
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Design and Implementation of a
Distributed Block Storage on RIOT

Robin Lösch

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Bachelor Thesis

Design and Implementation of a
Distributed Block Storage on RIOT

Robin Lösch

Supervision: Prof. Dr. Dieter Kranzlmüller

Advisors: Dr. Nils gentschen Felde
Jan Schmidt

Date: February, 5th 2019

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 5. Februar 2019

. .
(Unterschrift des Kandidaten)

Abstract

IoT and WSN networks gained further relevance in recent years. A common problem in such
networks is sharing and storing of data independent of node failures. This thesis examines
the requirements on a distributed storage network with a special focus on embedded devices
with low computational power. A design for such a storage network on top of the Chord
P2P overlay network is proposed and implemented accordingly. As a result of the design,
a fully distributed block storage driver is built on top of the RIOT operating system with
support for dynamic growth and shrinking of the network and for heterogeneous storage
sizes contribution by the members of the network. The requirements are checked against
defined acceptance criteria and performance evaluations are done to show the behavior of
the implemented modules. The experiments show good results in terms of the implemented
distributed hash table and provide an overview of the introduced communication overhead
by the implemented features.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scenario . 2
1.3 Problem Statement . 3
1.4 Methodology . 4

2 Background 5
2.1 Related Work . 5
2.2 Used Technologies . 6

2.2.1 Distributed Hash Tables . 6
2.2.2 Consistent Hashing . 7
2.2.3 RIOT OS . 7
2.2.4 Block Storage . 7
2.2.5 Pseudo Random Hash Functions . 7
2.2.6 Remote Procedure Calls . 7
2.2.7 POSIX . 8

3 Requirements 9
3.1 Functional Requirements . 9
3.2 Non-Functional Requirements . 11
3.3 Security Considerations . 12

3.3.1 Network Security . 12
3.3.2 Application Security . 14

4 Design 15
4.1 Peer-to-Peer Protocol . 15

4.1.1 Structured vs. Unstructured Networks 15
4.1.2 Comparison of Structured P2P Networks 16
4.1.3 Bootstrap . 19

4.2 Replicated Block Storage . 21
4.2.1 Consistent Hashing for Data Storage 21
4.2.2 DHash . 21
4.2.3 Load Balancing . 22
4.2.4 Data Availability . 31
4.2.5 Storage Size . 34

4.3 Summary . 35

5 Implementation 37
5.1 Peer-to-Peer Overlay . 38

5.1.1 Chord Implementation . 39

ix

Contents

5.2 Distributed Hash Table Implementation . 42
5.2.1 Distributed Hash Table Interface . 42
5.2.2 Frontend . 43
5.2.3 Backend . 45

5.3 RIOT Storage Driver . 47
5.3.1 RIOT Storage API . 47
5.3.2 Size of the Storage Device . 48

5.4 Verification of the Acceptance Criteria . 48
5.4.1 Functional Requirements . 48
5.4.2 Non-Functional Requirements . 51

6 Performance Evaluation 53
6.1 RIOT Environment . 53
6.2 GNU/Linux Environment . 55
6.3 Evaluation . 55

6.3.1 Evaluation Model . 55
6.3.2 Functional Performance Indicators . 56
6.3.3 Non-Functional Performance Indicators 58

6.4 Results . 59
6.4.1 Peer-to-Peer Overlay Network . 59
6.4.2 Distributed Hash Table Implementation 62
6.4.3 RIOT Driver . 65

6.5 Summary . 69

7 Conclusion and Future Work 71
7.1 Conclusion . 71
7.2 Future Work . 72

List of Figures 75

List of Acronyms 77

Bibliography 79

x

1 Introduction

This chapter provides an introduction, as well as background information about the moti-
vation and the objectives of this thesis. A practical scenario for the objective of this thesis
and a problem statement is defined to set the scope for this thesis. Finally, the methodology
used in the remainder of this thesis is specified and explained.

1.1 Motivation

In recent years, Internet of Things (IoT) and Smart Home devices have gained a lot more
relevance. The reasons for this are besides the decreasing hardware costs, a constant ris-
ing in computational power and wide support for radio transmission technologies. Smart
home and IoT devices are often deployed in a network like fashion. One example for these
networks are Wireless Sensor Networks (WSNs) where multiple devices are collecting sensor
information and communicate over a radio network. Another example are Smart Homes,
where different participants of the network are responsible for collecting data and controlling
different functions in a building.

A limitation in such networks is besides the computational power, the limited transfer rate
and communication capabilities with the internet. These limitations raise a necessity for a
preprocessing of collected data between the participants of such networks. Another problem
is the availability of the data in the network. WSNs are often deployed in an environment
with limited controlling possibilities and with non-redundant hardware and power supply,
thus making them prone to errors or complete failures of single participants. Without a
redundant data storage between the participants of the network, this can result in a loss of
all the information stored on a failing node.

These two problems let arise the question of how it is possible to share the data in between
the nodes and thus making it possible to pre-aggregate the data and save the data in a
redundant fashion. A distributed view of the data also allows us to use an optimal utilization
of the storage capacity in the network. In the last years, research projects had focused
on this topic with the aim to develop distributed storage systems. Research contributing
to these problems includes distributed file system like CFS[DKK+01], Ivy[MMGC02] or
IgorFS[HAEF08], cloud-based management systems[AAH+13, AH14] as well as local storage
engines.

A common limitation with cloud-based storage is the need for a constant or at least periodic
available uplink into the internet as well as an additional storage environment with an
internet connection. New trends like

”
Fog Computing“ addressing the problems of cloud

computing for IoT devices by providing computational resources at the edge of a network.
Data gets stored and processed at the so-called

”
fog node“, which does not need a constant

1

1 Introduction

uplink to the internet. However, as already mentioned as a downside for cloud computing,
fog computing relies on a cloud-based solution as a final destination for the stored data.
Other approaches like MEC or

”
Cloudlets“ can also act as a standalone service on the edge

of a network and thus needs no cloud service provider to work, but instead relies on a
resource-rich machine in the local network [MNY+18].

Distributed file systems, in contrast, can act on a local network perspective. There are
different approaches for the design and implementation of distributed file systems depend-
ing on the target environment. The well-known Network File System (NFS), for exam-
ple, uses a straight forward approach by exporting a file system from a server to multiple
clients [PJS+95]. More recent approaches like Ceph focusing on the scalability of such so-
lutions by decoupling metadata access and direct I/O as well as distributing the workload
among a cluster of nodes [WBM+06]. While these two examples are classical client-server
architectures there are also a few designs focusing on Peer-to-Peer (P2P) distributed file
systems. Common examples are Freenet, CFS, PAST, BitTorrent and Ivy [HAY+05]. A
downside of these examples is the fact that they are designed for large-scale data sharing
and distribution amongst large and resource-rich systems. Another problem is the limitation
to the file system specific behavior and a well-defined use case, which makes them infeasible
for some scenarios. In addition, these solutions are mainly designed for the use of file sharing
between multiple untrusted participants over the internet and not as a shared storage engine
in a distributed network of trusted computers.

Another alternative to the already mentioned cloud-based solutions or distributed file sys-
tems is a distributed storage engine, which acts as a block storage device to save data in the
network. Such a system could act as a generic storage device to the operating system just like
any other hard disk or flash drive and thus making a cooperative data storage independent
from a specific file system implementation or the need for a cloud-based solution. This could
be even more interesting in respect to the increasing amount of projects and companies that
are focusing on the development of operating systems, which are tailored to the use-cases of
IoT devices. The main goal of these projects is to provide a framework, which allows the
user to write applications without needing to build hardware specific code and thus write
portable software that is not limited to a specific environment. Examples are open source
projects like Contiki, Mbed OS and RIOT as well as commercial products like

”
Windows

10 for IOT“ and
”
WindRiver VxWorks“. Since these projects are normally implementing

some sort of file systems and APIs to develop storage drivers, a block storage solution that
provides a POSIX compatible interface to store data could be easily integrated into existing
projects. From a users point of view, it would be convenient to get a block storage driver
which just acts as a local flash or disk storage and could be used either directly or via an
additional file system layer.

1.2 Scenario

The ambition behind this thesis is to provide a way to share data in between a network
of computational nodes with a special focus on embedded devices with low computational
power such as IoT devices and WSNs. There is already an existing range of applications for
such networks. Healthcare, home automation, agriculture and industrial automation are a
few examples where networks of embedded computers are already in use [MPV11].

2

1.3 Problem Statement

In respect to the wide range of deployment scenarios there are multiple requirements on
such networks, depending on the needed computational power, used storage capacity, power
consumptions and the availability of a networking infrastructure. As already stated such
networks also often lack the availability of redundancy features such as a redundant power
supply and are often only powered by a single battery with a limited lifetime. Another
common property of such networks is the fact that the nodes are organized in a P2P network
where nodes are equally privileged and the functioning of the network is independent of the
availability of a central authority.

The design of the storage network as described in this thesis should focus on such a scenario
where multiple non-uniform and equal powerful devices are deployed in a wide range of
environments and need to store data. This could be due to the need to aggregate and share
data between nodes or the need to store data in a reliable way in case of device failures. A
special focus on the scenario lies in the P2P like organization of such networks and the low
computational resources of a single member.

1.3 Problem Statement

Distributed applications can roughly be distinguished into classical client-server architectures
and P2P architectures. In a client-server architecture participants act either as clients who
request a service from the participants in the server role or as a server that provides the
service for the clients. P2P architectures in contrasts do not provide exclusive roles to
the participants in the network. Every node in the network can act as an equal eligible
member and is free to provide a service or to use services provided by other participants.
IoT networks often consist of multiple nodes with equal responsibility. In respect to this

”
server-less“ property of IoT networks, where every member can act as a service provider, it

is convenient to implement a distributed storage as a P2P architecture [SW05, p. 10].

Another reason for this choice is that servers can be also a victim of node failures and thus the
availability of the service is then determined by the number of participants in the server role.
In IoT networks node failures can be quite common since the devices are often deployed in
a non-controlled environment and consist of non-redundant parts. Also, the communication
between the nodes is often based on a radio protocol such as IEEE 802.11 and thus is not
reliable. A solution to the defined problem has to be resilient against joining, and even
more importantly, against simultaneous failures of multiple nodes. In P2P networks the
occurrence of simultaneous joining and leaving node is referred to as churn. Since churn
can happen anytime, a mechanism needs to be provided which is capable of handling failing
nodes without data loss. Furthermore, a joining or failing node can result in a different size
of the overall storage. The design needs to cover a way to support the resulting dynamic
growing and shrinking of the storage.

Other properties of IoT Networks are the limited energy and space requirements and thus
lower computational power and possible data rates compared to traditional computers. The
design should focus on a P2P block-level storage with the possibility of high churn and thus
take care of failing nodes as well as the dynamic resizing of the storage device. To ensure
the availability of resources to the main application running on a device, a special focus on
a low overhead in terms of computation and communication needs to be taken.

3

1 Introduction

The solution should act as a block storage driver on top of the RIOT operating system for
IoT devices. The design of the solution should be portable and not limited to a specific
environment like RIOT. This makes the selection of RIOT as a target system arbitrary and
is motivated by the easy to use modular design of RIOT.

The resulting implementation should act as a generic storage driver and behave like any
other block orientated device. With a minimal interface to read and write blocks of data, it
should be possible to run an arbitrary file system on top of the device. The participants of
the system are located in a local network without the need for an uplink into the internet.
In a distributed system participants can fail or even join the system anytime or on demand.
For this reason, the design should face a dynamic replication scheme that ensures data
availability up to a certain level.

1.4 Methodology

Figure 1.1: Methodology

As shown in Figure 1.1 the methodology follows a linear approach. In Chapter 3, a re-
quirement analysis is performed and the requirements are divided into functional and non-
functional requirements. Alongside with the requirements, a set of acceptance criteria for
later verification needs to be defined. Afterward, a design proposal for the final solution
needs to be defined in Chapter 4. The design should address the requirements defined in
the previous chapter and should include a solution to the found problems and pitfalls. The
next step involves an implementation of the proposed design with an in-depth explanation in
Chapter 5. This also includes the verification of the acceptance criteria that were defined in
Chapter 3. The last step is to perform performance evaluations and experiments addressing
the correctness of the implementation in Chapter 6. The measurements need to be evaluated
and summarized in a conclusion in conjunction with the remaining tasks and findings.

4

2 Background

In this chapter, an introduction to work related to this thesis is provided as well as the
theoretical background of some used technologies.

2.1 Related Work

Researching ways to share data is a key challenge in the design of distributed systems. Early
approaches like the well-known NFS[PJS+95], AFS[How88] and Microsofts CIFS[Mic17] fo-
cusing on exporting a whole file system to a computer network. In case of CIFS and NFS this
is achieved by providing a network Application Programming Interface (API) to allow syscall-
like file access on a local file system to a remote user. Newer systems like BeeGFS[Hei14],
Ceph[WBM+06], Lustre[S+03] and GlusterFS are extending these ideas by adopting newer
features like the decoupling of metadata from the actual content of a file and scaling the
content to multiple servers. In addition, they allow using different replication mechanisms
like mirroring or striping of the data to provide high availability and high throughput for
file system access operations.

A different approach to store data in a distributed manner is to use a database. For struc-
tured data like sensor data, a relational database system could be used. To store large
amounts of arbitrary unstructured data more modern approaches like NoSQL databases
could be used. The usage of NoSQL databases gained further relevance with the constant
development and spread of cloud computing applications, which sets a special focus on

”
large

scale and high-concurrency applications“. Googles Bigtable, Redis, Cassandra, MongoDB
and CouchDB are well-known examples of NoSQL databases of different types and purposes,
ranging from simple key-value-stores over column-orientated design to complex document
databases [HELD11].

However, both approaches lack a fundamental primitive to share data and instead use a
high-level abstraction in terms of a file system or a Database Management System (DBMS)
software. Another downside is that such proposals often do not set a focus on constrained
hardware and assume at least a significant amount of computational power, storage capacity
or huge amounts of stored data to work properly. Research that is focusing on a pure block or
byte-orientated way to share data is rare. Distributed Replicate Block Device (DRBD) is a
commonly used software to build a distributed block device that is shared amongst multiple
nodes. A downside of DRBD is the fact that it is tied closely to the GNU/Linux operating
system making it infeasible to use in some constrained environments. Furthermore, it is
limited to an active-standby replication scenario where the storage overhead on all standby
replicators is equal to the size of the shared block device [Ell08]. Other interesting approaches
to build distributed block storages include VBS-Lustre[GMP+10] and systems that are using
erasure codes such as Reed-Solomon-Codes. Virtual Block Store (VBS) is a block storage

5

2 Background

device interface for cloud infrastructures. It is intended to work like Amazon EBS with
primitives to create, delete and attach storages to virtual machines without the limitation of
being tied to a single cloud provider. It can be used as a raw block storage and can be used
exclusive amongst multiple virtual machines. VBS-Lustre is a distributed storage system,
build on top of VBS, which makes use of the Luster file system to extend the existing VBS
volumes to enable a distributed usage between multiple machines.

Erasure codes, in contrast, provide an optimal space efficient way to store blocks of data in a
distributed system [FMS+04, GWGR04, AJX05]. The widely used Hadoop file system makes
use of erasure codes in the

”
HDFS RAID“ module, which uses a combination of striping and

erasure codes to provide failure resistant storage for a Hadoop distributed file system. In
contrast to the proposal of this thesis VBS-Lustre as well as HDFS make use of an additional
file system to provide a distributed functionality on a non-distributed block storage.

A fairly new approach on distributed storage engines is Software Defined Storage (SDS),
which uses software abstractions on top of multiple independent storage systems to build
a uniform logical storage interface. The Storage Networking Industry Association (SNIA)
defines SDS as

”
Virtualized storage with a service management interface. SDS includes

pools of storage with data service characteristics that may be applied to meet the require-
ments specified through the service management interface“. While providing a simple and
easy extendable way to build distributed storage devices as well as a feature-rich software
ecosystem, SDS gives strong freedom of choice to the user to build a storage system to fit
their requirements. A downside of using a SDS solution is the common focus on large scale
datacenter applications without a use-case for small scale constrained environments.

Another common way to build distributed data storages are Distributed Hash Tables (DHTs).
Implementations like Chord, Content Addressable Network (CAN), Pastry, Tapestry and
others are building overlay networks in a P2P environment to map arbitrary data onto
keys in a distributed manor [AR06]. Since they are not limited to a specific data layout
stored in the DHT and only providing a protocol for a structured organization of nodes
in a P2P network the purpose of a DHT is highly implementation specific. The DHash
storage engine build on top of the Chord DHT uses a block-orientated design to act as
a storage system. Multiple application like the Cooperative File System (CFS) and Ivy
file systems are built on top of DHash to prove its practical use as a distributed storage
engine [DBK+01, MMGC02].

2.2 Used Technologies

In this section, an overview of technologies and terms used in this thesis is provided. Some
important key technologies included in this work are pointed out for further reference. The
explained terms are mostly relevant to the implementation provided in Chapter 5 as well as
for the further explanation of used acronyms.

2.2.1 Distributed Hash Tables

A Distributed Hash Table applies the data structure of normal hash tables to a distributed
system. As in a classical hash table, a distributed hash table consists of a constant number

6

2.2 Used Technologies

of buckets in which data items get stored identified by the hash of the data module the
number of available buckets. In a distributed hash table a single node acts as a bucket which
is able to store data elements.

2.2.2 Consistent Hashing

DHTs often make use of a technology called consistent hashing to distribute the load over
the available nodes. In respect to classical hash tables where an additional bucket in the
table can result in a complete remapping of all elements, consistent hashing requires only an
upper bound of log(n) data items to be remapped if a bucket is added or removed from the
table [KLL+97a]. Consistent hashing as introduces by Karger et. al provides a numerical id
to each node and data item by hashing the content of the data or a node’s identifier and
store the data on the node which provides the hash that is the direct successor of the data
items hash.

2.2.3 RIOT OS

RIOT is a self-declared operating system for the internet of things. The aim of RIOT is to
provide an operating system for small and constrained IoT devices with a special focus on
low computation and memory overhead, as well as low power consumption. RIOT provides
many standard APIs like a Portable Operating System Interface (POSIX) compatible socket,
networking and file system interface to provide a generic and portable way to run applications
on different hardware layouts. It is written in the C programming language and uses a strict
modular design to make the system extensible and to provide a convenient way to replace
existing parts of the system [BHW+12].

2.2.4 Block Storage

A block storage is a storage device which divides the usable storage into a set of smaller
blocks. A block is therefore the smallest fetchable part of the storage. Usually, the used size
of a single block is a fixed constant. A common example for block storage devices are hard
disk drives and some flash based storage media.

2.2.5 Pseudo Random Hash Functions

A hash function describes a mathematical function which is able to map a large set of possible
inputs to an output of fixed size. A pseudo random hash function has the additional property
that the outputs also appears to be random. That means that outputs are distributed evenly
among the possible output domain and small changes in the input string result in a different
output which is not related to previous outputs.

2.2.6 Remote Procedure Calls

A Remote Procedure Call (RPC) is a protocol used by software implementations to execute
implemented procedures on remote computers. Arguments, relevant for the remote function
are serialized into a network packet and transferred to the remote computer. After the call

7

2 Background

to the remote function is executed successfully a return value can be sent back to the calling
entity.

2.2.7 POSIX

The Portable Operating System Interface is a set of standards focusing on operating systems.
The standards are specified by a collaboration between the IEEE association and

”
The Open

Group“, an industry consortium, focused on the development of standards. POSIX is used
to provide a standardized API and behavioral aspects implemented by different operating
system.

8

3 Requirements

In this chapter, the requirements for a distributed block storage are examined and summa-
rized for further use in the system design. The requirements can be divided into functional
and non-functional requirements. Functional requirements are often defined as behavioral
aspects of a system and its outputs to a set of given inputs. The term non-functional
requirement on the other side is not clearly defined. Many of the common definitions ex-
plain non-functional requirements as non-behavioral attributes or properties of a system
such as

”
portability, reliability, efficiency, human engineering, testability, understandability,

and modifiability“ [Gli07, Dav93]. This discrimination sometimes can be vague, due to the
fact that a requirement which results from one aspect of the solution is closely coupled to
another aspect and vice versa. While a proposal for a working solution must fulfill all of
the functional requirements the non-functional requirements sometimes are implicit and can
be optional. A final evaluation of the implementation has to verify if all the functional and
non-functional requirements are covered. Furthermore, an acceptance criterion for every
requirement is defined in this chapter. The acceptance criteria can be later used to verify
whether the design and implementation adapt the requirements. Additional, a set of security
relevant requirements which focus on a security concerned implementation of the network
protocol and the application itself are provided. The implementation of the security relevant
requirements are out of the scope of this thesis and considered as future work.

