Technische Universitit Miinchen L X
Fakultat fiir Informatik Q "«
Lehrstuhl fiir Netzarchitekturen und Netzdienste 'A;

A Penetration Testing Framework for the
Munich Scientific Network

Interdisziplindres Projekt

durchgefiihrt am
Lehrstuhl fiir Netzarchitekturen und Netzdienste
Fakultat fir Informatik
Technische Universitdt Miinchen

von

Omar Tarabai

Aufgabensteller: Prof. Dr.-Ing. Georg Carle
Betreuer: Dipl.-Inform. Ralph Holz

Dipl.-Math. Felix von Eye (LRZ)
Tag der Abgabe: 17. Januar 2014

Contents

1 Introduction 1
1.1 Background 1
1.2 Requirements e 1
1.3 Related Work 2

2 Opverall Design 3
2.1 Architecture 3
2.2 Components Overview 4

2.2.1 Server Components 4
2.2.1.1 Scheduler L 4

2.2.1.2 Imterface 5

2.2.2 Scanner Components 5
2221 Agent 5

2.2.2.2 Imterface 5

2.2.3 Client Interfaces L 5
2.2.3.1 Command Line Interface 5

2.2.3.2 Web Interface 6

2.3 Technologies and Languages 6

3 Implementation Details 7

3.1 Components Details 7

3.1.1 Server Components 7
3.1.1.1 Schedulero 7
3.1.1.2 Imterface 8
3.1.2 Scanner Components 10
3.1.21 Agent 10
3.1.2.2 Inmterface 10
3.1.3 Client Interfaces 11

ii Contents
3.1.3.1 Command Line Interface 11

3.1.3.2 Web Interface oo 12

3.2 Configurations L 12
3.2.1 Server Configuration 12
3.2.2 Scanner Configuration 13
3.2.3 Client Configuration 13

3.3 Communication Specifications, 14
3.4 Permissions System 14
3.4.1 Subnet Permissions L L 14
3.4.2 Scan Type Permissions. 14
3.4.3 Scan Permissions L oL 15

3.5 Database 16
3.5.1 Database Schema Diagram 16
3.5.2 Description 17
3.5.2.1 Scantype 17

3.5.2.2 Subnet 17

3523 User. o e 17

3.5.24 Scan. 18

3.5.25 Scanner 19

3.6 Implemented Scan Types 19
3.6.1 NmapScans. e 19
3.6.2 Nmap NSE 20
3.6.3 SSHBasic. e 20
3.6.4 HTTP Server Version 20
3.6.5 Joomla! Version 20

3.7 Scan Type Weights 20
3.8 Adding New Scan Types L 21
3.9 Startup Scripts 22
4 Installation, Administration and Usage 23
4.1 Installation e 23
4.1.1 Installing Server 23
4.1.1.1 Dependencies 23

4.1.1.2 Installation Stepso 23

4.1.2 Installing Scanner oo 24

Contents 1ii

4.1.2.1 Dependencies 24

4.1.2.2 Installation Steps 24

4.1.3 Installing Web Interface 25
4.1.3.1 Dependencies 25

4.1.3.2 Installation Steps 25

4.2 Administration 26
421 AddSubnet 26
422 Add User 26
4.2.3 Enabling a Disabled Scanner 27

4.3 Usage o e e e 28
4.3.1 Command Line Interface. 28
4.3.1.1 Configuration 28

4.3.1.2 View Allowed Subnets 28

4.3.1.3 View Allowed Scan Types 28

4.3.1.4 Issue New Scan, 28

4.3.1.5 Get Summary of Recent Scans 28

4.3.1.6 Cancel Scan 29

4.3.1.7 Get Scan Results. 29

4.3.1.8 Change Password 29

4.3.1.9 OutputtoFileo 29

5 Evaluation 31
5.1 MWN SSH Scan o . 31
5.2 Joomlal Scan 32
6 Future Work 35

References 37

1. Introduction

1.1 Background

The Leibniz Supercomputing Center (LRZ) is mainly responsible for providing compu-
tational resources and operating the network backbone of the Munich Scientific Network
(MWN).

The MWN connects institutes inside the Technical University of Munich, Ludwig Maximil-
ian University of Munich, Munich University of Applied Sciences, Weihenstephan-Triesdorf
University of Applied Science and the Bavarian Academy of Sciences. Institute networks
are administrated locally by each institute personnel.

Since abuse complaints received from external networks are forwarded by the LRZ to the
responsible local administrators, it is desired to allow the administrators to perform regular
and on-demand network/security scans of their networks to reduce risks and minimize the
administrative overhead performed by the LRZ.

1.2 Requirements

The goal was to design and implement a centralized scanning framework that can perform
scans on multiple targets once or periodically and save the results for later viewing while
sending a notification email to the scan owner.

The following types of scans should be implemented, the framework should be easily ex-
tensible with additional scans.

e Nmap scans with different options specified

Nmap vulnerability scan using Nmap Scripting Engine (NSE)

Basic SSH scan

e HTTP server version detection

Joomla! version detection

The framework should support multiple remote scanning machines, communication be-
tween the framework and the scanning machines must be secured using SSL. The performed
scans should be distributed as equally as possible on the defined scanning machines.

