�guration �aws that allow for ampli�cation attacks by comparing the
graphs with or without the �lter.

Network Layer Protocol does the same for TCP and UDP.

Destination/Source IP can be used to zoom in to an IPv4 network using three pie
charts representing the �rst three octets, as described in chapter 4.4. These graphs,
as well as the following, depict distribution on basis of slices for the di�erent
values which sizes represent the event count. This allows narrowing down on an
attack.

Destination/Source Port graphs are bigger than the previously depicted pie charts,
sharing the rest of the structure. Using these, it is possible to �lter for special
protocols on the server side based on the well-known ports allocation.

AS Number, Top-level Domain and Country Code can be used to learn about cor-
relations of attacks. For example, we could chose some value within one graph
and evaluate the remaining events shown in the table below and the other graphs
to determine correlations. Using these, it is possible to gain knowledge no current
automatic detection or log�le analysis o�ers.

The Table gives the basic information about the �ltered events and is the link back
to Prewikka. Also, it is �ltered according to event size so that the largest attacks
measured in bytes are listed on the top. Thus, these can be evaluated �rst. The
exact structure and functions are described in chapter 4.4.

6.4.1 Protocol fault coverage

In chapter 3.4, we looked at a selection of vulnerable protocols and described their
special properties during ampli�cation attacks. Now, we check if our visualization can
cover those characteristics.
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For NTP, we described the very high similarity and ampli�cation factor. If we would
not suspect an ampli�cation attack on that service - would we still be able to detect
it using the visualization? First of all, we can see a bar at the calculated ampli�cation
factor, which is outstanding due to long distance to the other bars which represent the
lower ampli�cation factors. We then �lter on the similarity �rst as suggested above.
Still, the bar is there, as NTP ampli�cation attacks are very similar due to the small set
of queries. Now, we are really interested and �lter on the ampli�cation graph. The port
chart now shows only one remaining element, which is the NTP port. Thus, we have
identi�ed the protocol. Depending on the number of abused NTP servers within our
network and the timeframe, we get a number of alerts. Within the table, we can now
jump to the corresponding alert within the Prewikka web interface to view details like
packet content. Thus, we can evaluate the attack in detail and eventually prevent future
abuse.

For the described TCP attacks, however, the procedure is a di�erent, as we do not expect
a very high ampli�cation factor, but repeated packets. We can determine that from the
packet count graphs. Also, we can there �lter on the area of the outgoing graph where
the incoming graph is empty, as shown in �gure 6.9. This way, we only see attacks that
rely on repeated answers. Using the other �lters, we can now localize the problem.

6.4.2 False positives and false negatives coverage

Analysis of these errors cannot be automatic, as otherwise it would have been included
into the detection, thus eliminating them. Thus, we want to check whether identi�cation
is possible using the visualization.

We �rst focus on false positive interpretation of normal usage as Ampli�cation attack.
Therefore, we need to understand the regular usage scenario of the network, which is
information the network operator can contribute. Using this, we can look at the �ltered
graphs which show possible suspicious action. We can now evaluate the IP address and
port graphs and �lter out the protocols we know to generate attack-like tra�c. Now,
we evaluate the graphs once more. If they are now inconspicuous, we have determined
a false positive. We can now proof our �ndings by doing in-depth packet inspection as
described above.

For the detection of false negative tra�c, we have to adapt the Suricata ruleset to change
the thresholds, as described in chapter 5.1. Then, we can evaluate the additional tra�c
by �ltering the lower values of the Ampli�cation factor and Packet size graphs. Thus, we
can especially look at the attacks using the general approach described in the beginning
of this chapter and take advantage of the packet inspection features of Prewikka to
evaluate the alerts. Finally, we can decide whether we want to further limit, leave as is
or increase the thresholds in the Suricata ruleset.
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For both approaches, it could be useful to watch the Time of day and Day of week
graphs, as these can inform about repeating patterns, which are most probably a backup
job or other automated tra�c.

6.5 Recap on scienti�c questions

We now evaluated the possibilities of the visualization thoroughly. Thus, we want to
reconsider on our scienti�c questions and point to the answers.

The warning message, as de�ned inQ1, is part of the default features of any SIEM system,
including Prelude. Within the tool prelude-manager, e-mail alerts can be con�gured,
which solves our problem. The network operator should then be able to immediately
make use of the alert, which is possible by opening the visualization with a short
timeframe. Thus, he is informed about the core data describing the attack.

Q2 demands an overview which informs about the a�ected systems of an ampli�cation
attack and its extent. This is possible by using the visualization as well, as it can output
the total volume of attacks for a timeframe, distributed into the graphs determining
trends and accumulations. Therefore, the distribution of attacks among systems, ports
and protocols can be determined from the graphs. We also added the values of domain
name, autonomous system and location to allow for additional correlation. The table
allows to determine the mapping between ampli�er and victim.