3.1 Functional Requirements

1. Raw Device Interface
To make use of a block storage device an interface that specifies multiple access oper-
ations must be defined and implemented. These actions can range from simple read
and write commands to more complex and device-specific functionality. A well-known
and widespread interface for device operations is the Small Computer System Inter-
face (SCSI) [Sea18]. A subset of the available SCSI commands should be implemented
to provide a common way to access the resulting device.

Acceptance criteria: At least a command to read and write a single block of data must
be defined. A more sophisticated implementation can also implement read and write
operation for multiple blocks as well as additional SCSI commands. The user must be
able to write a specific block of data and read it afterward.

2. Concurrency
Traditional block devices like optical or magnetic disks are often not intended to be used
concurrently by multiple applications. This can lead to multiple problems including
data inconsistency. As stated in the scenario the resulting device should consist of
multiple distributed nodes in a P2P environment and thus is likely to face concurrent

9

3 Requirements

read and write operations without a central authority. A way to ensure operation of
mutual concurrent read and write access on the resulting device must be provided.

Acceptance criteria: Multiple write accesses on one or more data blocks should be exe-
cuted in the correct order and lead to correct data after the last write access. Multiple
users must be able to write multiple blocks concurrent without getting inconsistent
data.

3. Storage Size
While some file systems support the usage of storage devices with dynamic size either
directly or due to online resize possibilities, the majority of file systems expects at
least some information about the size of the underlying storage architecture. Since
the resulting system should consist of multiple devices with different storage back-ends
and sizes we need a way to communicate the overall storage size of the resulting block
device in the network. The resulting system needs to implement a way to communicate
the overall storage size to all nodes even if nodes join or leave and thus resize the overall
storage in the network.

Acceptance criteria: Multiple join or leave operation should be communicated across
the network and the network should converge to the correct storage size over time.
When a node joins or leaves the network any other node in the network must be able
to update its information on the overall size in between a given period of time.

4. Load Distribution
To provide an optimal utilization of participating nodes in the network and a minimal
need to re-balance items on node failures the network should provide an even load
distribution in terms of storage utilization to the participants. Since different nodes
can provide different storage sizes the mechanism needs to utilize the load depending
on a node-specific weighting factor. Using a P2P network implies that no single node
is necessarily aware of all other nodes weights. This makes the weighted distribution
a challenging aspect in a distributed storage device.

Acceptance criteria: The probability for every data item to get stored at a node ni
with positive weight wi needs to be wi

W where W =
∑
wi.

5. Data Availability and Consistency
Churn events can happen quite often in a P2P network. A mechanism to ensure the
availability and correctness of data must be implemented, even when multiple devices
fail simultaneously. The used mechanism needs to relocated data in the network in
case of node joins and failures and must be able to reconstruct correct data.

Acceptance criteria: The design of the resulting network must guarantee to deal with
a certain amount of churn. After multiple nodes fail a user must be able to look up
the correct data in the network.

6. Locality
As already mentioned in Chapter 1 a common problem with cloud-based solutions
is the need for a constant or periodic uplink to the internet. To work around this
requirement the target network should even work in a Local Area Network (LAN)
scope without any uplink into other networks. This means that the routing and the
organization of the network can take place locally, without a central authority.

10

3.2 Non-Functional Requirements

Acceptance criteria: The resulting system must be able to run in a local network
without any uplink to other networks, as well as across network boundaries.

7. Guaranteed Lookups
As soon as data is inserted into the network, a guarantee that a lookup for the newly
inserted data succeeds, has to be provided. This is due to the fact that simultaneous
access on a single block can occur anytime and thus an override on a more recent block
should be prohibited.

Acceptance criteria: After an insert operation into the storage gets acknowledged by
the responsible storage location, any other member of the network must be able to
query the data immediately.

3.2 Non-Functional Requirements

1. Awareness on Computational Constraints
As stated in Chapter 1 the resulting storage solution should work in an environment
of multiple constrained devices like smart homes or sensor networks. When choosing a
network the low computational power and the limited storage size of the participating
nodes has to be respected. Both resources should be used as little as possible to ensure
no disruption of the main application running on the device.

Acceptance criteria: An example target environment must be defined and the Central
Processing Unit (CPU) utilization and the storage requirements of the resulting storage
system need to be checked against the available resources of the target environment.
The resulting system should not use more than a fraction of the available resources.

2. Path Length & Network Size
The used network should support a good trade-off between network size and hop size to
reach an arbitrary subscriber in the network from any other point in the network. Since
the number of participants in the network should not be limited to a specific size the
network should ensure a good upper bound for maximum hop count in the network.
Furthermore, it is important to not overwhelm the limited memory on constrained
devices, making a network with static memory usage for pointers and routing tables
feasible.

Acceptance criteria: An upper bound for the number of hops until a certain destination
is reached must be provided.

3. Performance Indicators
Depending on the underlying available storage technologies and sizes the performance
of the storage must ensure the usability of the system. The SNIA defines multiple
performance metrics for storage devices. Important basic performance metrics are I/O
operations per second, Throughput per second, response time in milliseconds, retries
per store operation, I/O per watt, service time and average store queue depth [SNI13].

Acceptance criteria: On a given hardware the performance is bounded by the under-
lying storage technology. The throughput should be measured and any deviation from
the theoretical maximum needs to be reasoned.

11

3 Requirements

4. Node Bootstrap
In a P2P environment, there is no central authority that is well known to new nodes
that want to join the network. Ideally, a mechanism needs to be established that allows
any node to join the network without any pre-configured entry nodes. Furthermore,
one could improve the bootstrap process in a way that allows nodes to join a network
independent of its own configuration by negotiating the configuration with the entry
node.

Acceptance criteria: A node should be able to join an existing network without any
pre-configured entry node.

3.3 Security Considerations

P2P networks are often built as structured and unstructured networks where multiple
untrusted participants provide and request services from and to each other. Famous
examples of such protocols are Gnutella, Freenet and the Napster protocol. While many
of such publicly available networks require no authorization, there are multiple security
considerations to take into account. With the focus on a distributed storage device
where the possible participants may be limited to a few trusted computational devices,
this becomes even more relevant since the provider of such networks may want to keep
the stored data confidential. In the remainder of this chapter, security considerations
are divided into protocol security and application security considerations. While an
actual design and implementation of the measures suggested in this chapter are not in
the scope of this thesis the author acknowledged the need of security considerations
for a modern software environment and therefore wants to give an overview on best
practices and views a security concerned implementation as future work on the system.

3.3.1 Network Security

To implement a secure distributed system it is important to provide a secure protocol
for the communication between the nodes in a network. The Internet Engineering
Task Force (IETF) provides RFC3365[Sch02] with an overview about the important
definitions and defines security as a

”
SHOULD IMPLEMENT“ feature of a protocol,

meaning that a protocol does not necessarily needs to enforce security actions on the
protocol, but instead should implement them and let the user have the freedom of choice
wherever to enable them. This property is important for constrained environments
where the use of modern cryptography can easily overwhelm a device. While modern
processor already provides instruction sets extensions and hardware acceleration for
common cryptographic use cases. Microcontroller Units (MCUs) often completely lack
this feature. This makes it rather expensive to use modern cryptography on embedded
hardware. The authors of [CBG12] have implemented five candidates for the SHA3
hash function contest and evaluated the performance gain on a 16-bit MCU when an
additional instruction set extensions are used. The performance gain for contest winner
Keccak was as good as 30% in terms of CPU cycles and 20% in terms of data memory
access operations. Due to the importance of security and cryptographic operations in
modern distributed systems, as well as the significant performance improvements an

12

3.3 Security Considerations

extension on the instruction sets of modern MCUs can provide, it is likely that it gets
more common for future MCUs to support such features.

The IETF defines three important security services a network protocol must implement.
Namely they are the

”
Authentication service“, the

”
Data confidentiality service“ and

the
”
Data integrity service“ [Sch02]. It is not necessary for a protocol to implement

every security service and rather depends on the use case of the protocol which must
be validated in the context of every protocol.

The IETF defines the authentication service as
”
A security service that verifies an

identity claimed by or for an entity, be it a process, computer system, or person. At
the internetwork layer, this includes verifying that a datagram came from where it
purports to originate. At the application layer, this includes verifying that the entity
performing an operation is who it claims to be“. While authentication of participants
is not relevant in every possible setup of a distributed storage device the majority of
real-world usages are expected to want to control wherever a node in the network is
allowed to participate and join or not. This raises the need for the implementation
of an authentication scheme in the protocol, making it impossible for non-authorized
entities to participate in the network. Since one does not want to lower the guarantees
provided by the P2P nature of the system a certificate-based approach can be used
to implement an independent distributed validation of any participant in the network.
Other solutions could implement central authority based validation of participants as
suggested in RFC3365. Depending on the computational capacities in a network it
is further possible to use a certificate-based approach to sign all messages or use a
message authentication code with pre a exchanged secret key. An additional benefit of
this proposal is that a node in the network would be able to detect modifications on
the transferred payload and ignore messages which are changed either intentional due
to an attacker or unintentional due to a failure in the transmission.

A data confidentiality service protects data against unauthorized access. For a network
protocol, this means that data should not be transferred in clear text over an untrusted
network. To ensure data confidentiality some type of synchronous encryption protocols
like Advanced Encryption Standard (AES) can be used. It is important to provide
a secure key exchange protocol to enable all participants to communicate securely
without sending the keys over an insecure network. An implementation can make use
of digital certificates to enable an encryption protocol like Transport Layer Security
(TLS) to provide a secure key exchange as well as the encryption of the messages.
Since asynchronous key exchange is very costly compared to the act of synchronous
encryption of data blocks the user may want to have the option to use a predefined
secure key stored directly on the participants to speed up the communication. A
downside of an approach where keys are pre-distributed is the fact that an attacker
only needs a single key to gain access to all communication, where a secure key exchange
protocol can make use of different keys for different communication channels.

Data integrity refers to the correctness of the data and protects against unauthorized
changes to the data transferred over the network. Using a message authentication code
or encryption protocol as described in the last paragraphs could already give strong
guarantees on data integrity. However, securing the data from unauthorized access
may not be enough. In addition, one may want to secure the data from authorized

13

3 Requirements

but unintentional modification. For this purpose, an error checking and correction
mechanism can be used. However, since error correction is already enforced on many
of the lower levels of a network protocol including the transport protocol an error
detection or correction solution may provide no advantages.

3.3.2 Application Security

The application itself needs to ensure a certain kind of security independent of the
security guarantees of the network protocol used. While there is nothing as a

”
secure

application“ it is important to evaluate common best practices to avoid common pitfalls
and give the best possible guarantee on the security of the application. The Open
Web Application Security Project (OWASP) provides a guideline which focuses on
developing of secure software to avoid common mistakes [OWA10]. Important examples
are the correct validation of user-generated input, correct memory management and
system security. Since the OWASP mainly focus on a client to server communication
over the web not all suggested features are relevant for a P2P style network and can
be omitted. Testing can also help to protect from already discovered security incidents
and ensure the absence of the same errors in the future.

14

4 Design

In this chapter, the final design as a result of the requirements of the last chapter is provided.
First, an appropriate P2P protocol is chosen such that it already covers as many requirements
on the network as possible. Furthermore, a design for a bootstrap protocol that allows new
nodes to join into an existing network and the block storage on top of the P2P protocol is
proposed. The protocol is extended to match the remaining requirements. This includes
improvements on the even load distribution, the placement and redundancy policy of the
storage as well as the communication of storage sizes across the network. At the end of this
chapter, an overview of the designed modules is provided.

4.1 Peer-to-Peer Protocol

Optimally the P2P protocol used in this thesis should already cover as many properties
from the requirements as possible. In this section, an overview of different protocols should
be given and an optimal protocol in terms of the covered requirements should be selected.
Furthermore, changes to the chosen protocol should be discussed to match the remaining
requirements.

4.1.1 Structured vs. Unstructured Networks

P2P networks are often distinguished into structured and unstructured networks [SW05,
p. 15]. While unstructured networks perform well in terms of node joins and failures, the
overhead of finding data in an unstructured network can be rather high since data is usually
found via a flooding mechanism. Another problem is the fact that there is no correla-
tion between the data and the participant which holds the data and thus leads to cases
where lookups result in failures even if the requested data is stored somewhere in the net-
work [SW05, p. 84]. Structured networks, on the other hand, provide an organization of
the participants in a defined topology. A commonly used technology for structured P2P
networks are DHTs [SW05, p. 15]. In a DHT a unique identifier gets assigned to any data
item through hashing the data. This maps data items onto the node which is responsible
for the address region which includes the unique identifier [SW05, p. 87].

Structured networks provide less resilience against node joins and failures as unstructured
networks, but can guarantee that every node in the network can be reached via the used
topology and furthermore, the ability to look up the responsible node for a given data item
from any node in the network. The main drawback of using a structured P2P network is the
lack of support for so-called fuzzy or complex search queries. To retrieve a data item through
a search request the identifier of the data needs to be known [SW05, p. 85]. This drawback
is bearable since we only perform access to well-known blocks of the storage device and do

15

4 Design

not perform searches on the raw data. Since the content of a single block seldom appears as
a coherent entity, searching with complex statements provide no advantages.

Due to the fact that unstructured networks violate the requirement for guaranteed lookups,
a structured network needs to be chosen.

4.1.2 Comparison of Structured P2P Networks

Structured P2P networks are mostly implemented as DHTs. Like a traditional hash table, a
DHT also consists of multiple buckets where every participant in the DHT represents a single
bucket which is responsible for a range of items. To avoid a reordering of every item in the
hash table when a churn event happens, consistent hashing algorithms are used to re-balance
only a subset of log(N) items, where N is the number of items in the hash table.

Several well-researched and practically proven DHTs are available, such as Chord, Pastry,
CAN, Kademlia, Viceroy and Symphony. The differences between these Protocols are mainly
different optimizations in terms of needed routing hops or management overhead.

Table 4.1 shows an detailed overview on the mentioned DHT designs for later reference.
In case of CAN the parameter D describes the number of dimensions used. In Pastry the
parameter b divides the 128 bit id space into different segments each being b bits long.
The parameter k used by Symphony and Viceroy can be chosen freely and is a trade off
between routing complexity and the network overhead introduced by additional links to
other nodes.

DHT Routing Complexity Node State Arrival Departure

Chord O(1
2 log(n)) O(2 log2(n)) O(log2

2(n)) O(log2
2(n))

Pastry O(1
b log(n)) O(1

b (2
b − 1) log(n)) O(log2b(n)) O(logb(n))

CAN O(D2 n
1
D) O(2D) O(D2 n

1
D) O(2D)

Symphony O(1
k log2(n)) O(2k + 2) O(log2(n)) O(log2(n))

Viceroy O(1
k log2(n)) O(2k + 2) O(log2(n)) O(log2(n))

Kademlia O(logb(n)) O(b logb(n)) O(logb(n)) O(logb(n))

Table 4.1: Performance comparison of DHT systems. The columns show the averages for
the number of routing hops during a key lookup, the amount of per-node state,
and the number of messages when nodes join or leave the system [SW05, p. 116].
The Parameter n is used for the size of the identifier space.

Chord Distributed Hash Table

In this section, Chord should be introduced as a P2P Network. Chord uses a traditional
DHT style ring topology and extends it with a so-called

”
fingertable“ to optimize the lookup

for an item in the ring to O(log(n)) where n is the size of the ring. Another benefit of
using Chord is that it allows a rather strong resilience against simultaneous leaving nodes.

”
Three features that distinguish Chord from many other peer-to-peer lookup protocols are

its simplicity, provable correctness, and provable performance“ [SMK+01a].

16

4.1 Peer-to-Peer Protocol

K38

N8

N14

N38

N42

N51

N48

N21

K10

K24

K30

K54

N56

N32

N1 Finger Node

1

2

3

4

5

6

21

21

21

32

32

48

Figure 4.1: A Chord ring with 10 out of 64 possible nodes. Labels starting with
”
K“ are

referring to keys and labels stating with
”
N“ are referring to nodes. The table

on the upper right shows to the fingertable of node N14 [SMLN+03]

Chord uses it’s linear ring topology to store items in a network of size N . A participant
in the Chord ring is called a

”
node“. To receive a position in the Chord ring a node must

compute a hash value of its own identifier. An example of a node identifier could be a nodes
IP address. This can make it impossible for an attacker to gain an arbitrary position in the
ring since the identifier of a node can be verified by other nodes. A node A can either create
a new ring or join an existing ring by sending a message to any known member B of the
existing ring, asking for its own immediate successor C. After C is found a

”
notify“ message

is send to inform C about its new predecessor A. Any node in the ring periodically sends a
message to its successor asking for the successor’s predecessor. If the returned predecessor is
not the same as the requesting node, the node needs to update its successor and send a notify
message to its new successor [SMK+01a]. This ensures that the algorithm convergence to a
correct state over time. To provide resilience against failing nodes every member of a Chord
ring stores an additional data structure called a

”
successorlist“. A successorlist is a simple

list of the following log(N) subscriber of a Chord ring and gets constructed by copying
the successorlist of the direct successor and removing the furthest node while adding its
direct successor. Another important property of a Chord implementation is the already
introduced fingertable. A fingertable is an additional table with log(N) entries, where each
entry includes a pointer to different nodes in the networks. The fingertable is constructed
such that the ith entry of the fingertable is the node which is the direct successor of the id
n+ 2i−1 where n is the nodes own identifier. Using this additional set of links it is possible
to reach every node in the network in a maximum of log(N) steps.

17

4 Design

Content Addressable Network

CAN or Content Addressable Network also provides DHT functionality like Chord. Unlike
in Chord, a CAN node does not have a fixed node identifier depending on its IP address and
thus provide less resilience against malicious nodes. The used topology for a CAN network
is a multidimensional euclidean space with a dimension d ≥ 2. Nodes joining this network
select any random coordinate tuple (a1, a2, . . . , ad) and ask any known node which node is
responsible for this part of the id space. After the responsible node is found the new node
ask the existing node to split its space at one axis. A node split its own space onto two
new sub-spaces by first splitting the x-axis, then the y-axis up to the d − 1th axis. The
newly arisen void is then occupied by the new node. A CAN node needs to keep track of
O(2d) neighbors, where a neighbor is any node which

”
overlaps with another node on d− 1

dimensions and abut along 1 dimension“. A routing request for a single point in the space
is done through a greedy routing algorithm which forwards the request to the neighbor with
the minimum euclidean distance to the point. It could be proven that the maximum number
of hops needed to reach any target is therefore O((d4)(n1/d)) [RFH+01].

Conclusion

The design of distributed hash tables already covers many of the requirements on the net-
work:

1. Load Distribution
Since DHT like systems relies on a hash function to place items onto nodes, the load gets
distributed even by choosing a hash function which provides nearly uniform distribution
of its outputs [SMK+01b]. A good example of such hash functions are the members of
the Secure Hash Algorithm (SHA) family. In practice, the even load balancing suffers
from multiple problems including an uneven balancing when the amount of nodes is
rather small as well as no support for weighted distribution.

2. Computational Requirements
A DHT itself has low requirements on computational power. To keep a DHT in a
correct state a node must go through a synchronization period which consists of send-
ing multiple messages to its direct neighbors. Therefore the communication done by
a DHT to keep the state is limited by the number of pointers to other nodes. With
increasing the time between two synchronization periods the requirements on the com-
putational overhead can be lowered, with the cost of increased time for a DHT to get
fully synchronized after a node joins or leaves. To receive a data item from another
node a single message must be sent to the target node. This message must be routed
through the network and requires multiple hops until it reaches the target. The amount
of hops is limited in structured P2P networks according to Table 4.1.