2 1. Introduction

The framework should enforce a permission system that restricts the user to scanning only
specific subnets, reading scan results for specific subnets, issuing scans of specific types
and limiting the minimum interval at which a user can run a periodic scan. A user of type
’Administrator’ will have unlimited capabilities on the system.

The framework should be accessible to external users through both a command line in-
terface and a web interface. Both interfaces should support issuing of new scans, viewing
previous scans status and results, querying for allowed subnets and scan types and chang-
ing the user’s password. The interface must restrict the user’s capabilities and views
according to his/her defined permissions. All communication between the interfaces and
the framework must be secured using SSL.

1.3 Related Work

Other network/security scanners that perform similar functions are available, we present
some of the popular ones.

Nessus [Secu] is a proprietary vulnerability scanner. It uses plugins to define scans with
a database of more than 59,000 plugins that can scan for known vulnerabilities, miscon-
figuration, weak passwords, signs of malware, sensitive information leakages and other

types.

Metasploit Framework [Rapi] is an open-source platform for developing and executing
exploits. Defined exploits (known as modules) are written in ruby and are plugged into
the framework. Modules are freely developed and shared by the community.

Other popular scanners include GFI Languard [GFI], a vulnerability scanner with support
for patch management, and Retina [beyo], a vulnerability and risk analysis platform.

Our solution is unique because in addition to generic scanning functionality with plugins
support which is implemented by other scanners such as Nessus and Metasploit, it can
run on multiple remote scanning machines, enforces user permissions, allows periodic and
one-time scans with notifications. Implementing a separate solution also helps against
relying on a third-party for development and support of a proprietary solution.

2. Overall Design

In this chapter we describe the system architecture, design decisions and an overview of
the function and technologies for each system component.

2.1 Architecture

The framework is designed in a star topology with the Server at the center connected
to one or more Scanners, the scanner does not necessarily have to be on a separate
computer, one or more scanners can be deployed on the same computer as the server. The
server acts as a control and command center, sending scan requests to scanner machines
and periodically querying for results. For organisation and speed of access purposes, a
PostgreSQL database on the server is used to store system data including scan results.

The Scanner is divided into two main components, the Scanner Interface listens for
connections and commands from the server and the Agent runs the actual scans. For
simplicity, files are used as data store.

The Server is divided into two main components, a Scheduler for core scanning func-
tionality and an Interface that achieves user accessibility functionality such as issuing
new scans and retrieving scan results while enforcing user permissions. A command line
interface (CLI) or a web interface can be used by the user to communicate with the Server
Interface, the user can modify the CLI for personal purposes as long as it confronts to
the communication specifications accepted by the Server Interface.

All external communications (Client <+ Server, Server <+ Scanner) are SSL-encrypted,
certificates are pre-distributed on installation for identity authentication.

The following is a high-level architecture diagram:

4 2. Overall Design

Server
. Scanner
Client
Pentest
L Inteenrf:Ee PostgresgL Scheduler Agent
Databas
H i
Interface
Web h 4
Browser I w
Pentest
Web Web Server
Interface

Figure 2.1: Architecture diagram

2.2 Components Overview

In this section, we present an overview of each system component, describing its main
functions and the technologies/languages used. More details about the implementation of
each component can be found in Component Details Section 3.1.

2.2.1 Server Components

We present an overview of the components running on the framework’s central server,
namely the Scheduler and Interface components.

2.2.1.1 Scheduler

The scheduler component is constantly running as a daemon. A sequence of operations is
performed in series before sleeping for a period specified in the configuration file (default:
60 seconds), then repeating the same sequence again.

The first stage is querying the database for any ’cancel scan’ commands issued by a user
for a scan that is currently running, if exists, a corresponding ’cancel scan’ command is
sent to the responsible scanner.

Secondly, for scans that are currently running, the responsible scanners are queried for
results, if the scanner responds with the scan results, it is written to the database, the
scan is then marked as complete and an email is sent to the scan owner notifying him /her
of scan completion. Only after the previous operations are successful, the scanner is
instructed to delete the results.

Lastly, the scheduler checks for any scans that are due to start running. In case of a ’one-
time’ scan, this means that the ’scheduled time’ has passed, in case of a ’'periodic’ scan,
this means that the time resulting from adding the scan ’period’ and the last ’finished
on’ time of the scan is less than the current time. For each of the due scans found, the
next "free” scanner is chosen. If no "free” scanners available, the scanner with the earliest
expected finishing time is chosen, this is calculated as a function of the currently running
scans on this scanner, the number of targets per scan and the estimated runtime for this
scan type per target.

In case the scheduler fails to connect to a scanner to issue a new scan or collect results, the
scanner is marked in the database as ’"down’ and a notification email is sent to the system
administrator, the scanner is never queried for operations again until the administrator
sets its status back to 'up’.