Correct determination of short-term actions was the goal of Q3. Here, we point at our
answer to Q2, as this is exactly points out the required information. Therefore, the
visualization output can be used to determine the input for �rewall blocking or rate
limiting rules or to shut down systems.

Q4 is based on Q2 as well. However, it aims at solving the problems on the long run by
eliminating ampli�ers. For this, we point at the packet inspection view of Prewikka,
which can be opened from within the visualization. This should help narrowing down
the fault to �nally �x it. Therefore, we proposed a taxonomy of possible problems
within chapter 3.4.

Q5 was tackled in a separate part with the conclusion that possibilities exist.
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Chapter 7

Conclusion

Within today’s interconnected world, we risk economical or even security problems in
case of network outage. Nowadays, new security breaches are announced almost on a
daily basis. Some of them pose a hazard to the core of our infrastructure. We focused on
Ampli�cation attacks, which are a variation of Denial of Service attacks, increasing the
impact. Related work researched many aspects of Ampli�cation attacks: a broad �eld
of detection attempts on the victim side exists, using di�erent approaches of detection
and also visualization. Additionally, the research about susceptible protocols and attack
patterns shows the signi�cance of the hazard. There were previous attempts to mitigate
the issue broadly by correcting faults. In addition to that, approaches to detect the
attacks within ampli�er networks exist.

However, none of the related work examined the way of visually evaluating these
attacks in that position. Existing visualization approaches were not suitable due to the
singularity of the threat. Thus, we researched possibilities overcoming this to learn
about the threat in detail the visual way. We therefore introduced a set of research
questions with the goal in mind to create a usable solution for a network operator
which enables him to detect attacks immediately, but also o�ers detailed information
for evaluation.

7.1 Summary

In the beginning of this thesis, we introduced the attack pattern of ampli�cation attacks.
We therefore described the development from simple DoS attacks to distributed and re-
�ected ones and provided a taxonomy to con�ne our domain. Additionally, we covered
the impact and remediation possibilities from di�erent points of view. The description
of general properties of software relevant was followed by a presentation of our used
software. We then focused on existing approaches to the threat from a visualizing am-
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pli�er’s point of view, but also included other ideas where relevant. We then proposed
a taxonomy of vulnerable protocols which we reused in the end to evaluate our visual-
ization for problem coverage. In addition to that, we evaluated existing visualization
approaches and toolsets for usability within our approach and justi�ed our selection of
D3.js with to the set of available features and the usability. Subsequently, we proposed
a system architecture enabling visualization and extended evaluation of Ampli�cation
attacks that built upon an existing detection approach using Prelude as a SIEM system
and D3.js for visualization. Therefore, we proposed an extended interface for Suricata
to transfer all data relevant for analysis. Within the SIEM system, we added additional
interfaces to enrich the visualization. In addition to that, we added anonymization and a
search history to allow for and facilitate system usage. Following that, we described the
main parts of our development to allow additional insight into the functionality of our
approach. This contained the interfaces described above and a data transporting tool
for the visualization to import data from the Prelude database. Finally, we evaluated
the implementation against our de�ned goals. The visualization appeared to be useful,
compared to our scienti�c questions. However, future deployment within a production
system has to prove usability in a daily usage scenario.

We concluded that visual information greatly increases perceivability, if designed ade-
quately. A user-friendly solution facilitates regular evaluation of attacks and thus helps
to understand the issues to the system in more detail. This is a �rst step towards a
solution of the problem.

7.2 Outlook

We were unable to test our solution with real data, as the interface to Suricata was not
�nished when submitting this thesis. Therefore, we are looking forward to future usage
within an ampli�er network. There, it would be possible to compare the information
retrieved from the visualization to the log�le output of detection approaches. From
user reports, improvement suggestions or additional necessary information could be
retrieved. For example, it could be necessary to adapt some of the graphs to use di�erent
scales or types of input data. For a �rst solution, however, we kept to user expected
defaults and only proposed other choices where appropriate.

Using the visualization, it is easy to detect correlations within the set of attacks. It
is, for example, possible to see that two servers of the same type were abused for an
ampli�cation attack on the same port. In this case, we suspect that it was the same
underlying attack scheme. We can also compare the metrics included in the visualization.
However, if we want to proof the correlation, we have to check the packet contents and
compare them manually. The visualization, however, facilitates �nding such similarities.
Future work thus could make use of this and propose how to do inter-pair�ow similarity
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checking based on the outlined facts.

We also included a search history into our approach to facilitate reinterpretation of data
for future reference and comparison. However, we were unable to store the selection
within the visualization due to client-based design. Our approaches to save this data
on the server were not successful. Thus, future work could add this feature. This, of
course, could also be interesting for other approaches based on client-side visualization
or handling of large datasets.

We presented another visualization approach that appeared towards the end of the
thesis. It focused on a data-driven design that enables the user to view graphs based on
proposals the program gives due to the data structure. Future work could build upon
this to dissect the packet data and full header information and pass it to the toolset.
This way, even more information could be evaluated to determine if it contains criteria
useful to classify ampli�cation attacks.
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