3. Path Length & Network Size
A DHT network uses some kind of data structures to keep track of multiple neighboring
nodes. The data structures are often used to optimize lookup times to an upper bound.
Chord for example uses an upper bound of log(n) neighbors to route a message with
a maximum hop count of log(n) [SMK+01b]. CAN allows more fine-tuning of these
parameters since it strongly depends on the size of the dimensional space. The same

18

4.1 Peer-to-Peer Protocol

guarantees as in Chord can be achieved using a value of d = (log(n)/2) [RFH+01].
Since the state a single node must keep is limited to a constant value, the network can
theoretically grow infinitely. In reality, the size is limited number of possible node ids.

4. Locality
DHTs as P2P overlay networks have no need for an external authority outside of a
local network. Every node in a DHT can be an equal eligible member of the network
and even create a new ring.

5. Guaranteed Lookups
Since a data item can be directly mapped onto a single node in the network the data
is available as soon as it is inserted into the network. Even when the neighbor tables
on the requesting node are not correct it is always reachable via a linear ring search
over all participants [SMK+01b, RFH+01].

4.1.3 Bootstrap

Bootstrapping in a P2P network describes how a new node is able to join an existing network
as well as creating a new network on demand. DHT networks like Chord and CAN rely on
the fact that a joining node is aware of at least a single entry node in the network for a first
contact and for retrieving an initial position in the network. Due to the P2P based nature of
such systems, a node is also always able to create a new network if no such node is available.
The designs of existing DHT implementations do not make any assumption on how the entry
node should be determined and simply assume that a list of possible entry nodes is available
somewhere. The bootstrap node is sometimes also referred to as

”
Rendezvous Points“ or

”
Rendezvous Nodes“. In many distributed networks like TOR and IPFS, this is done via a

fixed set of entry nodes provided with the distribution of the software [SDM04, IPF15]. This
approach requires the entry nodes to be long lived and not be affected by churn which does
not reflect the realities in a P2P network. Since entry nodes are able to leave the network
due to unplanned outages this could result in a situation where new nodes are not able to
join the network anymore. Furthermore, this results in additional communication overhead
at the entry nodes. Multiple approaches focusing on how a list of possible entry nodes can be
obtained dynamically as well as how to distribute the load for join operation in the network
more evenly. Apart from dynamic obtainment of entry nodes, a good bootstrapping protocol
should not make any assumption on the network size in the beginning and should be able
to scale with the increasing size of a network [CH07].

One approach focuses on creating an additional P2P network with a special purpose at
providing bootstrap information for other P2P networks. This shifts the initial problem of
bootstrapping to the bootstrap network which then can act as a generic information base for
any kind of P2P network. The initial bootstrap of the bootstrap P2P network is done via

”
Local Random Address Probing“ a derivation of

”
Random Address Probing“. In random

address probing a node simply tries to contact random IP addresses hoping to find a member
of the network behind the address. It is easy to see that this method is not very practical
and heavily depends on the number of nodes in the probed address space and the overall size
of the address space. Local random address probing only limits the possible address range
to a subnet of the available address range [CH07]. This assumes that there is an existing
node in the given subnet and furthermore this is also not practical in networks with large

19

4 Design

address spaces like IPv6. Even if an unrealistic high amount of 232 nodes in the bootstrap
network is assumed the sheer amount of possible IPv6 addresses makes it nearly impossible
to random guess the correct address. In addition, this approach is limited to hosts with
a reachable IP address and does not work for nodes behind a firewall or Network Address
Translation (NAT) and assumes a node runs on a given set of TCP or UDP ports.

Another approach to bootstrap nodes in a P2P environment could make use of network layer
mechanisms like broadcast to enable nodes to ask all nodes in a given broadcast domain for
bootstrap information. This can be extended with anycast to additionally allow nodes to join
P2P networks outside their own broadcast domain with the additional benefit of choosing
the best node in terms of neighbor awareness [CKF04]. The Domain Name System (DNS)
can be used to further optimize this approach. Through using multicast DNS[SC13] a service
could be propagated in a local network while regular DNS A or TXT records could be used to
identify multiple bootstrap nodes in an internet-scale setup. The downside of this approach
is the need to either set up a multicast DNS service in every local domain which implies that
a node already exists in this domain or that we need to set up DNS records for well-known
bootstrap nodes. This can reduce the stability of the P2P network since the network could
only continue work until either the DNS server or all nodes which are represented by the
DNS records affected from an outage. Using more dynamic DNS approaches like DynDNS
services could provide better resistance against the later. Through self-registering of the
nodes against a DNS server an optimal resistance against failing nodes could be provided.
However, there is still a central authority outside the P2P network which can be affected by
an outage which shortens the guarantees provided by our P2P network.

Conclusion

Bootstrapping a P2P network outside a local domain is a non-trivial task. Neither a static
list nor a random probing of network addresses is feasible as stated in this chapter. One
could ensure reachability by combining the methods named above. For a local network, a
broadcast, multicast or multicast DNS approach is the most suitable since it can be im-
plemented into the existing P2P network to allow nodes to announce them self in a given
domain. This would result in no central authority and no single point of failure weakening
the nature of the P2P network. For large scale application which should be able to connect
over different networks, a DNS based round robin approach would be possible to obtain the
address of one or more nodes. This address could make use of anycast to allow additional
load balancing, fault tolerance and neighbor awareness. It can be stated that due to the

”
hen

and egg“ property of this problem no realistic and P2P based way exists by this time.

20

4.2 Replicated Block Storage

4.2 Replicated Block Storage

The part of the system used for storing actual data in a DHT ring must solve the remaining
requirements and address the already mentioned problems of weighted load balancing. In
this chapter, an overview of data storage strategies in a DHT should be given as well an
introduction to an existing storage solution for Chord style DHTs called DHash. Limitations
on DHash should be examined and possible solutions should be discussed. Finally, the best
solution in terms of solved requirements should be picked and a final proposal for a design
should be provided.

4.2.1 Consistent Hashing for Data Storage

Data items get mapped to a node in a DHT due to the use of consistent hashing as introduced
by Karger et. al [KLL+97b]. To store a set of data items V , a hash function h is used to
compute the hash value of every item vi ∈ V as h(vi) mod N = xi. In case of Chord like
DHTs the data item gets stored at the node which is the direct successor of xi. Trough
the use of consistent hashing data elements gets distributed evenly across the ring of N
elements. As soon as an event occurs, where either a node joins or leaves the network, it is
only necessary to reassign a small fraction of the keys in the hash table.

4.2.2 DHash

DHash is already utilizing as a storage layer on top of the Chord P2P overlay to store uniquely
identified blocks in a network. DHash takes care of replication, caching and distribution of
the data blocks [DKK+01].

1. Distribution
The Distribution of data items in DHash is done with the original notion of consistent
hashing as explained above.

2. Replication
DHash replicates a block by storing it at the next k successors of the target node in
the Chord ring. This can be easily achieved by using the nodes successorlist of size r.
The constant k can be chosen to match 1 < k ≤ r, with a larger k to provide better
resistance to failing nodes while increasing the needed storage space for a single data
item.

3. Caching
DHash uses a caching mechanism to improve the lookup time for popular data. Every
node in the ring uses a fixed amount of disk space for caching. If a data element is
retrieved via a route of nodes, every node in the path stores a copy of the data due to
a Least Recently Used (LRU) cache strategy. Since nodes close to the target node are
likely to get contacted by any querying node, caching can reduce the needed lookup
time significantly.

21

4 Design

4.2.3 Load Balancing

The method of using consistent hashing as implemented in DHash face multiple problems
in terms of even load balancing and weighted load balancing. In a storage network, the
participants are able to contribute different storage sizes to the network.

With the use of consistent hashing as defined above every node gets an even amount of
data items. This ignores the heterogeneity of the nodes where different nodes can contribute
different storage capacities. Furthermore, due to the random placement of the nodes in
the ring, nodes can be responsible for irregular intervals of the id space. This can lead
to nodes with small storage capacity getting a big share of the id space where nodes with
large storage capacity getting a small share of the id space. In the remaining thesis, this
is referred to as overloading and starvation of participants. Ideally, every node should be
responsible for K

N keys in a network with N nodes and K keys. Due to the uneven distribution
of few nodes, this can be as bad as an upper bound of (1 + ε)KN keys per node. Without
further optimizations the following upper bound can be proved ε = O(log(N)) [KLL+97b].
To overcome these problems multiple solutions are proposed. As described above a solution
need to provide good guarantees on weighted load balancing, overloading and starvation of
participants. Further, a good solution should introduce only a little overhead in managing
the DHT and migration of data items on churn events.

To select one of the described methods it is necessary to define multiple metrics for a possible
solution. The metrics are mostly extracted from the requirements of Chapter 3 and the
problems with the naive approach of consistent hashing as mentioned above.

1. Fair Load Balancing
An important property is a fair load balancing that takes node heterogeneity into
account. In a weighted load balancing scenario every node with weight wi and overall
weight W =

∑
wi should get a fair share of wi

W data items. An intuitive approach
would just assign a node with a multitude of storage capacity a factor of data items
which correspondence with its capacity. This approach is used in Highest Random
Weight (HRW) hashing methods. However as already explained in Chapter 3 this is
not applicable in a P2P environment since there is no overview over all node weights
without drastically decreasing scalability. Node heterogeneity also has an impact on
the fair load balancing proposed by consistent hashing. Figure 4.2 shows a simulation
of the mean node imbalance in a setup where every node has a capacity 26 ≤ c ≤ 212

in contrast to another setup where every node has a fixed capacity of 26. As one can
see using heterogeneity in node capacities have a negative impact on load distribution.
This gets worse as the variance in node capacities grows.

2. Overshooting of Single Participants
Since consistent hashing uses a pseudo-random function to map nodes and keys onto
a ring of a fixed size it is possible that single nodes are responsible for a larger share
of the id space than available storage capacity on this nodes. A good load balancing
scheme must be aware of the utilization of the nodes and should not assign more
data elements than available storage capacity. It is important to provide at least an
upper bound of over-utilization to reserve a certain amount of storage capacity for
overshooting elements. To waste as little storage capacity as possible it is important
to keep this value as small as possible.

22

4.2 Replicated Block Storage

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

N
o
d
e
 I
m

b
a
la

n
c
e
 in

 P
e
rc

e
n
t

of Nodes

Consistent Hashing w/ Heterogeneity

Consistent Hashing w/o Heterogeneity

Figure 4.2: Mean difference on fair share in percent as the amount of nodes grows

3. Consistent Hashing
For reliable lookups of data items, it is important to not weaken the guarantees pro-
vided by consistent hashing. A fast and guaranteed lookup of data items even if a node
fails is crucial for a distributed storage device. If a solution implies a location of data
elements depending on a temporary state it could lead to data elements that are not
able to be requested even if they are already stored in the network. This would result
in false lookups and thus to inconsistent data.

4. Overhead in Communication
It is possible that some of the mentioned properties introduce overhead in regular
state-keeping communication. Since this additional communication overhead can easily
overwhelm small and constrained device it is important to keep this overhead as small
as possible.

5. Overhead on Churn Events
Some load balancing scenarios imply a certain overhead if nodes join or leave the
network. This is due to updates of existing data structures and movement of multiple
data blocks to a new location. Depending on how often a churn event happens this
can have an impact on the performance of the whole storage environment.

23

4 Design

Virtual Nodes

An early approach to solving the problem of uneven load balancing in rings with few nodes
is to use virtual nodes. Chord suggest to use log(N) virtual nodes for every real node
to reduce ε to an arbitrary small constant [SMLN+03]. The downside of this method is
the increased overhead that arises for every additional virtual node on the owning physical
node. Since every node needs to store at least a fingertable, as well as its successorlist,
the communication channels and the memory usage of a single node is equal to O(2 log(n))
partner nodes. Implementing virtual nodes increase this to O(2v log(n)), where v is the
number of virtual nodes per real node, making it a worst of O(2 log2(n)).

Further methods of using virtual nodes do not enforce a fixed amount of virtual nodes per
real node, but instead taking the different storages sizes into account by defining a minimum
contribution weight w per node. A node providing the smallest possible contribution size
only uses a single virtual node, where a node which provides a multiple m ·w of the minimum
weight use m virtual nodes. This results to a weighted load balancing in a heterogeneous
network. This solution increases the communication overhead by a factor equal to the
number of virtual nodes on a single host but does not provide a good guarantee on even load
balancing over all nodes since the number of virtual nodes can be lower than the proposed
log(n).

Godfrey et. al combines a method of arbitrary id selection and virtual nodes in a DHT
based on Chord called Y0 [GS05]. In this solution, a scheme for virtual server selection
called Low Cost Virtual Server Selection (LC-VSS) is introduced to allow a node to create
multiple virtual nodes in a consecutive interval to gain responsibility over a fraction of the
id space with respect to the servers weight contribution. The average weight of all nodes cn
is normalized to 1 and every node with capacity cv picks Θ(cv log(n)) virtual nodes. Since
the virtual servers are clustered, Y0 does not imply that every real node needs to take care
of Θ(cv log2(n)) network connections. Due to the fact that a node does not need to keep a
link between two of its own virtual servers the scheme results in a communication overhead
of Θ(cv log(n)). The memory overhead of this solution grows by a logarithmic factor [GS05].
The use of LC-VSS let arise two problems. First of all, nodes with a capacity lower than a
fraction of the average capacity cannot contribute to the network since this would introduce
high communication overhead. The proposed solution to this problem is to allow the nodes to
participate as a storage node for a chosen parent node, extending the parent nodes capacity.
The other problem arises from the fact that nodes need to estimate the number of nodes
in the network and the average capacity of all nodes. The performance of the network and
the guarantees on load distribution and communication overhead are dependent on a correct
estimation of these values. The paper introducing Y0 makes suggestions for estimation
algorithms without further validating them.

Multiple Hash Functions

Another method for load balancing in distributed hash tables is the usage of multiple hash
functions. The power of two choices method uses a certain number of hash functions nh ≥ 2
to achieve a better load balancing property. The method originates from the so-called

”
Balls-

and-Bins Problem“. In this experiment n balls are placed randomly into n bins. The upper
bound of balls any bin should hold after all balls are placed is log(n)

log logn . If we change the

24

4.2 Replicated Block Storage

algorithm such that every ball is placed in one out of d randomly chosen bins, where the
ball is placed into the bin with the fewest balls, we get an upper bound of log logn

log(d)+Θ(1) with
high probability. This result shows that even if we introduce only a small amount of choices
we can reduce the upper bound each bin holds exponentially [ABKU99].

This results in a more balanced allocation of the bins and can easily be applied to distributed
hash tables. In this case, the participating nodes act as bins and the data items are the
equivalent of the balls. To select multiple nodes we can simply hash a data item multiple
times. This results in an overhead on storing and retrieving information in the DHT. Instead
of a single hash, we must compute nh hashes and furthermore need to query every successor
of the resulting hashes to gain knowledge about the nodes storage capacities. The data
element finally gets stored at the node with the freest capacity. To prevent the necessity
of querying nh nodes on data retrieval it is important to store an additional pointer on the
remaining nh − 1 nodes to not break the guarantees on lookup time provided by the DHT.
This additional dynamic rise in memory is not feasible since it can overflow the limited
memory of constrained devices.

The authors of the CAN DHT also suggest using multiple hash functions to improve path
lengths and availability of data [RFH+01]. This can be easily combined with the method of
the power of two choices to also improve load balancing. Again this comes with the same
drawbacks as mentioned above, but can be optimized to a certain level by combining both
methods. One can use error correction codes such as Reed–Solomon codes or a Redundant
Array of Independent Disks (RAID) approach. In a naive approach, a data segment can
be at n independent locations hashing the data element 2n times. The data element gets
stored at the n least utilized locations. Assuming the probability of every node to get the
data is 1

2 . This results in a message overhead on storing and retrieving data by a factor of
two but would add additional data availability by using a redundant storage location for the
data.

Working on Intervals

Another rather interesting proposal to spread load even in a DHT is originated from the
physical process of Thermal Dissipation (TD). As heat energy spread even in any body,
the proposal promises an even spread of data in a DHT like networks. In this method, the
nodes in a DHT deliver data to surrounding nodes until an equilibrium state is achieved,
where every node it utilized evenly. Similar to the method of arbitrarily selected node id’s
this is achieved by splitting intervals, moving a part of the nodes responsible interval to its
neighboring nodes or moving nodes with few items to overloaded intervals. This implies
an overhead on data redistribution to surrounding nodes. The heat dissipation algorithm
provides two additional benefits. It includes fault-tolerant storage of items and does not
allow nodes to be underutilized. With the original notion of consistent hashing, it is possible
for nodes to gain only a very small section of the interval. Sometimes this can be as bad as
some nodes only responsible for a single data element. Since the thermal dissipation method
uses nodes with low utilization to reduce the load on heavy used nodes by moving them to
different intervals this gets resolved over time [RPW04].

A slightly different approach working with intervals is implemented in the design of the
distributed hash table CAN. In CAN a multidimensional torus with d ≥ 2 dimensions is

25

4 Design

used instead of a linear ring. New nodes choose a random position at arrival and splitting the
biggest interval of all neighboring nodes into half to achieve control over the newly created
section of the hypercube. The resulting DHT uses O(d4n

1/d) queries to find a data item using
a constant factor of d pointers to neighboring nodes [RFH+01]. Since nodes can choose their
position freely the fairness of interval sizes are determined by the number of random guesses
a node uses to finds its entry position in the DHT. This can be used to achieve a constant
factor load balancing of O(1) instead of Ω(log(n)) while only maintain a constant factor of
O(log(n)) pointers per node and O(log(n)) queries for data location [AHKV03].

1

10

100

1000

10000

100000

1x106

1x107

0 100 200 300 400 500 600 700 800 900 1000

M
a

x
S

h
a
re

 /
 M

in
 S

h
a
re

of Nodes

can - best

can - normal

can - rnd log(n)

chord - log(n)

chord-normal

Figure 4.3: Load imbalance of Chord and CAN with d = 2 using a logarithmic scale

26

4.2 Replicated Block Storage

Figure 4.3 shows the ratio between the node with the maximum and the node with the
minimum share in a Chord and CAN DHT after the insertion of a fixed number of nodes.
The experiment is done 100 times and the average value is computed.

”
Chord - normal“ refers

to Chord with random id placement,
”
chord - log(n)“ refers to Chord with log(n) virtual

nodes per real node,
”
can - normal“ refers to CAN where the split interval is determined by

choosing a random node in the network,
”
can - best“ is CAN where the split interval is the

best interval with respect to the size of the interval and
”
can - rnd log(n)“ use CAN where

the best out of log(n) random chosen intervals is split. The simulation ignores leaving nodes
and only take care of joining nodes. Thus the simulation is only valid in cases where the
number of leaving and joining nodes is nearly equal. As one can see CAN using random
node positions, performs worse as more nodes join. This can be optimized by a huge factor
if multiple node positions are taken into account reaching a near optimal value. To maintain
a good value an additional re-ordering of the nodes needs to be done in the case of leaving
nodes. The ratio in normal Chord and Chord with virtual nodes is rather high but in between
expectations. In this simulation, Chord uses a ring of size 216. With 1000 nodes and an
expected imbalance of factor log(n) we expect the nodes with the highest load to own about
216

1000 ∗ 16 of the id space. Since its highly possible that nodes have only very small spaces
of a few elements this results in a worst-case ratio of about 1000. Using virtual nodes can
lower this factor. Through adding more nodes the max share decreases only by a factor of
log(n).

Another approach which uses intervals to distribute load evenly reaches the same guarantees
as CAN without making considerations on the underlying topology. The authors interpret
the member in a distributed hash table as leaves in a binary tree where the location of
each node is the binary representation of its unique identifier. The location of a node gets
determined through a search algorithm in the binary tree. First, a random leaf of the tree
is determined with a random search down the whole tree. After a leaf is found the new
node gets inserted in the subtree of the selected leaf. The size of the subtree is determined
by a function φ(l) ∈ [0, log(N)]. This function defines a frontier in the binary tree at a
given depth which splits the binary tree into multiple subtrees. Choosing φ(l) = 0 results in
perfect balanced binary tree where φ(l) = log(N) results in a random insertion in the binary
tree. The insertion in the subtree is done by choosing the participant with the highest id
share in the subtree and split its share into two halves. The new node occupies the lower
part of the id space and thus becomes the new predecessor of the selected node. This id
selection finds the location for any new node in Θ(R+ log(n)) steps where R is the routing
cost of the underlying DHT to find a given node and n is the number of participants in the
network. This scheme results in a ratio of the largest to the smallest share of at most σ ≤ 4
with a guarantee that at most a single participant must reassign its id if any node in the
network leaves. Furthermore, the authors extend their algorithm such that the ratio can be
further reduces to a most of σ ≤ 1 + ε for any ε > 0 with the need to reassign only O(1

ε)
existing host on a node departure [Man04].

Highest Random Weight Hashing

Other possible solutions to achieve weighted load distribution are HRW hashing algorithms.
In this approach nodes using a hash function h(x, n) = v for a given set of nodes N =
{n0, n1 . . . nk} and an arbitrary data item x. This needs to be done for all k nodes in

27

4 Design

the network. The data item gets assigned to the node which maximizes the hash value v.
This results in an even balancing of all data items and allows a simple notion of weighted
distribution by allowing a node to participate multiple times in the node list N . On the
downside this increase the complexity of the computation of the node responsible for any
data item to O(n) instead of O(1) compared to the method of consistent hashing. This
only works for weights which are integer multiplies. Furthermore, any node needs to be
aware of all node capacities in the ring, increasing the communication overhead by a large
factor.

To overcome the restriction that node weights must be integer multiplies, different solutions
are proposed. An early IETF draft called

”
Cache Array Routing Protocol“ addresses this

problem by multiplying the resulting hashes with a per-node generated load factor to achieve
arbitrary granularity in node weights [IET98]. A disadvantage of this approach resides on
the fact that node weight factors are scaled relative to the size of the network. When a
node arrives or leaves the network the load factors of all nodes are likely to change and
the location of all data items must be recalculated. This renders the approach of CARP
unusable for high churn P2P networks. Another approach is called RUSH, which uses a map
of the storage hierarchy to distribute the keys to a node depending on any weighting value.
This results in an approximately optimal redistribution of keys when a new device joins the
network. Since CRUSH is designed for large data center application where node failures are
unusual and mostly temporary it is prone to failing nodes. CRUSH solves failing nodes by
keeping them in place because

”
failure is typically a temporary condition (failed disks are

usually replaced) and because it avoids in-efficient data reorganization.“ This results in a
high overhead in the computation of the data locations and makes it unusable for high churn
networks [WBMM06].

A newer approach describes a method which combines a HRW system with distributed
hash tables. The method called

”
The Logarithmic Method“ uses unscaled weights and

a logarithmic distance function to assign data onto nodes. This allows to only relocate a
fraction of the elements a failing node had stored. Furthermore, it proposes a data structure,
which allows nodes to locate the responsible node for a given data item in O(log(n)) time.
Again this approach suffers from the fact that every node must be aware of the other nodes
and their corresponding weights [SS05].

Simulations

To validate different placement strategies introduced by the power of two choices method
and HRW hashing, a simulation of these placement strategies is provided. To simulate the
methods a non-distributed simulation of a simple DHT is used, in which a list of n partici-
pants with a random weight xi ∈ {27, 28 . . . , 211} for each node ni is generated. Afterward,
the nodes are inserted randomly into a linear ring with size N and X =

∑
xi data elements

are inserted randomly according to the placement strategies. As a baseline value, the orig-
inal notion of consistent hashing is used. Simulated placement strategies are the power of
two choices method with log(N) choices, as a HRW method the minimum linear distance
method as described in [SS05] applied over all nodes and the same method applied only
to the 2 log(n) successors of the target node determined by consistent hashing and another
HRW hashing approach where the elements hash gets multiplies with the weight of the next

28

4.2 Replicated Block Storage

2 log(n) successors and placed at the maximized hash, called maximum linear distance. The
measured indicators are the mean deviation of all nodes from their fair share of the id space
e.g. xi

X . Every test is executed 100 times and the average value of all runs is plotted. We
expect all methods expect the original consistent hashing to perform optimal or near opti-
mal when the number of node fall below a certain number. This is the case when the node
amount is small enough to fit all nodes in local data structures and thus make it possible to
keep every node into account when placing a data element. The power of two choices method
with log(N) iteration should be near optimal if the amount of nodes is below log(N). The
other methods using the next 2 log(n) nodes starting from a certain point and thus expect
an optimal placement if the number of nodes below this value. In the simulation, 222 is used
as the ring size.

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80 90 100

M
e
a
n
 %

 D
iff

e
re

n
c
e
 o

n
 F

a
ir
 S

h
a
re

of Nodes

Consistent Hashing

Min Node Distance

Min Node Distance with Successortable

Max Node Distance with Successortable

Power of Two Choices

Figure 4.4: Mean difference on fair share in percent as amount of nodes grew

As one can see in Figure 4.4 the mean difference of all nodes on their fair share follows the
expectations. The normal method of consistent hashing works as expected to get more fair
with an increased number of nodes. Furthermore, we can observe that the distribution is
optimal on a small node count for most strategies. The mean difference of the power of two
choices method improves as node count rises. This is easily explainable since it is less likely
that multiple hashes of the same data item get mapped onto the same node, improving its
efficiency. The efficiency of a single data placement with the power of two choices method

29

4 Design

is determined by the number of distinct nodes selected as possible targets. As the nodes are
determined in a random fashion due to a pseudo-random hash function a single node can be
selected multiple times.

It also turns out that using the minimum distance method performs equally good when
only a subset of ns out of all nodes are taken into account. This reduces the computational
overhead of the linear method by a factor of n

ns
. The best performing method so far is the

maximum neighbor method. If the network is smaller than the number of neighbors taken
into account it results in an optimal placement of elements reducing only by a small factor
as the network increases.

Verification of the Methods

In this section, a solution to address the problems of weighted load balancing in a DHT
should be specified and further validated. Table 4.2 shows a matrix of all presented solutions
together with the supported features and introduced overhead. This makes clear that none
of the mentioned solutions is able to address all problems a good load balancing scheme
must solve.

Virtual Nodes Id Selection Y0 Power of two TD HRW

Fair Balancing X 7 X 7 7 X
Overshoot 7 7 7 7 X X
Consistent X X X X X 7

Comm. Overhead O(2v log(n)) O(log(n)) O(cv log(n)) O(nh) O(1) O(log(n))
Churn Overhead none O(log log(n)) none none O(log(n)) O(log(n))
Memory Overhead O(2v log(n)) none O(2 log2(n)) O(n) none O(log(n))

Table 4.2: Matrix of all possible solutions for distributed load balancing in a DHT with
supported features and introduced overhead

Virtual node based approaches suffer from the problem of increased communication overhead.
As described in the last section using Chord with log(n) virtual nodes increases the state
keeping communication of every node to O(2 log2(n)). In addition, using virtual nodes
does not improve the underutilization of nodes with a small share of the id space and only
focusing on improving the maximum share a node could get. A variation of virtual nodes
is used in the Y0 DHT. In Y0 there is no constant amount of virtual nodes enforced, but
instead, the number of virtual nodes per real node is depending on the weight contribution
of a real node. Through using this approach virtual nodes enable a DHT to use methods
focusing on the even distribution of elements. Since most methods to balance load in a
DHT focus on an even distribution of elements this is easier to achieve than a weighted
distribution. With a combination of virtual nodes and methods for even distribution, it is
possible to achieve a good weighted balance of all elements in a Chord ring. Furthermore,
the communication overhead in this approach is not a fixed constant. Instead, a node
with the minimum contribution weight only uses a single virtual node where a node with a
factor c of the minimum contribution weight uses c virtual nodes. In a real-world example
the contribution weight most likely also correlates with the computational power of a node
making the overhead in communication and state keeping bearable.

30

4.2 Replicated Block Storage

An arbitrary id selection without any further improvements is contra productive in a hetero-
geneous network. Since it provides a good guarantee on even load balancing every node with
a capacity above or below the mean id share is non-optimal utilized. The thermal dissipation
approach suffers from the same problem but instead of relying on large data movements upon
node arrival it only needs to delete a certain number of keys in the case of an interval split.
In addition, the thermal dissipation approach also focuses on the problem of underutilized
nodes by moving nodes with low utilization to intervals with a high load.

Implementing Y0 in contrast should be beneficial for heterogeneous networks. It promises not
only a good load balancing onto nodes with different capacities it also introduce a routing
scheme that is aware of different node capacities and prefer larger nodes in proportion to
their storage capacity. The Problem with using Y0 is the necessity for estimating the number
of nodes in the network and their average storage capacity. Furthermore, Y0 discards nodes
which have a storage capacity below the average capacity.

The power of two choices method provides additional load balancing properties but increases
the amount of memory a single device must use by a dynamic factor. As discussed above
we need to store pointers to the location of the data on h − 1 nodes when using a number
of h hash functions. Since the target environment focuses on constrained devices a method
which uses a constant amount of memory is preferable. In contrast, using multiple hash
functions to store the load on multiple targets simultaneously can be beneficial for improved
load balance and lookup times.

HRW based approaches are promising in terms of weighted load balancing but lack an
important feature. It is not possible anymore to get a consistent location of a data item
without knowing the whole topology of the network. Using a HRW based solution in a P2P
network introduce a limit to the possible size of the network and prevents the network to
benefit from its distributed nature.

Conclusion

As discussed above a combination of the provided methods need to be used to solve the load
balancing problem in a DHT. Using virtual nodes allows us to focus on even load balancing.
For an even load balancing, it is important to use a method which does not underutilize
nodes by a larger factor. The thermal dissipation approach or the CAN distributed hash
tables are good candidates for providing a near optimal load balancing. Both methods rely
on intervals which get split into two halves if nodes join the intervals.

4.2.4 Data Availability

Using a DHT with consistent hashing as described above let arise the question of how to
handle events where nodes fail unexpectedly. With the original notion of consistent hashing,
a data item is only placed on a single node in the network and thus gets lost as soon as
this node fails. Multiple solutions for data availability in a DHT had been proposed and
should be explained in this chapter. A good data availability functionality should provide
resistance against multiple failing nodes as well as a self-repairing property to restore full data
redundancy when failing nodes rejoin the network or get replaced by new joining nodes.

31

4 Design

RAID & Erasure Codes

Storing redundant data can be considered as a trade-off between the quality of error correc-
tion and the quantity of the stored data. An early approach for redundant data storage is
RAID. RAID was designed to bundle multiple hard disk drives into a single logical disk. To
provide a certain resistance against disk failures multiple so-called RAID levels are defined to
reflect the mentioned trade-off [PGK88]. The first level RAID-0 provide no error correction
since data is only striped between multiple disks. If a single disk failed the whole virtual
disk is considered as erroneous. RAID-1 provides a very strong resilience against failing disk
with high storage overhead. Data is written in a mirrored fashion over multiple disks. This
notion doubles the storage overhead while providing resilience against one out of two failing
devices. RAID-5 and RAID-6 use a block-level striping with parity bits to distributed the
data on multiple disks. Both methods provide resilience against one or respective two failing
devices with only an overhead of one or two disks which are needed to store the parity data.
In this scheme, a failing disk can be reconstructed from the remaining disk and the parity
information. The parity disk can be reconstructed out of the remaining data disks.

A generalization of redundant data storage as used in RAID is called erasure coding. Erasure
codes are error correction codes which rather focus on data erasures than on data modifica-
tion issues. An erasure event is defined as a complete loss of a single data block as in a node
failure described above. An erasure code can transform a message of k bits into a longer
message of n bits. The original message can be reconstructed from a subset of the longer
message with n bits. The code rate is defined as r = k

n and defines the ratio of the size
of the original message to the size of the message with redundant information. As r grows
the storage overhead gets smaller with the cost of less toleration against failing devices. All
RAID level for data redundancy described above can be simulated by the usage of Reed-
Solomon-Codes (RS-Codes). Reed-Solomon-Codes can be used to recode a data block of size
n into s smaller data blocks of size m

n such that m < n. The original file can be reconstructed
from any m of the resulting s blocks [Pre89]. RAID-1 with two disks can be described as
a RS-Code with m = 1 ∧ s = 2, RAID-5 with three disks as m = 2 ∧ s = 3 and RAID-6
with four disks as m = 2 ∧ s = 4. RS-Codes are so-called Maximum Distance Separable
Codes (MDS-Codes) and therefore are able to provide an optimal storage efficiency for a
given quality of reliability.

Problems with RS-Codes

While providing an optimal storage efficiency RS-codes suffers from inefficiency when a full
data redundancy needs to be repaired. When a failed node gets replaced by a new node
the new node needs to restore the original data block from the old node by contacting at
least m nodes to restore the original data and recompute the missing block of the RS-coding
by recode the information. This results in a large overhead on data transmissions where
the stored data block is much smaller than the transferred data. In general, we need to
transfer m times more data than we actually need to store on the new node. To improve
this value different erasure codes such as regenerating or locally recoverable codes can be
used [Kum17]. In [SAP+13] the authors introducing the new family of erasure codes called
locally recoverable codes which can improve the repair and bandwidth cost by a factor of
two with only increasing the storage overhead by 14%.

32

4.2 Replicated Block Storage

In [DGW+10] the authors present an analysis of the repair inefficiency of RS-Codes and in-
troduce the notion of regenerating codes. Regenerating codes can improve repair bandwidth
costs up to 50%.

While RS-Codes are able to encode with arbitrary m and s this property comes with the
cost of expensive encode and decode operations. Classical RS-Codes provide a complexity
of O(nm) for encoding and O(m3) for decoding. This can be further improved by using
derivations such as Cauchy instead of Vandermonde matrices as well as

”
Use neat projection

to convert Galois Field multiplications into XORs“ [Pla05]. Different approaches like Parity-
array codes and LDPC codes allow a lower encode/decode complexity but only work for a
few fixed values of n and m.

Placement of the Data

Independent from the used technology all solution have in common that we need to dis-
tribute multiple chunks of data on different nodes. It is important for a single node to
compute all locations of the chunks independent from other nodes in case of a node fail-
ure. Multiple solutions to this problem had been proposed and should be presented in the
following sections.

As a simple straight forward solution, the DHash key-value store uses the existent data
structure on a single Chord node of the next log(n) succeeding nodes to distribute the data
in the network. Since this may introduce some unwanted redundancy in networks where
the amount of nodes is smaller than log(n) it can make sense to limit this value to a fixed
amount of nodes or omit nodes which are duplicated in the successorlist.

Another approach for distributing data in DHT like networks can be used by hashing the
content of the data multiple times. This approach can work on any DHT that uses consistent
hashing to place elements in the network and do not rely on a specific data structure. Another
benefit is the fact that this approach is not limited to a fixed amount of nodes as arbitrary
hashes could be generated. As a downside, this approach may weaken the guarantees on data
availability since a single node can be selected multiple times due to the random output of
pseudo-random hash functions. Also, it can be quiet expensive to compute multiple hashes
for a single data item on constrained hardware.

Another approach used by the already introduced thermal-dissipation inspired method for
load balancing in DHT networks is worth to mention. In this approach, multiple nodes are
placed in an interval of a fixed size f . This interval gets split into two even sized intervals
if the nodes count in a single interval reaches a value of 2f . The Authors suggest storing a
data item which is covered by an interval on any present node in this interval. This allows
distributing the data on a minimum of f nodes at a given time [RPW04]. As a downside,
this couples the parameter f to the strength of the used data availability solution.

Conclusion

Further studies show that the benefit of using erasure codes over a classical replication based
redundancy is heavily depending on multiple factors like the bandwidth of the nodes, the
expected availability of the nodes and the available storage size [RL05]. Also, the used

33

4 Design

erasure code is depending on whether a fast encoding and decoding or an arbitrary selection
of the used parameters is needed. Since we want to store multiple data words on different
devices it makes sense to implement the encoding and decoding of the data block we operate
on in a modular fashion. This allows using the system depending on a specific use case.

4.2.5 Storage Size

Another requirement yet unsolved is the awareness of the overall storage size in the network
on any given node. When using a homogenous network where every node has the same
capacity the storage size can be derived by an estimation of the number of nodes n in the
network. A problem with estimations as discussed in [Man04] is the fact that the number
of nodes can be under- or overestimated by a constant factor s. An overestimation of the
capacity can result in a scenario where data can not be stored in the network despite the
false fact that there is free capacity left. This can be resolved by reserving a factor of s
capacity on every node with the downside of wasting as much as 2s units of capacity in
the worst case of an underestimation of s. A better solution would be an estimation which
guarantees to only underestimate the correct value of n or a solution which guarantees a
correct computation of the overall storage size. A naive approach to get a correct storage
size could just communicate the size of every node to its direct successor alongside with the
information from the last node. This would result in exact storage information at the last
node in the network where it can be broadcasted to or queried by other nodes. A clear
downside of this approach is the linear complexity to update the information in case of a
node join or failure. It would take a worst of O(n) steps to update the overall capacity on
the last node where n is the number of nodes in the network.

Different research topics focusing on data aggregation in distributed P2P networks. Common
practices differ mainly in terms of accuracy, communication efficiency, supported networks
layouts and support for complex aggregation functions. As already stated a high accuracy
would be beneficial, as well as a communication efficiency lower than the stated O(n) of
the naive approach. For the communication of parameters as available storage size in a
distributed environment, a simple decomposable aggregation function like sum or count is
sufficient. The benefit of decomposable functions is their property that the result of the
function can be computed as the result of any partition of the input data set and thus
make them highly distributable [JBA15]. In the following section, the focus resides on the
optimization of the communication efficiency while using an algorithm which provides perfect
accurate aggregations.

For structured P2P networks, many approaches try to take advantage of the existing overlay
network such as neighbor knowledge in distributed hash tables to provide better guarantees
on communication efficiency. One example is to use additional sets of overlay links to build a
tree-like structure in the existing overlay. Using the properties of the emerging tree updates
of the parameters can be communicated in O(h) where h is the size of the tree. Using a
perfect balances binary tree-like structure would result in h = log(N). Li et al. propose
an algorithm to build such a tree in a bottom-up approach. In this approach, every node
in a distributed hash tables uses a defined parent function P i to calculate a set of possible
parents. After a parent with sufficient free capacities to store an additional child is found,
the node registers as a child on the parent node and a state keeping protocol takes place

34

4.3 Summary

to guarantee the further completeness of the resulting tree [LSL05]. They further provide a
parent function which gives good guarantees on the distribution of the tree and proves that
under the assumption of uniform node distribution that the expected hight of the tree is
O(logk(N)) where k is a fixed branching factor.

With a tree-based approach, the only node which is aware of the output of the aggregation
function is the root. It is necessary to communicate this information along the network so
that any node is aware of the network size at one point in time. As already described this
could be achieved via a pull or push like approach. In a pull approach, every node would
periodically contact the root node to gather the required information. This has the benefit
that the communication of the parameters is done in a short amount of time. It shouldn’t
take longer than a single synchronization period to inform all nodes in the network. A clear
downside of this approach is the high network bandwidth required as well as an additional
load on the root node. Since it is not feasible to increase the load on a single participant in
a P2P network a push approach is better suited. In a push approach, the information can
either be flooded over the network using the already stated tree structure or the information
can simply be broadcasted to all participants. While a typical IP broadcast is limited to the
broadcast domain of the root node a thus may not reach all participants in the network we
can use the tree structure to broadcast the information to all participants. A broadcast over
the tree structure could also be described as a controlled flooding of the network with the
guarantee that every participant is only traversed once. This approach needs a relatively
high amount of bandwidth in contrast to a traditional IP broadcast since the number of
messages must be doubled at every node in the tree but does not limit us to a broadcast
domain which only includes a subset of nodes.

4.3 Summary

In Table 4.3 an overview of the requirements is provided and the modules which cover the
appropriate requirements are shown. Most of the requirements are covered by the usage of a
DHT. Since DHTs are designed to work on distributed systems and the resource usage of the
implementation often depends on the chosen synchronization period the resource usage is
expected to be rather low. As shown in Table 4.1 all examined DHT implementations provide
specific guarantees on the network size and hops needed to reach another node in the network.
Through using a structured network the requirements on guaranteed lookups, concurrency
and locality are also satisfied. One problem arises from the need for homogenous nodes
in the network. To achieve a balanced distribution amongst the members of the network
an id selection protocol is chosen to provide even distribution. Using virtual nodes allows
simulating a weighted distribution. To provide data availability on node failures a mirroring
based approach is chosen. The communication of the storage size is done through the tree
construction protocol as described in the last section. This protocol provides logarithmic
time for data aggregation and the broadcast of the aggregated data along the network.
To bootstrap nodes in the network, a combination of static configuration and multicast is
used.

35

4 Design

Requirement Covered by

Computational Requirements DHT
Path Length & Network Size DHT
Guaranteed Lookups DHT
Locality DHT
Concurrency DHT
Load Distribution Id Selection
Data Availability Mirroring
Raw Device Interface RIOT
Storage Size Tree
Bootstrap Multicast

Table 4.3: List of all functional and non functional requirements and their design coverage

36

5 Implementation

Figure 5.1: Implementation Module Overview

In this chapter, the details of the final implementation are discussed. Implementation details
are chosen appropriately to reflect the results from the last chapter. An example implemen-
tation can be accessed online1. The diagram in Figure 5.1 shows an overview of the imple-
mented modules with their relevant chapter marks and dependencies. As already stated the
implementation works on top of the RIOT operating system for IoT and embedded devices.
The RIOT implementation can be distinguished into two different parts. First, there is a
RIOT storage driver which uses the DHT module to provide storage like functionality. The
second part called the application can make use of the storage driver and combine it with
other modules like file system implementations. The application further makes use of a shell
module and extends it to implement multiple test cases. The DHT implementation used
by the storage driver also consists of different modules. These modules are the P2P overlay
network and the DHT implementation on top of the overlay network.

1https://github.com/crest42/RIOT

37

https://github.com/crest42/RIOT

5 Implementation

5.1 Peer-to-Peer Overlay

Figure 5.2: Chord Implementation Module Overview

As stated in the last chapter a structured P2P overlay network should be used to implement
the distributed storage system. Since all analyzed overlay networks provide a protocol to
organize participants in a defined topology, the selected DHT is implemented as a library
with a defined interface to allow interchangeability with different implementations. In the
last chapter, two common implementations of P2P overlays are further explained. Chord,
which is a classical P2P overlay working on a ring structure and CAN, which implements the
overlay on a d-dimensional hypercube. Both designs can be used to implement a data storage
and mainly differs from their guarantees on load distribution, resistance against churn and
routing complexity.

In terms of load distribution, the design of CAN can be easily extended to provide a constant
factor load distribution of σ ≤ 4. To get the same guarantee on a Chord network additional
improvements on the existing design needs to be implemented. Creating the Chord ring by
splitting intervals of nodes and interpreting nodes as leaves in a binary tree gives us the same
guarantee as in CAN, with the cost of a single node that needs to change its location when
any node leaves the network. This value can be further optimized to a smaller constant by
increasing the number of relocation nodes on a churn event [Man04]. From a practical point
of view, it is more feasible to use a Chord implementation for its easily understandable design.
Furthermore, Chord is a well-established solution for distributed hash tables. Many research
focuses on Chord when providing solutions to common problems in DHT like systems. A
benefit from using CAN relies on the fact that it is easy to improve the routing performance
by increasing the number of used dimensions. Since using more dimension in a CAN also
implies storage overhead to store links to neighboring nodes and additional message for state
keeping as well as the fact that the target environment consists of very constrained hardware
it may provide no real-world advantage for using CAN over Chord. To back this assumption
further experiments and analysis on resource usage and routing improvements using different
P2P implementations need to be done.

38

5.1 Peer-to-Peer Overlay

5.1.1 Chord Implementation

1 #define CHORD_PERIODIC_SLEEP (2)

2 #define CHORD_PORT (6667)

3 void *thread_periodic(void *data);

4 void *thread_wait_for_message(void *data);

Listing 5.1: DHT Main Threads

The Chord implementation is implemented as a generic library which provides two distinct
threads. The interface of the functions reflects the POSIX pthread library2

The thread periodic function implements Chords periodic protocol [SMK+01b]. On every
run, the routine notifies the nodes current successor, requests the current successors prede-
cessor to updates its own successor and updates an entry in the nodes fingertable. After
each run, the threads set itself to sleep for a fixed amount of time defined by the constant
value of CHORD PERIODIC SLEEP.

The thread wait for message routine is used to listen on a well-known port defined by
CHORD PORT for incoming protocol messages and send an appropriate response. Calls to
remote functions are implemented as RPCs in a defined message format. Every Chord
message consists of a header section and a data section. The headers are constructed as a
4-byte message type which identifies the needed RPC call, 4 bytes for the calling node id, 4
bytes for the target node id and 4 bytes for the size of the payload. The remainder of the
packet is used for arbitrary payload which gets passed to the according RPC function. The
maximum message size is chosen to fit at least the size of a single header plus the size of
complete successorlist. This is the size of a single node times the size of the successorlist
which is log(N) with N being the size of the networks id space. A future implementation
could make use of a RPC library such as rpclib3 to reduce code complexity and to improve
the stability of the overall software.

Load Balancing

As already discussed in the last chapter the guarantees on load balancing provided by Chord
are not sufficient. Additional actions need to be taken to improve the guarantees up to a
constant value. One approach described in the last chapter let the nodes chose an arbitrary
id by interpreting the Chord network as a complete binary tree and split the biggest id space
in a subtree of size log(n) into two halves [Man04]. The id of a node is chosen before a node
joins the system by systematically searching for the biggest id space to split. The protocol
defines a static function φ(l) which is used to control the starting level of the binary tree
search and thus the quality of the load balancing.

2http://man7.org/linux/man-pages/man3/pthread_create.3.html
3http://rpclib.net/

39

http://man7.org/linux/man-pages/man3/pthread_create.3.html
http://rpclib.net/

5 Implementation

Tree Construction Protocol

1 #define CHORD_TREE_BRANCH_FACTOR (2)

2 #define CHORD_TREE_ROOT (CHORD_RING_SIZE /2)

3 struct child

4 {

5 nodeid_t parent;

6 nodeid_t self;

7 int i;

8 struct node parent_suc;

9 struct aggregate aggregation;

10 };

11 int register_child(struct child *c);

12 int refresh_parent(struct child *c);

Listing 5.2: Tree Construction Interface

To communicate the storage size in the Chord network the tree construction protocol as
described in the last chapter is used. To implement this feature an additional call to register
the child according to the protocol described in [LSL05] is implemented in Chords periodic
run. The branching factor of the tree construction algorithm is defined to be 2 to construct
a binary tree and distribute the additional load over many participants as possible. Fur-
thermore, this allows us to communicate changes in an expected time of log(n) where n
is the number of nodes currently in the network. After a child is registered at its parent
it periodically sends a refresh message including the aggregated information of all its child
nodes plus its own capacity information to its parent. The overall capacity information is
returned in the acknowledgment message. The root node is defined to be the node which is
the successor of CHORD RING SIZE/2. This node does not register itself as a child but starts
sending the aggregated capacity information to both of its children. Using this algorithm
any changes in the topology are communicated in 2 log n steps to the whole network. This
is due to log n step it needs in the worst case to update the overall aggregation up to the
root node and log n steps to broadcast the information back to all child nodes.

40

5.2 Distributed Hash Table Implementation

Bootstrap Protocol

1 struct bootstrap_list {

2 uint32_t size;

3 uint32_t current;

4 struct in6_addr list[BSLIST_SIZE];

5 };

6

7 struct bootstrap_list bslist;

8

9 /* Bootstrap List Content Primitives */

10 int add_node_to_bslist(struct in6_addr* addr);

11 int add_node_to_bslist_str(const char* addr);

12 int fill_bslist_mcast(uint32_t max , uint32_t timeout);

13 int fill_bslist_mcast_ll(uint32_t max , uint32_t timeout);

14 /* Bootstrap List Content Primitives */

15

16

17 int

18 chord_start(void);

Listing 5.3: Bootstrap Interface

When a node wants to join into an existing Chord network it needs at least a single contact
node. As already stated in the last chapter it should be possible to provide these nodes
in multiple ways to allow heterogeneity in the used network topologies and in the used
deployment scenarios.

To provide a generic way to set up possible contact nodes a data structure called struct

bootstrap list was introduced with a maximum size of BSLIST SIZE. When a new Chord
node gets started due to an invocation of chord start the function either creates a new
network if the global bootstrap list has no entries or it tries to join an existing network by
iterating over the list and probing the nodes with a message of type MSG TYPE PING. As soon
as a request is answered with a message of type MSG TYPE PONG the joining node acquires its
id due to the load balancing protocol described in the last section. This continues until a
node id is found and Chords regular maintenance protocol can take place.

The source code provided in Listing 5.3 shows multiple primitives that can be used to
set up the bootstrap list. As a generic way to add any IPV6 address the functions of
the add node to bslist family can be invoked. Furthermore, it is possible to make use
of IPv6 multicast either on a self-provided multicast address or using link-local multicast
addresses to reach all nodes in the multicast group ff02::1 due to an invocation of the
fill bslist mcast function family. If a multicast-based approach is used a message of type
MSG TYPE PING is sent to the respective multicast address and incoming answers are added
to the bootstrap list until the maximum number provided as a function argument is reached,
the bootstrap list is full or a timeout is reached.

41

5 Implementation

Figure 5.3: CHash Module Overview

5.2 Distributed Hash Table Implementation

In this section, the DHT implementation which is responsible for inserting and retrieving
data, as well as distribution and load balancing of data elements, should be described. The
DHT is implemented as a library called CHash in respect to the storage layer of the original
Chord implementation DHash. The library itself consists of three major parts. The core
part is responsible for providing raw network functionality to send and retrieve data to and
from other nodes. This part is strongly coupled with the P2P overlay implementation and
make use of function pointers to extend Chords base functionality.

The two other components are called the frontend and the backend of the DHT library. The
frontend is responsible for looking up the location of data items as well as the data availability
concept. The backend is responsible for storing the data in a defined data structure. Both
modules are implemented as single compilation units to allow easy interchangeability.

5.2.1 Distributed Hash Table Interface

1 nodeid_t id = find_responsible_node(nodeid_t id);

2 char *data = get(nodeid_t dht_id):

3 nodeid_t dht_id = put(char *data);

4 nodeid_t dht_id = put(nodeid_t data_id ,char *data);

Listing 5.4: DHT API

Any DHT provide a simple interface to write and retrieve data in the network. In DHTs
where consistent hashing is used to compute the location of a data item, a single primitive
to return the responsible node needs to be implemented. This primitive can be further used
to store arbitrary data in the network using the put and get functions. In the original notion
of DHTs with consistent hashing, the put function returns the id of the element as a hash
of the content modulo the size of the identifier space. This is not always a practical solution

42

5.2 Distributed Hash Table Implementation

since one might want to calculate the id as a function on the metadata of a given data object
instead of the whole data. In the case of a distributed block storage, the location of a data
element is determined by its block number. A block number is a numeric increasing id which
holds a fixed amount of data. To reflect this property an extension of the put function is
implemented which allows providing the metadata as an additional parameter.

5.2.2 Frontend

1 int chash_frontend_put(uint32_t key_size , unsigned char* key ,

2 uint32_t offset , uint32_t data_size ,

3 unsigned char* data);

4

5 int chash_frontend_get(uint32_t key_size , unsigned char* key ,

6 uint32_t buf_size , unsigned char* buf);

7

8 int handle_sync (...);

9 int handle_sync_fetch (...);

10 int chash_frontend_periodic(void* data);

Listing 5.5: Frontend Interface

The frontend handles the logic of how and where the data should be stored in the net-
work. Since it is important to provide an arbitrary level of data availability the frontend
can create any number of data blocks and place them appropriately. This depends on
whether a mirroring based approach or erasure coding is used to provide data availability.
Furthermore, the frontend decides on which nodes the data blocks are stored in the net-
work and how they can be retrieved. Listing 5.5 shows the frontend API. The placement
and retrieving of data elements is handled in the implementations of chash frontend put

and chash frontend get. The remaining functions can be used to provide synchroniza-
tion features as they are invoked automatically in Chords periodic run and on events of
MSG TYPE SYNC or MSG TYPE SYNC FETCH.

In this implementation, a simple mirroring based approach is used for data availability. To
write data in the network the hash of a blocks numerical identifier is generated and the
data is stored on the direct successor of the hashes numerical representation and n of the
successors subsequent successors. To provide arbitrary level of fault tolerance any value of
n which follows n ≥ 0 can be used, where n = 0 provides no fault tolerance. Alternative
implementations can include erasure coding and different placement of data replicas. As an
example data items can be placed into the ring by hashing their value multiple times. Since
the id of the nodes in the network do not correlate to a geographic location (e.g. neighbors in
the ring are not necessarily geographic neighbors) this would provide no advantage over using
a linear placement. Furthermore, a simple algorithm to keep a constant level of replication
using this linear approach is available and can be applied easily.

Synchronization

To keep a good quality of data availability a synchronization mechanism needs to be de-
ployed to re-synchronize data onto responsible nodes if members of the network are affected

43

5 Implementation

by an outage or a new node joins the system. The authors of the Chord DHT provide a syn-
chronization protocol in their storage implementation DHash. They defined three different
properties the system must fulfill for each block to be in an

”
ideal state“ to provide a given

level of data availability. The first property is called multiplicity where any data element
exists 14, 15 or 16 times in the network. The second property is called distinctness where

”
All fragments are distinct with high probability“ and the last property is called location

where
”
Each of the 14 nodes succeeding the block’s key store a fragment; the following two

nodes optionally store a fragment; and no other nodes store fragment“ [Cat03]. The focus on
distinctness and a certain number of fragments result from the usage of erasure coding where
the full quality of data availability is determined by the usage of a certain number of distinct
fragments. In this implementation, only a mirroring based approach is used which allows
the implementation to ignore the second property. Also the number of available elements
can be generalized as n elements where n, n+1 or n+2 elements exist in the network. Since
the algorithm also works for mirroring based approaches and an erasure coding based data
availability approach may be interesting for future implementations the provided algorithm
is implemented in this thesis.

Two possible events can violate one or more of the defined properties. An event where a
node joins the network can violate the third property and an event where a node leaves the
network can violate the first property. To work around both events two synchronization
algorithms take place, called the global- and the local maintenance protocol. The global
maintenance protocol pushes items onto a newly joined node and restores the first property
whereas the local maintenance protocol handles node failures and restores the third property.
Both protocols are able to run distributed on every node.

Global Maintenance Protocol

To provide data availability, data items are stored on the node responsible for the data
as defined by consistent hashing and a defined number of x successors. Since all nodes
in a Chord network already keep a list of log(n) successors in their successorlist we can
take advantage of this list to detect a node join and the need for re-synchronization of data
elements. If a node joins in between the direct successor and one of its x successor the original
successor nx is now the nx+1 successor. Every node periodically iterates over its database
of keys and request the successorlist of the node responsible for every data element. If the
node is now the nx+1 successor for any key according to the successorlist the host publishes
the key ranges which are not in its scope anymore to the x responsible successors. If any of
the successors require any key it simply requests that missing keys. Afterward, the key is
deleted from the database of the publishing node.

This algorithm ensures that the first and the third property are not violated at any time.
After a key is synchronized there are at most x + 1 occurrences of this keys in the net-
work. Since the key gets deleted directly after it is pushed onto another node and before an
additional node can request the key we ensure a number of x or x+1 keys at any time.

44

5.2 Distributed Hash Table Implementation

Local Maintenance Protocol

To handle failing nodes accordingly an additional protocol needs to take place to re-sync data
elements to nodes newly responsible for a given data item after a node has failed. If any node
which holds a data element fails the first property is violated since x− 1 elements now exist
in the network. To restore a number of x elements, every node in the network periodically
sends a list of all keys for which they are directly responsible to all of its x successor according
to its successorlist. If a node recognizes it is missing one or more of the keys it needs to
request them by sending an answer with the needed key range. The node holding the data
now pushes the needed keys onto the requesting node. This restores property one since there
are now x elements of a given data item in the ring. This can be also done with a pull-
based approach where data elements are not pushed onto missing nodes but rather nodes
fetching missing data elements from the network. This is even more interesting in networks
using erasure coding instead of replication. In approaches used by certain types of erasure
coding, a node needs to fetch a certain number of distinct elements to reconstruct another
distinct fragment. Due to a pull-based approach, the load for reconstructing an element can
be shifted to the newly joined node and divided amongst the nodes which already hold the
data.

5.2.3 Backend

1 int chash_backend_put(struct item *i, unsigned char *data);

2 int chash_backend_get(unsigned char *hash , nodeid_t *id ,

3 uint32_t *size);

Listing 5.6: Backend Interface

The backend is responsible for handling the local data storage. This depends in which type
of memory the data needs to be stored and on the used data structures. As shown in
Listing 5.6 any implementation needs to provide at least two functions. One which writes a
data block into the storage backend and one which can retrieve any data element from the
used structure.

In this implementation two backend implementations are available. A generic volatile mem-
ory storage using a linked list and heap memory to keep track of the data items and another
implementation which stores data using RIOTs storage driver interface to use any storage
backend RIOT provides. Since the complexity to search for existing and to add new data
elements in this data structures is O(n) an additional backend using a more performance
concerned implementation would be desirable and is considered as future work.

45

5 Implementation

Volatile Storage Backend

1 struct key

2 {

3 uint32_t block; /*!< Numerical Block id of the key.*/

4 uint32_t size; /*!< Size of the data. */

5 unsigned char hash [20]; /*!< Hash of the block number. */

6 unsigned char *data;

7 struct key *next;

8 };

Listing 5.7: Data Structure for Storing Blocks of Data

The volatile storage backend makes use of heap memory to build up a linked list of data ele-
ments stored as a struct key as shown in Listing 5.7. The unsigned char *data element
points to the heap memory holding the actual data. The hash of the numerical block id is
stored in the according member of the struct.

Non-Volatile Storage Backend

1 typedef struct {

2 const mtd_desc_t *driver; /**< MTD driver */

3 uint32_t sector_count; /**< Number of sector in the MTD

*/

4 uint32_t pages_per_sector; /**< Number of pages by sector */

5 uint32_t page_size; /**< Size of the pages in the MTD

*/

6 } mtd_dev_t;

Listing 5.8: Interface for a MTD Device

The non-volatile storage backend for RIOT Memory Technology Devices (MTDs) expects a
pointer to a mtd dev t provided to the backend init function. The MTD device is initialized
using the function pointer in the struct mtd desc t and the according read, write and erase
functions are used to store and retrieve data. The key structure as shown in Listing 5.7 is
stored on the MTD device in addition to the data blocks. The pointers to the next element
and the data pointer are used to point into a region of the MTD device and are relative to
the start address.

46

5.3 RIOT Storage Driver

5.3 RIOT Storage Driver

Figure 5.4: RIOT Storage Module Overview

As already stated, the implementation should act as a storage device using the RIOT storage
API. This allows the driver to be used just like any other storage backend, such as hard
disk and flash memory. In this section, a short introduction in the RIOT storage API should
be provided and furthermore, a short overview on how the storage API is mapped onto the
storage network should be given.

5.3.1 RIOT Storage API

1 int mtd_init (mtd_dev_t *mtd)

2

3 int mtd_read (mtd_dev_t *mtd , void *dest ,

4 uint32_t addr , uint32_t count)

5

6 int mtd_write (mtd_dev_t *mtd , const void *src ,

7 uint32_t addr , uint32_t count)

8

9 int mtd_erase (mtd_dev_t *mtd , uint32_t addr , uint32_t count)

10

11 int mtd_power (mtd_dev_t *mtd , enum mtd_power_state power)

Listing 5.9: MTD Driver Interface

The RIOT storage device driver API4 is divided onto multiple drivers for different use cases.
The Disk IO Driver is used to reflect properties of disk drive like CD, DVD or Blueray devices
with interchangeable storage media. The Non Volatile Random Access Memory (NVRAM)
driver aims for non-volatile memory devices which do not need block wise erase of data
elements. Furthermore, multiple specific purpose drivers are available such as a driver for
access onto serial NOR flash or a driver for access onto flash cards attached via a Serial
Peripheral Interface (SPI). In this thesis, we use the MTD interface. This is due to the fact
that it is a generic interface for storing and retrieving data which makes no assumptions on a
given hardware or storage backend. Furthermore, it is already used in the RIOT virtual file
system layer vfs and thus allows us to use the resulting driver directly to flash a file system
onto it.

In Listing 5.9 the interface of the MTD driver is displayed. The mtd init function is used
to initialize the Chord network by creating a new network or join into an existing network.
The mtd read and mtd write functions translate a given address and amount of data onto
one or multiple blocks and fetches or inserts them into the network using the put and get
functionality described in Listing 5.4.

4https://riot-os.org/api/group__drivers__storage.html

47

https://riot-os.org/api/group__drivers__storage.html

5 Implementation

mtd write

The mtd write function needs to translate the provided address to a block number. A
fixed definition of the size of a single block is provided via mtd->page size and thus can be
computed via integer division of addr/mtd->page size. For every block an update message
is send to all responsible nodes according to the frontend implementation which includes the
computed block numbers, the actual data, the size of the data and an offset into the first
block of size (addr % mtd->page size).

mtd read

The mtd init function initialize the values The mtd read function works similar to the
mtd write function. The block numbers are computed and fetched using the CHash frontend
before they get copied onto the read buffer provided to the function.

5.3.2 Size of the Storage Device

1 int backend_periodic(void *data);

Listing 5.10: Backend Hook for Periodic Updates

The size of the storage device is stored in the global struct mtd dev t and needs to be
updated when nodes join or leave the system. To provide such functionality and additional
hook in the chord periodic function is used. Since every node got the size of the network
periodically broadcasted through the tree construction protocol described in the last section,
this can be achieved by updating mtd->sector count to an appropriate value.

in Listing 5.10 the interface for the backend hook is defined. A void pointer is used as an
argument pointer since we need to invoke it with arbitrary data, depending on the backend
implementation.

5.4 Verification of the Acceptance Criteria

In the third chapter, acceptance criteria were defined for each requirement which needed to
be evaluated against the implementation defined in the current chapter. Any deviation from
the defined criteria must be reasoned and further actions need to be determined.

5.4.1 Functional Requirements

1. Raw Device Interface
Acceptance criteria: At least a command for read and write a single block of data must
be defined. A more sophisticated implementation can also implement read and write
operation for multiple blocks as well as additional SCSI commands. The user must at
least be able to write a specific block of data and read it afterward.

The backend implementation in conjunction with the RIOT storage device can be
viewed as such an implementation. The Interface described in Listing 5.9 provides a

48

5.4 Verification of the Acceptance Criteria

generic read and write implementation which acts as a translation unit from numerical
addresses to block numbers. To write a single block of data an address which is a
multiple of the block size needs to be provided and the length parameter needs to be
any value smaller or equal the block size. Providing a larger value results in reading
or writing of multiple blocks. The number of actually processed bytes is returned after
the operation is done.

To verify the read and write functionality two different test cases are provided. First, a
low-level test is used which writes a single block of data with random content and tries
to read it and verify the content afterward. A more high-level test which also writes
multiple blocks of data makes use of a simple file system implementation which is
supported in RIOT called LittleFS.

”
LittleFS, the high-integrity embedded file system

in Mbed OS is optimized to work with a limited amount of RAM and ROM. It avoids
recursion, limits dynamic memory to configurable buffers and at no point stores an
entire storage block in RAM5“. A LittleFS file system implementation is formatted
onto the storage device and can be mounted on multiple devices afterward. The nodes
can now write and read files created by other nodes in the network.

2. Concurrency
Acceptance criteria: Multiple write accesses on one or more data blocks should be
executed in their correct order and lead to correct data after the last write access.
Multiple users must be able to write multiple blocks concurrent without getting incon-
sistent data.

In the provided implementation the location of each data block is determined by its
numerical increasing identifier. When writing or reading multiple blocks of data it
is ensured that the operations are executed in order of their increasing id. When
multiple nodes write onto the same block the write operations are executed in order
of the incoming UDP messages. Furthermore, the location of a block is determined by
hashing its numerical id. This leads to a single node responsible for a single block of
data and allows atomic updates of a single data block.

3. Storage Size
Acceptance criteria: Multiple join or leave operation should be communicated across
the network and the network should converge to the correct storage size in a given
upper bound of time. When a node joins or leaves the network any other node in the
network must be able to update its information on the overall size in between a given
period of time.

The tree construction protocol described in a previous section is used to communicate
the storage size in the network. Through the usage of the periodic hook the frontend
implementation updates this values on every run of the thread periodic implemen-
tation.

4. Load Distribution
Acceptance criteria: The probability for every data item to get stored at a node ni
with positive weight wi needs to be wi

W where W =
∑
wi.

5https://os.mbed.com/blog/entry/littlefs-high-integrity-embedded-fs/

49

https://os.mbed.com/blog/entry/littlefs-high-integrity-embedded-fs/

5 Implementation

The load balancing protocol described in the last chapter is used to achieve a constant
factor load balancing on multiple devices with the same weight.

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
a
tio

 o
f
m

a
x(

s
h
a
re

)/
m

in
(s

h
a
re

)

of Nodes

Random Insert

Perfect Insert

Figure 5.5: Ratio of min (share) and max (share) with random and perfect insertion of new
nodes

Figure 5.5 shows the load balancing after the insertion of 18 nodes as implemented
in the Chord library using a value of φ(l) = 0 for random insertion and a value of
φ(l) = log(N) for perfect insertion.

Further studies needs focus on an implementation of correct handling of node failures.
The implemented algorithm does not alter the node id after its initial join into the
network. This assumes that the number of failing nodes are roughly equal to the
number of nodes joining the network to keep a constant factor load balancing. Another
part of the acceptance criteria not taken into account yet is the distribution over nodes
with heterogeneous capacities. As described in the last chapter this should be achieved
by creating multiple virtual nodes per real node which is not implemented yet.

5. Data Availability and Consistency
Acceptance criteria: The design of the resulting network must guarantee to deal with
a certain amount of churn. After multiple nodes fail a user must be able to look up
the correct data in the network.

50

5.4 Verification of the Acceptance Criteria

The maintenance protocol described as part of the frontend DHT implementation
provides data availability up to a certain level. In the existing implementation, a
mirroring based approach is used which tolerates the failure of n− 1 hosts where n is
the number of replicas in the network. After a single synchronization period, the full
data availability is restored.

6. Locality
Acceptance criteria: The resulting system must be able to run in a local network
without any uplink to other networks, as well as across network boundaries.

As the existing test cases using the RIOT native implementation on a virtual tap
network with link-local IPv6 addresses only, this property is fulfilled. To Bootstrap
the device either static addresses or a link-local multicast address can be used. The
multicast implementation and the Chord implementation are not limited to a link-local
scope and can be used with global IPV6 prefixes to allow connectivity over network
boundaries.

7. Guaranteed Lookups
Acceptance criteria: After an insert operation into the storage gets acknowledged by
the responsible storage location, any other member of the network must be able to
query the data immediately.

Since the storage of data relies on a request-response protocol implementation and the
location of any data item is fixed due to consistent hashing this can be guaranteed.
When a node wants to store blocks of data in the network it needs to query the storage
location of the target devices and sends the data to the responsible nodes. After the
data is stored on the target node a positive response is sent to the storing device. By
the time the acknowledgment is sent the data is already stored in the network. Since
the location of data is independent of the storage operation itself any device should
be able to query the data at this point in time. Furthermore, the data gets stored on
multiple devices to provide data availability. This also results in correct lookups if a
device is affected by churn as long as not all devices which stores a data element are
affected.

A data lookup is considered a failed (e.g. no data in the network) when all nodes
which are considered as storage nodes due to the data availability policy are not able
to return any data.

5.4.2 Non-Functional Requirements

1. Awareness on Computational Constraints
Acceptance criteria: An example target environment must be defined and the CPU
utilization and the storage requirements of the resulting storage system need to be
checked against the available resources of the target environment. The resulting system
should not use more than a fraction of the available resources with at most of about
50 percent.

The implementation was written with respect to computational constraints. The code
base and the overhead in terms of external libraries and computational heavy algo-

51

5 Implementation

rithms are kept as low as possible. In the next chapter further analysis are provided
to validate this assumption.

2. Path Length & Network Size
Acceptance criteria: An upper bound for the number of hops until a certain destination
is reached must be provided

Chord guarantees a path length of O log(n) to find a given node by its id in the
network. In cases of churn events, this can be as bad as O(n) until the fingertable of
the remaining nodes are restored [SMLN+03]. Since the node lookups are implemented
through an iterative style it is possible to count the number of steps needed to find
any node at the requesting node. This value is printed to the debug output after every
lookup. This implies that DEBUG ENABLED (1) is defined.

3. Performance Indicators
Acceptance criteria: On a given hardware the performance is bounded by the under-
lying storage technology. The throughput should be measured and any deviation from
the theoretical maximum needs to be reasoned.

The performance evaluations are done in the next chapter. An experiment to calculate
the reached read and write performance is done and the reached values are compared
to the possible maximums.

4. Node Bootstrap
Acceptance criteria: A node should be able to join an existing network without any
pre-configured entry node.

Through using the generic bootstrap list interface as described in Listing 5.3 it is
possible to use a generic interface to provide node addresses. The fill bslist mcast

is already used in the example implementation to add new nodes into an existing
network.

52

6 Performance Evaluation

Disclaimer: The following chapter is viewed as out of scope for the assessment
of the bachelors thesis and is graded as a separate performance. As a part of the
thesis and for the sake of completeness it is still included in the final submission.

In this chapter, a detailed analysis of the implementation is provided. Multiple performance
evaluations are defined and performed accordingly. For practical reasons and due to the
implementation is being aimed to work in constrained IoT devices running the RIOT oper-
ating system, two different environments are used for the verification. Tests that are able
to run independently of the underlying runtime environment are executed on a GNU/Linux
host system. Tests which are expected to be influenced by the runtime environment are
executed on top of RIOT. To run on as many different environments as possible any RIOT
application is compiled against a specific

”
board“ target. Usual a board is a specific hard-

ware implementation of a Microcontroller Unit with the appropriate drivers for additional
peripheral hardware and configurations concerning the capacities of the boards such as size
parameters for static buffers and stack memory.

6.1 RIOT Environment

Figure 6.1 shows an overview of the different sections of the resulting Executable and Linking
Format (ELF) binary when the system is compiled against a specific environment. To match
the requirements of the different target environments two different binaries are built. The
binary labeled with

”
Native“ is compiled with debugging flags enabled and thus with rather

huge static buffers and additional overhead for debugging libraries. The other binary is built
with respect to a minimal memory footprint and size. To chose an appropriate board with
sufficient memory the minimal executable is used as a baseline for memory consumption.
Below two common board environments are specified and used for further verification.

• RIOT Native Device
This board configuration allows RIOT to run native on a operating system host. The
resulting binary is provided as a ELF file and can be executed on a host running
a GNU/Linux operating system or similar. To simulate MCU, RAM and storage
capabilities, the according host hardware is used. To provide networking functionality
a simple Linux tap network can be used by the binary.

• Nucleo STM32 F144 Family
The Nucleo board family is a range of development boards providing an evaluation
environments for STM32 MCUs. Nucleo boards are available in different configurations
with respect to the used MCU, the amount of RAM and the amount of available flash
memory. This board family was already used in past projects and has shown broad
support by RIOT. Furthermore, the boards are available with an onboard Ethernet

53

6 Performance Evaluation

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Minimal STM32 Native

S
ie

z
 i
n
 K

B

Target Envrionment

Figure 6.1: Size of the compiled ELF binaries for different target environments. The different
colors refer to different ELF section names and are chosen such that sections with
the same name resulting in the same color.

controller which makes them an attractive choice for further evaluations. Table 6.1
shows an overview of Nucleo boards with existing support in RIOT. Since the available
MCU in a given family does not differ in their computing power the choice for a specific
version of a target family is arbitrary and driven by the available storage capacities.
Since the Nucleo-F767ZI also provides an onboard Ethernet controller it is used for
the respective performance evaluations.

Board MCU RAM Flash MCU Hz

Nucleo-F767ZI STM32F767ZIT6 512 2048 216 MHz

Nucleo-F746ZG STM32F746ZGT6 320 1024 216 MHz

Nucleo-L496ZG STM32L496ZGT6 320 1024 80 MHz

Nucleo-F413ZH STM32F413ZHT6 320 512 80 MHz

Nucleo-F412ZG STM32F412ZGT6 256 1024 80 MHz

Nucleo-F429ZI STM32F429ZIT6 256 2048 80 MHz

Nucleo-F722ZE STM32F722ZET6 256 512 216 MHz

Nucleo-F207ZG STM32F207ZGT6 128 1024 120 MHz

Nucleo-F446ZE STM32F446ZET6 128 512 80 MHz

Nucleo-F303ZE STM32F303ZET6 64 512 72 MHz

Table 6.1: Overview on the Nucleo F144 Board Family.

54

6.2 GNU/Linux Environment

6.2 GNU/Linux Environment

Multiple measurements are independent of RIOT and can be run on any given host system.
Since running an ELF binary in a Linux/libc environment provides additional benefit in
terms of available data points and the possibility to run large and automated setups an
additional executable is built as a standalone ELF binary. Furthermore, a simple Perl
script using the CURSES::UI module is used to provide an automated testing framework for
spawning nodes and aggregation of relevant data points.

6.3 Evaluation

In this section, a model for functional and non-functional evaluations is provided and applied
to the existing implementation. Results of the experiments are examined and are discussed
further.

6.3.1 Evaluation Model

Figure 6.2: Evaluation Model

As described in the last chapter the storage software consists of three major layers which
should be evaluated independently of each other. The first part is the P2P overlay network,
the second part consists of the DHT implementation and the last part is the storage driver
implementation in RIOT. The evaluations need to focus on functional and non-functional
indicators. Functional indicators can be viewed as the users perspective on the system i.e.
how well the system performs in terms of the service it provides. Non-functional performance
indicators describe how the system behaves in terms of resource usage and raw performance
such as network, MCU and memory usage.

55

6 Performance Evaluation

6.3.2 Functional Performance Indicators

Figure 6.3: Functional Evaluation Model

Peer-to-Peer Overlay Network

As explained above the functional evaluation model should verify that the system behaves
correctly in terms of the guarantees given by the implemented modules. As derived from
the design of the system the P2P overlay network is responsible for providing four major
functionalities:

1. Resistance against Churn
The P2P protocol is responsible for constructing an overlay network which is able to
tolerate churn up to a certain point. A single node should be able to recover unless
at least one node in its successorlist is still reachable. To verify this property an
evaluation also used in the original Chord implementation needs to be done. First, a
network of n participants needs to be set up and then a fixed fraction of p ∈ [0, 1] nodes
should fail after the network is synchronized. The remaining fraction of 1 − p nodes
should be still reachable. This should give confidence on the correctness of stabilization
procedure. If the procedure is erroneous we expect only a subset of (1 − p) · n nodes
to be reachable [SMLN+03].

2. Id Space Partitioning
The id selection procedure defined in the design should give a certain guarantee on
the quality of the id space partitioning. To verify this property a number of n nodes
should be spawned and the value σ as the ratio of the maximum and the minimum
of the id space of all nodes should be calculated. As described in the design this is
expected to be σ ≤ 4.

3. Tree Construction
The tree construction protocol defined in the last chapter is responsible for the ag-
gregation of available nodes capacities and for broadcasting the aggregated values in
the network. As described above it should take a maximum 2 log(n) synchronization
periods to update the overall size of the network on every node. To verify this property
an increasing network of nodes should be created and the depth of the tree after each
node spawn should be measured.

56

6.3 Evaluation

Distributed Hash Table

Furthermore, we need to verify the implementation of the DHT functionality implemented
in CHash as described in the last chapter. The DHT implementation is responsible for
providing data availability, data consistency and data distribution in the network.

1. Data Availability
This property is strongly coupled with the correct functionality of the P2P overlay
implementation. After a certain amount of nodes had failed every member in the
DHT network should be still able to request data items stored on the erroneous node.
To verify this property a network of n nodes need to be spawned and a number of data
items d >> n should be inserted in the network. Afterward, a fraction of the nodes
should be removed from the networks. We expect that all data items are still available
in the network up to a certain fraction of failing nodes. Furthermore, it is expected
to reach an increased data availability if the number of replications of a single data
element is increased.

2. Data Consistency
This property defines the correctness of the data even after node failures and can be
verified together with the data availability property. To ensure this property the hash of
the numerical block identifier should be additionally stored in every data block inserted
into the network. After the node failure scenario described above, it is necessary to
test if the block yields the correct content in addition to a successful lookup of the
data.

3. Data distribution
Due to the nature of consistent hashing where a hash function is used that guarantees
an even distribution of its outputs, we expect an even distribution of data items in the
network. To verify this property a network of n nodes should be spawned and d >> n
data items should be inserted in the network. Afterward, we should be able to verify
the distribution of the data items in the network using statistical tests.

RIOT Storage Driver

Since the RIOT storage driver only acts as a wrapper for the DHT implementation we can
safely assume that the experiments from the DHT implementation also holds for the RIOT
storage driver. An important additional performance evaluation should target the raw read
and write performance of the final implementation. An experiment on a RIOT board as
explained in the model needs to be performed and evaluated.

57

6 Performance Evaluation

6.3.3 Non-Functional Performance Indicators

Figure 6.4: Non-Functional Evaluation Model

As shown in Figure 6.4 the used non-functional performance indicators consists of two parts.
A

”
local“ part where the resource usage on a single node needs to be evaluated and a

”
network“ part where the networking overhead of the different modules needs to be evaluated.

This is done within the target environment as described at the beginning of the chapter and
should have a special focus on resource usage in a constrained environment. As it is important
to attribute the resource usage of the different modules on different functionalities of the
modules this test should be implemented in a step-by-step fashion starting with a minimal
implementation and enabling single features as described in the implementation at a time
to allow an attribution onto different sub-modules.

Peer-to-Peer Overlay Network

The Chord implementation consists of three parts. The initial implementation of the base
protocol as described by Stoica et al., the tree construction protocol and the id selection pro-
tocol. The last two parts should be evaluated independently of each other. Since both parts
depend on a functional overlay network it is not possible to verify the modules independently
of the base Chord implementation.

Distributed Hash Table

The base implementation of the DHT protocol adds additional network overhead for the
synchronization protocol described in the last chapter. This overhead should depend on the
used data availability policy and increase with an increasing number of replications. It is
important to measure the effect of the synchronization protocol on the generated load in the
network.

RIOT Storage Driver

Since the storage driver itself adds no additional network functionality it is possible to avoid
additional network measurements. Anyway, it is important to measure memory consumption
and the MCU load on real-world hardware as defined at the beginning of this chapter.

58

6.4 Results

6.4 Results

In this section, the experiments derived from the above structure are explained further and
the results are presented accordingly.

6.4.1 Peer-to-Peer Overlay Network

The P2P overlay network is responsible for the coordination and the alignment of subscribers
in a distributed ring topology. It can be viewed as the fundament of the distributed block
storage and takes care of leaving and newly joined nodes. As shown in Figure 5.2 from the
last chapter the Chord implementation consists of three modules. The base Chord imple-
mentation, the tree construction protocol and the id selection algorithms. Wherever possible
these modules are verified independently. Since the performance of the implementation is
independent of a specific target environment all evaluations are done with a static binary on
GNU/Linux.

Non-Functional Performance Indicators

As described in Figure 6.4 the non-functional indicators for the P2P overlay are the network
throughput, MCU load and memory consumption. It is important to measure those values
for all three modules of the overlay network as described above. To verify the impact of
the different modules on those values we use the following experimental settings. 102 nodes
are started simultaneously and after some synchronization period the overall runtime, the
send and received bytes, as well as the CPU usage of the two distinct threads, are collected.
This experiment is done four times. One time with only the base module enabled, one time
with all modules enabled and two times with the base module and one of the extra modules.
This should yield the additional performance needed by the extra module as well as any
additional overhead if both modules are activated. The base module is used as a baseline for
the overhead introduced by the additional modules. The modules are expected to introduce
a small overhead as well as an even distribution of the load amongst the nodes due to the
P2P nature of the system. The amount of 102 nodes are chosen due to the ring size of
the network which is set to 216 and thus needs at least 16 nodes to work as intended by
the Chord implementation. To cover a realistic scenario the actual node count is chosen as
a tradeoff between a multiple of 16 and a value which allows practicable tests within the
semi-automated testing environment.

Figure 6.5: Average Read and Write B/s with dif-
ferent Modules enabled and 90% Per-
centiles

As shown in Figure 6.5 The id selection has
little to none impact on the network traf-
fic. Since the algorithm only takes place
on node startups and due to the long du-
ration of the experiment which results in a
rather high sample size, the overhead intro-
duced by these modules gets compensated
over time. Another interesting property is
the 90% percentiles of the base algorithm.
As explained above we expect the load to be
evenly distributed amongst the nodes.

59

6 Performance Evaluation

Since the percentile is close to the mean value we expect this property to be fulfilled. Fur-
thermore, we can see a rather big overhead introduced by the tree construction algorithm.
Since the mean values of both experiments differ about a factor of two a further experiment
is needed to determine the exact reasons for this overhead. The tree construction algorithm
involves sending two messages with a size of 80 bytes on every synchronization period. Fur-
thermore, these messages get answered with a message of 72 bytes each. This yields an
expected overhead of 152 bytes on every synchronization period. Since a synchronization
period takes two seconds we expect an overhead of 76 bytes per second. Therefore the re-
mainder of the overhead is probably introduced by the node lookup and the redirection of full
nodes to their neighboring nodes. To verify this hypothesis a further experiment is launched
which the number of redirects and successor lookups per node. Due to this experiment, a
node sends an average of 3 register messages and 3 successor lookups on each synchroniza-
tion period dedicated to tree construction. This results in an expected average overhead
of (3 · 76) + (3·60

2) = 318 bytes/s. Assuming the average value for sent bytes from the last
experiment this yields an expected value of 452 + 318 = 770b/s per node. This matches the
average values of 788b/s from the last experiment. This also explains the increased variance
of the measured data. Nodes farther away from the root are more likely to send multiple
register messages due to redirects as explained in the implementation chapter.

(a) CPU Usage (b) Memory Usage

Figure 6.6: Average Memory Usage by node and Clock Cycles/s used by the two threads with
different Modules enabled and with the 90% Percentiles

Figure 6.6a shows the average CPU usage by 102 nodes measured in total clocks and divided
by the POSIX definition of CLOCKS PER SEC which is normalized to a constant value of 105.
The usage is distinguished by the two main threads as described in the implementation. As
expected the results are similar to the network usage and only increases by a small factor if
the tree construction protocol takes place. Also, the increased variance in the wait loop can
be explained due to the increased load on nodes near the root of the tree. The values of the
relative CPU usage vary in between 0.1% and 0.5% of the total available CLOCKS PER SEC.
Figure 6.6b shows the average memory usage of a single node over time. Since the implemen-
tation is aimed to use static memory the constant behavior of the measured data is expected.
Activating all features adds little memory overhead due to additional buffers. The values for
both graphs are collected with the getrusage POSIX extension implemented in libc.

60

6.4 Results

Functional Performance Indicators

In this section, the functional performance indicators of the P2P Protocol should be mea-
sured. As explained in the model this includes the resistance against churn, the id space
partitioning ratio and the depth of the tree resulting from the construction protocol. To
verify this parameter multiple experiments as described in the model are done.

Figure 6.7: Ratio of Killed nodes to Non-
reachable keys

The first experiment launches 103 nodes with
disabled replication and inserts 104 keys into
the network. We expect every node to hold
about 10 keys. After the keys are inserted a
fraction of the node gets killed. Due to the
even distribution of keys in the network, we
expect about the same fraction of keys not
be reachable anymore. Figure 6.7 reflects
these expectations pretty well. The net-
work could compensate an outage of about
70% of all nodes until the synchronization
procedure failed to reconstruct a valid ring.

Figure 6.8: Id Space partitioning with multiple
strategies using a logarithmic scale
for the y axis

The next experiment is used to verify the
guarantees given by the id space partitioning
protocol. Figure 6.8 shows the ratio of the
maximum id share to the minimum id share
of all nodes for multiple id selection strate-
gies. Base refers to a random id selection as
described by the original Chord implementa-
tion. Perfect Insert log(n) is a insertion strat-
egy, where a random node in the network is
selected and the biggest id share in a vicin-
ity of log(N) successor of this node is split
into two halves, where N is the size of the
Chord network. For random insert, a ran-
dom node in the network is selected and its
id space is split into two halves. It is easy to
see that the implemented id selection scheme

provides the given guarantees while both other schemes tend to a rapid grow towards an
unfair partitioning.

In the last experiment, the guarantees on the tree construction algorithm are tested. Multiple
nodes are spawned and after every additional node, the depth of the tree on every single node
is collected. In Figure 6.9 the maximum depth of the tree in contrast to the number of nodes
is shown. It is easy to see that the depth of the tree does not grow perfect logarithmic. This
is due to the nature of the tree construction protocol which does not give any guarantees
on a balanced tree. However, it is possible for the tree to experience a balancing which can
result in a decreasing depth as seen in the graph. Furthermore, it is possible to see that the

61

6 Performance Evaluation

depth tends to grow slower on increasing node count and does not exceed a level of 10. To
calculate the depth of the tree the broadcast and aggregation algorithm provided by the tree
construction protocol itself is used. Since every node in the experiment with exception of
the root node reached a certain level l > 1 it is possible to conclude that every node takes
place in the tree construction and gets a position in the tree. Furthermore, we can conclude
that there are no cycles and moving nodes after a certain synchronization period. This is
due to the fact that after every joining node the ring reached an equilibrium state where the
depth information on the node is not affected by a change anymore.

Figure 6.9: Depth of the resulting tree with increasing node count

6.4.2 Distributed Hash Table Implementation

In this section, the results of the experiments related to the DHT Implementation are de-
scribed and further explained. As in the last section, the environment for generating the
data consists of a static binary on a GNU/Linux environment.

Non-Functional Performance Indicators

To verify the non-functional performance indicators we perform the experiments as already
done for the P2P overlay network. In addition to the already explained experiments, we
insert an increasing number of elements into the network. This should yield the overhead in-
troduced by the data availability protocol. Furthermore, different replication policies should
be used for a fixed number of elements. We expect the network overhead to increase linearly
with the chosen replication level. To get a good sense of the introduced overhead from the
state keeping protocol this experiment is designed such that after starting a fixed amount

62

6.4 Results

of nodes and inserting a certain number of elements the statistics on the nodes are reset to
zero. This is done because otherwise the network statistics would be dominated by the load
for the initial storage of the elements. Due to this reset, a baseline value is included where no
elements get stored into the network with a replication level of one. Figure 6.10a shows the
CPU usage for different amount of stored data elements and Figure 6.10b shows the increases
in network throughput with an increasing amount of elements. The CPU usage is computed
per thread as CPU clocks/s through getrusage as described in the last section.

(a) CPU Usage (b) Network Usage

Figure 6.10: Average network usage by node and clock cycles/s used by the two threads with different
numbers of elements in the ring and the 99% percentiles

Figure 6.11a and Figure 6.11b shows the CPU and network utilization with an fixed size of
102 nodes and 103 elements in the ring. Instead of altering the number of nodes or elements
the replication level is increased in each run. Since the algorithm for the replication of
elements performs linear with the number of replications the results show a linear growth in
the network usage as well as a near linear growth in the CPU usage.

Functional Performance Indicators

First, the data availability property in conjunction with the correctness of the data is verified.
To implement this, a fixed number of 103 nodes are started and 104 data elements are inserted
into the network. Afterward, an increasing number of nodes are deleted from the network
and the fraction of available data item is measured. In every step, 10 nodes are deleted. In
Figure 6.12 the fractions of available items for three different replication levels are displayed.
Replication Level 1 means no replication where replication level 2 and 4 means that the data
is additionally stored on one or three succeeding nodes. As expected the fraction of lost data
without replication grows linearly with the fraction of failed nodes since every data item on
every failing node is lost. The fraction of lost data decreases very fast as replication takes
place. This is due to the fact that even if multiple neighboring nodes fail in one step only the
number of data items stored on the first node in a row is lost. Since every node holds about
10 data items, we expect this number of data items to be lost if two neighboring nodes fail
simultaneously. Since we kill a fixed number of nodes on each round the chance to kill two

63

6 Performance Evaluation

(a) CPU Usage (b) Network Usage

Figure 6.11: Average network usage by node and clock cycles/s used by the two threads with in-
creasing replication level and the according 99% percentiles

neighboring nodes increases over time as the population gets smaller. This also shows that
the data distribution is working correctly.

Figure 6.12: Fraction of Lost items in correlation
to the fraction of lost nodes

To verify the data distribution further, we
start the experiment as described in the
model. Again a fixed number of 103 nodes
are spawned and 104 data items are inserted
into the network. After the data is inserted
the number of data elements ne for each
node is collected. To make a statistical test
on the collected data we first need to take
the share of the id space of each node sn into
account. As an example, if a single node got
two times of the id share of another node
we expect two times more data elements on
this node. To normalize the values we com-
pute the expected fair share sfair. If the
nodes distribution would follow an uniform
distribution we would expect an fair share

of sfair = 216

103
with an id space of the size 216. The fraction of the fair share a node uses

is then computed as sfrac = sn
sfair

and multiplied with with amount of elements to get the

normalized amount of elements sn = se · sfrac. Furthermore, we compute the normalized ex-
pected number of elements for each node. Assuming a uniform distribution of the nodes we
would expect suexp = 104

103
elements per node. The get the normalized value in respect to the

real id share we compute the real expected amount of values per node as sexp = suexp · sfrac.
With this data we can perform a chi-squared goodness of fit test1 on the calculated data,
assuming a uniform distribution. To verify this we calculate the chi-squared test statistic
using the observed and the expected values after the normalization and compare the result

1https://www.openintro.org/stat/textbook.php?stat_book=os p. 286

64

https://www.openintro.org/stat/textbook.php?stat_book=os

6.4 Results

with the critical value from the chi-squared distribution using 98 degrees of freedom and a
confidence level of 0.01. This results in a value of 73.4835 for the test statistic and a value
of X[98,0.01] = 133.47. Since 73.4835 << 133.47 we can assume strong confidence in the
uniformity of the distribution. To get an additional visual representation Figure 6.13 shows
a QQ-Plot of the observed normalized elements per node against an uniform distribution.
Since the percentiles of the measured data are closely aligned on the hypothetical perfect
distribution we gain additional confidence in the uniform distribution of the data.

●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Observed Data

U
ni

fo
rm

 D
is

tri
bu

tio
n

Figure 6.13: QQ-Plot of the data against a uniform distribution

6.4.3 RIOT Driver

In this section, the RIOT storage driver is evaluated in different setups. Since the storage
driver only acts as a wrapper for the DHT implementation as verified in the last section,
only one additional non-functional evaluations are done. The experimental setup is used to
verify the results on a real MCU as described at the beginning of this chapter. The access
to real hardware is limited to seven available boards and thus the test setup is smaller then
it is experienced from the last sections.

Non-Functional Performance Indicators

In this section an experiment is launched to verify the MCU utilization on a Nucleo-F767ZI
board. This board provides an ARM Cortex M7 MCU with a clock rate of 216 MHz. As
stated in the requirements the MCU utilization should not exceed more than 50% of the
available capacity. This value is chosen somehow arbitrary it should be in fact only amount
to a fraction of the available computational power. Calculating the utilization of the used
MCU is a non-trivial task and can be done through two different methods. The first method
could use the build in Data Watchpoint and Trace (DWT)2 module of the STM32 MCU

2http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489d/BIIFBHIF.html

65

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489d/BIIFBHIF.html

6 Performance Evaluation

which provides two counters to measure the cycle count and the cycle count in sleep mode
respectively. As a downside, this method would imply that RIOT would use the sleep
functionality of the MCU unit as much as possible. Furthermore, it would be impossible to
clearly measure the overhead of MCU usage introduced by the storage driver independent of
the MCU power used by RIOT. Another method makes use of the implemented debugging
features in RIOT. Enabling the MODULE SCHEDSTATISTICS flag in the preprocessor leads
to a measurement of the time each thread is scheduled by the cooperative multitasking
scheduler implemented in RIOT. The following experiment is done in a setup where each of
the seven available Nucleo boards run the current implementation of the storage driver with
each feature enabled. The used CPU utilization of each thread is computed every second for
a total time of 100 seconds on every board. The data is collected and the mean of the data
points is computed accordingly. Figure 6.14a shows the mean amount of time in percent
each thread was scheduled. The error bars show the standard deviation of the data. It is
easy to see that the MCU spends the most time in the idle thread which is scheduled more
than 80% of the available time. The idle thread gets scheduled every time no other thread is
available for scheduling due to being in sleep mode or blocking wait for an event. The main
thread also has a rather high resource usage. This thread was used for the data computation
and collection which runs in a computational heavy loop that leads to the high MCU usage
and thus can be attributed to the idle thread. The remaining threads are created by the
storage driver directly or indirectly in case of the UDP, ipv6 and network interface threads.
All these remaining threads are exclusively used by the storage driver implementation and
thus can be aggregated as the overhead introduces by the implemented software.

(a) CPU Usage (b) Memory Usage

Figure 6.14: The mean MCU usage of each thread in percent and the maximum stack memory used
in bytes. The error bars indicate the standard deviation.

Table 6.2 shows the total numbers in percent of the distinct threads and an aggregated value
for the idle thread and the driver implementation. The aggregated values result in a MCU
utilization of the implementation of about 5 %. Given the constrained computational power
of the used MCUs, this value is rather low and can even be optimized by tweaking imple-
mentation specific parameters. Another measured value is stack size used by each thread to
verify the total memory usage. Since RIOT and the driver implementation only uses static
memory this value can be used to verify the total memory usage of the implementation.

66

6.4 Results

Figure 6.14b shows the maximum stack usage for each thread over a time of 100 seconds
measured every second. As Table 6.2 shows, the total memory usage of the driver imple-
mentation is about 4 kB. Since the board provides a total amount of memory of 512 kB the
implementation uses under one percent of the available memory.

Thread MCU Usage Stack Usage

idle 87.44 % 135 B
main 7.55 % 2240 B
Idle Aggregated 94.99 % 2375 B
Chord Periodic 0.65 % 1920 B
Chord Waitloop 0.52 % 1088 B
ipv6 1.40 % 517 B
udp 0.50 % 308 B
stm32 eth 1.94 % 420 B
Chord Aggregated 5.01 % 4253 B

Table 6.2: Aggregated MCU and Stack usage

Functional Performance Indicators

As a functional performance indicator for the implemented storage driver, the main point
of interest is the possible read and write performance. As stated in the requirements the
read and write performance should be limited by the storage backend and every deviation
of the theoretical maximum needs to be reasoned. By the time this experiment is done,
there is no RIOT mtd driver available that uses the flash storage provided by the MCU. For
this reason, the dynamic memory backend needs to be used which is limited by the read and
write speed of the provided SRAM modules. A quick test using a POSIX compatible memcpy
implementation provided by RIOT shows a raw write performance of about 5 MB/s.

The first experiment measures the read and write speed of the driver as the number of node
increases from a single node to all available seven Nucleo nodes. Figure 6.15a shows the
measured read performance and Figure 6.15b shows the measured write performance. As
expected a setup with only a single node performance exceptionally better than a setup with
multiple nodes. This can be easily explained by the introduces network overhead.

Two interesting findings of the experiments is the constant read and write speed as node
count increases as well as the low performance of about 20 kB/s. Since the performance
drops significantly as soon as multiple nodes are used, this leads to the assumption that the
read and write speed is directly limited by the performance of the used Ethernet network. To
back this assumption another experiment is done to verify the performance of an optimal case
in comparison to the performance of a raw UDP transmission. To get an optimal case only
two nodes are used in this experiments and replication of data items is disabled. This is due
to the fact that a single store or retrieve operation consists of multiple UDP messages. First
the responsible node for a data item needs to be found and afterward, the data item needs to
be stored on the responsible node. This is done as often as needed by the defined replication
mechanism and thus the replication acts as a multiplier on the network overhead. With only
two nodes participating the node lookup can be omitted and with disabled replication, only

67

6 Performance Evaluation

(a) Read B/s (b) Write B/s

Figure 6.15: Read and Write speed in bytes per second with increasing node count and standard
deviation error bars. The graph uses a logarithmic scale for the y-axis.

a single message needs to be sent for each store and retrieve operation. As a benchmark
baseline another performance evaluation is done which only sends a single UDP message
with a payload as big as the block size of the storage driver to a modern desktop computer
where the message gets echoed back to the sending Nucleo board. This is done to reflect an
optimal case in terms of a request-response communication over UDP. Figure 6.16 shows
the results of the experiment.

Figure 6.16: Raw Write speed of two nodes vs. simple udp echo benchmark

As the graph shows the read and write performance gets significantly better with the enabled
optimizations. The raw UDP benchmark shows a mean performance of about 160 kB. This
shows that the performance of the driver is not limited by the underlying storage technology
but instead by the used network setup. The small gap between the average write performance
in this test and the theoretical maximum of the UDP benchmark shows only a small overhead
introduced by the storage driver. Also, the second experiment shows a way better write
performance in contrast to the first experiment even if only two nodes are used. This can

68

6.5 Summary

be explained due to the fact that replication was disabled in the second experiment and
furthermore the block size of the driver was increased by a factor of two. This leads to
the assumption that the network performance is not limited by the size of the transmitted
data but rather by the number of network packets sent. To verify this assumption another
experiment is done where the block size of the storage driver and thus the amount of data
transmitted in a single package is increased stepwise. If the assumption is correct we expect
an increasing performance of a constant factor if the block size is increased by the same
factor. As a baseline, the experiment uses a block size of 128 bytes.

Figure 6.17a and Figure 6.17b shows the result of the experiment. On the y-axis the speedup
factor of the read and write performance is shown in relation to the initial performance with
a block size of 128 bytes. The x-axis shows the factor by which the block size was increased.
The graph shows a nearly linear correlation between the used block sized and the write
performance. Additional overhead in the storage driver introduced by the increased block
sized leads to a non-perfect linear correlation. As shown in the graph a factor 4 on the used
block size (e. g. 512 bytes) leads to a speedup factor of 2.4.

(a) Read Speedup (b) Write Speedup

Figure 6.17: Read and write speedup factor when the block size is increased by a linear factor.

6.5 Summary

The outcome of the P2P overlay protocol shows mixed results. For the non-functional
performance indicators, it is noticeable that that tree construction protocol introduces a
rather high overhead in terms of network and CPU usage. The results show a doubling in
the number of bytes sent on every node when the tree construction protocol takes place. A
future implementation should focus on minimizing this effect, either through optimization on
the protocol level or through implementing a different feature for aggregations. In contrast,
the load introduced by the Chord implementation as well as the id selection protocol is
rather low in terms of both, network and CPU usage. It could be shown that the mean
CPU utilization is below 1%. Furthermore, the memory used by the implementation follows
the expected constant utilization. The functional indicators on the other side performed
within the expectations. The resistance against churn performs as promised by the original

69

6 Performance Evaluation

design of Chord, the id selection protocol provides a constant ratio of σ ≤ 4 and the tree
construction protocol generates a valid tree with a depth smaller than the expected maximum
depth.

The DHT implementation shows promising results in terms of both functional and non-
functional indicators. The data availability features show a linear correlation in terms of
CPU and network usage if the number of replications or the number of elements in the ring
is increased. The used replication level show a significant impact on the quality of the data
availability and it was possible to show that the elements are distributed evenly along the
Chord ring.

The storage driver itself, verified on real-world hardware confirms the results from the P2P
protocol. Given a Nucleo-F767ZI board with an ARM M7 Microcontroller Unit shows a
utilization of about 5% and a memory consumption of about 1%. The possible read and
write speeds are smaller than expected given the SRAM backend. However, it was possible
to show that the limiting factor resides in the network communication. A side-by-side
evaluation of a raw UDP network performance test shows only a little difference in terms of
the possible write speed the storage driver can achieve. The reasons for the limited network
performance are most likely located in the RIOT implementation of the used network stack
and the implemented Ethernet driver.

70

7 Conclusion and Future Work

This chapter provides a final conclusion about the contents of this thesis. The claims made
in the problem statement are reviewed and compared with the design and the results of
the evaluation. Multiple open questions and features out of the scope of this thesis where
identified in the last chapters. A dedicated section focusing on this future work is provided
for further reference.

7.1 Conclusion

In this thesis, we discussed the design and implementation of a P2P based distributed storage
engine, with a special focus on devices with limited computing requirements. To achieve this
existing designs and algorithms were adapted and combined to provide multiple features like
resistance against device failures, an even distribution of the data over multiple nodes and
a dynamic growth and shrinking of the storage. The claim of the design to follow a strict
P2P architecture is only slightly affected by the tree construction protocol, where a single
node is chosen to be the root of the tree depending on its position in the ring. Since this
selection itself is fully distributed and the functioning of the algorithm is not affected by
an outage of the root node we can argue that the system follows a strict P2P nature as
addressed in the problem statement. We were able to gain a load distribution, orders of
magnitudes better than the original design of the used P2P overlay provides and support for
a dynamic variation of the network size due to the tree construction protocol. As shown in
the performance measurements we were able to provide a uniform library for a Distributed
Hash Table implementation, with a certain independence of the used host system, since we
were able to run the library in a standalone GNU/Linux ELF binary or as a block storage
driver on top of the RIOT operating system. Another important requirement was the ability
of the resulting implementation to run on constrained environments. We were able to run
the system on Nucleo-F767ZI boards with only a fraction of the computing power a modern
consumer CPU provides.

On the downside, we were not able to implement all features accordingly to their specifica-
tion. Furthermore, some features turned out to introduce a rather high overhead on compu-
tational power and network communication. As acknowledged in the last section there is a
lot of potential for future work to improve existing features and for the implementation of
missing features. The author considers the improvements on the tree construction protocol
and the id space partitioning as mentioned above to be the most critical components since
the impact on a productive usage is expected to be rather high.

We designed, implemented and verified all needed features as explained in the problem state-
ment. The measurements of the performance indicators were mostly within the expectations
and yield some interesting results. The most promising results are the high resistance against

71

7 Conclusion and Future Work

churn which reflects the expectations raised by the original design of the used DHT imple-
mentation and the possibility to run the software in constrained environments due to the
low resource usage shown by the verification on real hardware.

7.2 Future Work

As already stated multiple times in the last chapters and due to time and scope constraints
there are multiple open or not yet addressed parts of the system which are considered as fu-
ture work. First, there are multiple, already implemented, features which need optimizations
and further evaluations.

• Improvements on the Id Selection Protocol
It was not possible to implement the whole id selection protocol. An extensive evalua-
tion of the protocol including an implementation which is able to handle leaving nodes
as well would be interesting. Especially the impact of a final implementation on the
resource usage and a verification of the guarantees on the id space partitioning could
yield useful data.

• Improvements on the Tree Construction Protocol
As seen in the verification the tree construction protocol works well but introduces
a rather high communication overhead. Further studies with the aim to reduce this
overhead are necessary. One may use the already existing fingertable of a Chord
implementation to gain the same guarantees on broadcasting information with only
adding little to none overhead.

• Additional Storage Backends with Efficient Data Structures
The existing storage backends where build in respect to a minimal working implemen-
tation. For both implemented backends a linked list is used as a data structure to keep
track of the stored blocks. This limits the read and write performance significantly. A
full list search with a complexity of O(n) needs to be performed on every read or write
operation. A future operation should implement a better-suited data structure like a
binary tree or a static array.

• Heterogeneity
As stated in the design, an implementation with multiple virtual nodes per real node
is needed to support heterogeneity. The existing implementation does not support
multiple virtual nodes per real node yet. This could yet only be simulated by starting
multiple instances of the binary. A future implementation which supports an arbitrary
amount of virtual nodes without increasing the number of needed threads would be
feasible.

• Improvements on the Bootstrap Protocol
As stated in the requirements an ideal bootstrap protocol also supports the automatic
configuration of new devices. In the current implementation, new nodes only send
a MSG TYPE PING to check the availability of bootstrap nodes. A more sophisticated
implementation could include multiple network specific parameters in the response.

• Further Optimizations for Constrained Environments
As the evaluation shows, the implementation is already able to work on constrained

72

7.2 Future Work

environments. However, a further focus on reducing unneeded overhead could be valu-
able. As an example one could reconsider the usage of a hash function originating from
the SHA family and choosing a more lightweight alternative. A detailed profile of the
resource usage of the implementation could lead to further improvements.

Another group of future work considerations are features which could not be examined due to
scope limitations. These features are missing a complete design and implementation.

• Alternative P2P Overlay Networks
As stated in the design chapter a broad range of P2P overlay protocols with different
target environments and optimizations is available. A further look into other protocols
would be of interest and could help mitigate the issues with the id space partitioning
and the tree construction protocol. Also, an approach which compares the impact of
the different protocols on the resource usage and performance of the system could add
further value.

• Security Concerned Implementation
In the requirements chapter, the need for a security concerned implementation is al-
ready acknowledged. The current implementation does not take care of any authenti-
cation, encryption or protection against protocol specific attacks.

• Neighbor Proximity
In the current state of the implementation, the physical proximity of neighboring nodes
is not taken into account. It is possible that nodes within a single hop distance to
another node need to take multiple hops through the network to reach their destina-
tion. Especially environments like WSNs can benefit from an implementation where
neighboring nodes are also in a close distance in terms of the used P2P overlay imple-
mentation.

• Partitioning
In the performance evaluation that concerns the stability of the P2P overlay network,
only nodes failures without a closer look into the underlying network topology where
taken into account. In a scenario where multiple nodes are connected through a single
interconnection link, a failure of this link could easily lead to a partitioning of the ring
topology into multiple distinct rings. This could result in a split brain scenario where
it is not possible anymore to merge the partitions into a single ring without losing
data. A feature which supports or mitigates such a scenario would be feasible.

73

List of Figures

1.1 Methodology . 4

4.1 A Chord ring with 10 out of 64 possible nodes. Labels starting with
”
K“ are

referring to keys and labels stating with
”
N“ are referring to nodes. The table

on the upper right shows to the fingertable of node N14 [SMLN+03] 17

4.2 Mean difference on fair share in percent as the amount of nodes grows 23

4.3 Load imbalance of Chord and CAN with d = 2 using a logarithmic scale . . . 26

4.4 Mean difference on fair share in percent as amount of nodes grew 29

5.1 Implementation Module Overview . 37

5.2 Chord Implementation Module Overview . 38

5.3 CHash Module Overview . 42

5.4 RIOT Storage Module Overview . 47

5.5 Ratio of min (share) and max (share) with random and perfect insertion of
new nodes . 50

6.1 Size of the compiled ELF binaries for different target environments. The
different colors refer to different ELF section names and are chosen such that
sections with the same name resulting in the same color. 54

6.2 Evaluation Model . 55

6.3 Functional Evaluation Model . 56

6.4 Non-Functional Evaluation Model . 58

6.5 Average Read and Write B/s with different Modules enabled and 90% Percentiles . . 59

6.6 Average Memory Usage by node and Clock Cycles/s used by the two threads with

different Modules enabled and with the 90% Percentiles 60

6.7 Ratio of Killed nodes to Non-reachable keys . 61

6.8 Id Space partitioning with multiple strategies using a logarithmic scale for the y axis 61

6.9 Depth of the resulting tree with increasing node count 62

6.10 Average network usage by node and clock cycles/s used by the two threads with

different numbers of elements in the ring and the 99% percentiles 63

6.11 Average network usage by node and clock cycles/s used by the two threads with

increasing replication level and the according 99% percentiles 64

6.12 Fraction of Lost items in correlation to the fraction of lost nodes 64

6.13 QQ-Plot of the data against a uniform distribution 65

6.14 The mean MCU usage of each thread in percent and the maximum stack memory

used in bytes. The error bars indicate the standard deviation. 66

6.15 Read and Write speed in bytes per second with increasing node count and standard

deviation error bars. The graph uses a logarithmic scale for the y-axis. 68

6.16 Raw Write speed of two nodes vs. simple udp echo benchmark 68

75

List of Figures

6.17 Read and write speedup factor when the block size is increased by a linear factor. . . 69

76

List of Acronyms

AES Advanced Encryption Standard

AFS Andrew File System

API Application Programming Interface

CAN Content Addressable Network

CFS Cooperative File System

CIFS Common Internet File System

CPU Central Processing Unit

DBMS Database Management System

DHT Distributed Hash Table

DNS Domain Name System

DRBD Distributed Replicate Block Device

DWT Data Watchpoint and Trace

EBS Elastic Block Storage

ELF Executable and Linking Format

HDFS Hadoop File System

HRW Highest Random Weight

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPFS InterPlanetary File System

LAN Local Area Network

LC-VSS Low Cost Virtual Server Selection

LittleFS Little File System

LDPC Low-Density-Parity-Check-Codes

LRU Least Recently Used

NAT Network Address Translation

77

List of Acronyms

NFS Network File System

NVRAM Non Volatile Random Access Memory

MCU Microcontroller Unit

MTD Memory Technology Device

OWASP Open Web Application Security Project

P2P Peer-to-Peer

POSIX Portable Operating System Interface

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RIOT Realtime Operating System for Internet of Things

ROM Read Only Memory

RPC Remote Procedure Call

SCSI Small Computer System Interface

SDS Software Defined Storage

SHA Secure Hash Algorithm

SNIA Storage Networking Industry Association

SPI Serial Peripheral Interface

TCP Transmission Control Protocol

TD Thermal Dissipation

TLS Transport Layer Security

UDP User Datagram Protocol

VBS Virtual Block Store

WSN Wireless Sensor Network

78

Bibliography

[AAH+13] Atif Alamri, Wasai Shadab Ansari, Mohammad Mehedi Hassan, M. Shamim
Hossain, Abdulhameed Alelaiwi, and M. Anwar Hossain. A survey on sensor-
cloud: Architecture, applications, and approaches. International Journal of
Distributed Sensor Networks, 9(2):917923, 2013.

[ABKU99] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. Balanced alloca-
tions. SIAM journal on computing, 29(1):180–200, 1999.

[AH14] Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway
based communication for cloud of things. In Proceedings of the 2014 Inter-
national Conference on Future Internet of Things and Cloud, FICLOUD ’14,
pages 464–470, Washington, DC, USA, 2014. IEEE Computer Society.

[AHKV03] Micah Adler, Eran Halperin, Richard M Karp, and Vijay V Vazirani. A stochas-
tic process on the hypercube with applications to peer-to-peer networks. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 575–584. ACM, 2003.

[AJX05] Marcos Kawazoe Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. Using
erasure codes efficiently for storage in a distributed system. In Dependable
Systems and Networks, 2005. DSN 2005. Proceedings. International Conference
on, pages 336–345. IEEE, 2005.

[AR06] Filipe Araújo and Lúıs Rodrigues. Survey on distributed hash tables. In Survey
on Distributed Hash Tables. University of Lisbon, 2006.

[BHW+12] Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch, Mesut Guünes, and
Thomas Schmidt. RIOT: One OS to Rule Them All in the IoT. Research
Report RR-8176, INRIA, December 2012.

[Cat03] Josh Cates. Robust and efficient data management for a distributed hash table.
PhD thesis, Massachusetts Institute of Technology, 2003.

[CBG12] Jeremy Hugues-Felix Constantin, Andreas Peter Burg, and Frank K Gurkaynak.
Investigating the potential of custom instruction set extensions for sha-3 can-
didates on a 16-bit microcontroller architecture. Technical report, Cryptology
ePrint Archive, 2012.

[CH07] Michael Conrad and Hans-Joachim Hof. A generic, self-organizing, and dis-
tributed bootstrap service for peer-to-peer networks. In International Workshop
on Self-Organizing Systems, pages 59–72. Springer, 2007.

[CKF04] Curt Cramer, Kendy Kutzner, and Thomas Fuhrmann. Bootstrapping locality-
aware p2p networks. In ICON, pages 357–361, 2004.

79

Bibliography

[Dav93] Alan M. Davis. Software Requirements: Objects, Functions, and States.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[DBK+01] Frank Dabek, Emma Brunskill, M Frans Kaashoek, David Karger, Robert Mor-
ris, Ion Stoica, and Hari Balakrishnan. Building peer-to-peer systems with
chord, a distributed lookup service. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pages 81–86. IEEE, 2001.

[DGW+10] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright,
and Kannan Ramchandran. Network coding for distributed storage systems.
IEEE transactions on information theory, 56(9):4539–4551, 2010.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with cfs. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP ’01, pages 202–215, New
York, NY, USA, 2001. ACM.

[Ell08] Lars Ellenberg. Drbd 9 and device-mapper: Linux block level storage replica-
tion. In Proceedings of the 15th International Linux System Technology Con-
ference, 2008.

[FMS+04] Svend Frolund, Arif Merchant, Yasushi Saito, Susan Spence, and Alistair Veitch.
A decentralized algorithm for erasure-coded virtual disks. In Dependable Sys-
tems and Networks, 2004 International Conference on, pages 125–134. IEEE,
2004.

[Gli07] Martin Glinz. On non-functional requirements. In Requirements Engineering
Conference, 2007. RE’07. 15th IEEE International, pages 21–26. IEEE, 2007.

[GMP+10] X. Gao, Y. Ma, M. Pierce, M. Lowe, and G. Fox. Building a distributed block
storage system for cloud infrastructure. In 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, pages 312–318, Nov
2010.

[GS05] P Brighten Godfrey and Ion Stoica. Heterogeneity and load balance in dis-
tributed hash tables. In INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings IEEE, volume 1,
pages 596–606. IEEE, 2005.

[GWGR04] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter.
Efficient byzantine-tolerant erasure-coded storage. In Dependable Systems and
Networks, 2004 International Conference on, pages 135–144. IEEE, 2004.

[HAEF08] Y. Houri, B. Amann, B. Elser, and T. Fuhrmann. Igorfs: A distributed p2p file
system. In 2008 Eighth International Conference on Peer-to-Peer Computing
(P2P), volume 00, pages 77–78, 09 2008.

[HAY+05] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell. A survey
of peer-to-peer storage techniques for distributed file systems. In International
Conference on Information Technology: Coding and Computing (ITCC’05) -
Volume II, volume 2, pages 205–213 Vol. 2, April 2005.

80

Bibliography

[Hei14] Jan Heichler. An introduction to BeeGFS. Research report, thinkparq, Novem-
ber 2014.

[HELD11] Jing Han, Haihong E, Guan Le, and Jian Du. Survey on nosql database. In
2011 6th International Conference on Pervasive Computing and Applications,
pages 363–366, Oct 2011.

[How88] John H Howard. An overview of the andrew file system. In in Winter 1988
USENIX Conference Proceedings, pages 23–26, 1988.

[IET98] IETF. Cache array routing protocol v1.0, 1998.

[IPF15] IPFS. Bootstrapping, 2015.

[JBA15] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. A survey of dis-
tributed data aggregation algorithms. IEEE Communications Surveys & Tuto-
rials, 17(1):381–404, 2015.

[KLL+97a] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97,
pages 654–663, New York, NY, USA, 1997. ACM.

[KLL+97b] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 654–663.
ACM, 1997.

[Kum17] P. Vijay Kumar. Codes for big data: Erasure coding for distributed storage,
2017.

[LSL05] Ji Li, Karen Sollins, and Dah-Yoh Lim. Implementing aggregation and broad-
cast over distributed hash tables. ACM SIGCOMM Computer Communication
Review, 35(1):81–92, 2005.

[Man04] Gurmeet Singh Manku. Balanced binary trees for id management and load
balance in distributed hash tables. In Proceedings of the twenty-third annual
ACM symposium on Principles of distributed computing, pages 197–205. ACM,
2004.

[Mic17] Microsoft. [ms-cifs]: Common internet file system (cifs) protocol, 2017.

[MMGC02] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:
A read/write peer-to-peer file system. SIGOPS Oper. Syst. Rev., 36(SI):31–44,
December 2002.

[MNY+18] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.
Polakos. A comprehensive survey on fog computing: State-of-the-art and re-
search challenges. IEEE Communications Surveys Tutorials, 20(1):416–464,
Firstquarter 2018.

81

Bibliography

[MPV11] L. Mainetti, L. Patrono, and A. Vilei. Evolution of wireless sensor networks
towards the internet of things: A survey. In SoftCOM 2011, 19th International
Conference on Software, Telecommunications and Computer Networks, pages
1–6, Sept 2011.

[OWA10] OWASP. Owasp secure coding practices quick reference guide, 2010.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’88, pages 109–
116, New York, NY, USA, 1988. ACM.

[PJS+95] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and
David Hitz. Nfs version 3 design and implementation. 02 1995.

[Pla05] James S. Plank. T1: Erasure codes for storage applications, 2005.

[Pre89] Franco P Preparata. Holographic dispersal and recovery of information. IEEE
Transactions on Information Theory, 35(5):1123–1124, 1989.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network, volume 31. ACM, 2001.

[RL05] Rodrigo Rodrigues and Barbara Liskov. High availability in dhts: Erasure
coding vs. replication. In International Workshop on Peer-to-Peer Systems,
pages 226–239. Springer, 2005.

[RPW04] Simon Rieche, Leo Petrak, and Klaus Wehrle. A thermal-dissipation-based
approach for balancing data load in distributed hash tables. In Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, pages 15–23.
IEEE, 2004.

[S+03] Philip Schwan et al. Lustre: Building a file system for 1000-node clusters. In
Proceedings of the 2003 Linux symposium, volume 2003, pages 380–386, 2003.

[SAP+13] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.
Xoring elephants: Novel erasure codes for big data. In Proceedings of the VLDB
Endowment, volume 6, pages 325–336. VLDB Endowment, 2013.

[SC13] M. Krochmal S. Cheshire. Multicast dns, 2013.

[Sch02] Jeffrey I. Schiller. Strong security requirements for internet engineering task
force standard protocols, 2002.

[SDM04] Paul Syverson, R Dingledine, and N Mathewson. Tor: The secondgeneration
onion router. In Usenix Security, 2004.

[Sea18] Seagate. Scsi commands reference manual, 2018.

[SMK+01a] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
SIGCOMM Comput. Commun. Rev., 31(4):149–160, August 2001.

82

Bibliography

[SMK+01b] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications, SIGCOMM ’01, pages
149–160, New York, NY, USA, 2001. ACM.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-
peer lookup protocol for internet applications. IEEE/ACM Transactions on
Networking (TON), 11(1):17–32, 2003.

[SNI13] SNIA. Storage performance and io load basics, 2013.

[SS05] Christian Schindelhauer and Gunnar Schomaker. Weighted distributed hash
tables. In Proceedings of the Seventeenth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’05, pages 218–227, New York,
NY, USA, 2005. ACM.

[SW05] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications (Lec-
ture Notes in Computer Science). Springer, 2005.

[WBM+06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and Implementa-
tion, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006. USENIX Association.

[WBMM06] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn. Crush:
Controlled, scalable, decentralized placement of replicated data. In Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, page 122. ACM, 2006.

83

	Introduction
	Motivation
	Scenario
	Problem Statement
	Methodology

	Background
	Related Work
	Used Technologies
	Distributed Hash Tables
	Consistent Hashing
	RIOT OS
	Block Storage
	Pseudo Random Hash Functions
	Remote Procedure Calls
	POSIX

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Security Considerations
	Network Security
	Application Security

	Design
	Peer-to-Peer Protocol
	Structured vs. Unstructured Networks
	Comparison of Structured P2P Networks
	Bootstrap

	Replicated Block Storage
	Consistent Hashing for Data Storage
	DHash
	Load Balancing
	Data Availability
	Storage Size

	Summary

	Implementation
	Peer-to-Peer Overlay
	Chord Implementation

	Distributed Hash Table Implementation
	Distributed Hash Table Interface
	Frontend
	Backend

	RIOT Storage Driver
	RIOT Storage API
	Size of the Storage Device

	Verification of the Acceptance Criteria
	Functional Requirements
	Non-Functional Requirements

	Performance Evaluation
	RIOT Environment
	GNU/Linux Environment
	Evaluation
	Evaluation Model
	Functional Performance Indicators
	Non-Functional Performance Indicators

	Results
	Peer-to-Peer Overlay Network
	Distributed Hash Table Implementation
	RIOT Driver

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Acronyms
	Bibliography