2.2. Components Overview 5

2.2.1.2 Interface

The server interface component is constantly running and listening for incoming SSL con-
nections, for each received connection, a separate thread is dispatched to handle it. The
thread receives the user command, verifies the validity of the command structure, authen-
ticates the user credentials (username/password), then runs the appropriate command
handler. Results from the command handler including any error messages are sent back
to the user and the connection is terminated immediately.

In case of an invalid message structure/command /arguments, an error describing the prob-
lem is returned to the user and the connection is terminated.

2.2.2 Scanner Components

We present an overview of the components running on the individual scanner machines,
namely the Agent and Interface components.

2.2.2.1 Agent

The agent is responsible for executing the scans instructed by the server, similar to the
server scheduler, it is constantly running, performs a sequence of operations in series then
sleeps for a period specified in the configuration file (default: 60 seconds) before repeating
the sequence again. All server commands are represented as files in directories defined in
the configuration.

The first operation checks for any ’cancel scan’ commands, if exists and the scan is running
at the moment, the scan process is terminated, all data corresponding to the scan is deleted.

The second operation checks for any 'new scan’ commands, if exists, a separate process is
spawned to handle the scan, this allows the scan to be cancelled by killing the corresponding
process without affecting the agent itself. The new process parses the scan header to
retrieve the scan type and any scan parameters, it dynamically creates an object of the
scan handler responsible for this scan type, this helps in extending the system with a new
scan handler with minimal effort. Each scan target spawns a new thread that runs the
scan handler on this target, the number of threads running at one time is limited by the
‘parallelism’ configuration parameter. Results of each scan thread is written to the scan
results file.

2.2.2.2 Interface

The scanner interface constantly listens for incoming SSL connections from the server
scheduler, it uses the locally defined SSL certificate to verify the server identity. Server
commands are passed to the appropriate command handler and the result message is
returned the server. The interface does not terminate the connection until its closed from
the server side.

2.2.3 Client Interfaces

We present an overview of the components used by end users to access the framework’s
functionality, namely the command line interface and the web interface.

2.2.3.1 Command Line Interface

The CLI component implements the communication specifications required to communi-
cate with the server interface, it provides a parameter-based interface to the user to issue
commands to the server while providing user credentials. It implements all commands

6 2. Overall Design

supported by the user interface and uses the locally defined SSL certificate to verify the
server identity.

The CLI acts as a thin client to the server interface, it does not validate user arguments
in terms of input size and correctness nor verify user permissions to perform requested
operations. It relies on the server interface to perform validation and verification and
outputs any error messages returned by the server to the user.

2.2.3.2 Web Interface

The web interface provides an easier method of accessing the server functionality. Similar
to the CLI, it implements the required communication specifications and all commands
supported by the server interface. The interface can be deployed on the same computer
as the server or on a separate computer, it communicates with the server interface in the
same SSL-encrypted manner as the CLI. The user can use any web browser to access the
web interface.

Similar to the CLI, the web interface acts as a thin client to the server interface, it does not
validate user arguments in terms of input size and correctness nor verify user permissions
to perform requested operations. It relies on the server interface to perform validation and
verification and outputs any error messages returned by the server to the user.

2.3 Technologies and Languages

Python is the main programming language used for development, it is chosen for its ease
of use, readability and suitability for developing a large-scale project. Server, scanner and
interface components are developed using Python.

The web interface is built using Python-Django framework for easy integration with other
Python framework components, Apache web server is used to host the web interface, it
supports direct interfacing with python web pages using the mod_python [mpyt] module.

PostgreSQL is used as database server for its extensive features and ability to host large
amounts of data with a minimum performance penalty.

3. Implementation Details

3.1 Components Details

In this section we describe in details the inner working of each system component, all file
paths are relative to the system source directory.

3.1.1 Server Components

We present a detailed description of the components running on the framework’s central
server, namely the Scheduler and Interface components.

3.1.1.1 Scheduler
This component is defined in the file scheduler.py.

The scheduler is responsible for managing scans including issuing new scans, collecting
results and cancelling scans. This requires establishing connections to defined scanner
instances, all connections are SSL-secured and each scanner is identified by a certificate
that is exchanged on installation of a new scanner, scanner certificates are added to a
file that is defined in the server configuration (see Configurations Section 3.2). If any
connection to a scanner fails, the scanner is marked as 'down’ in the database and a
notification email is sent to the system administrator, no more connections to the scanner
are attempted until the administrator sets its status back to 'up’. All communications
follow the specifications defined in 3.3.

On startup, the scheduler tries to parse the configuration file "server-config.ini”, it then
moves into the main loop which performs three main operations before sleeping for a
period defined in configuration (default: 60 seconds) then repeating until the scheduler is
externally terminated.

The first operation checks for any pending cancel operations, it does so by querying the
database for any cancelled scans (scan.active=0) that are marked as currently running
(history.status=1). For all such scans, a connection to the responsible scanner is estab-
lished, a ’cancel_scan’ command is sent and an ’OK’ response is expected, the scan status
is then set as cancelled (history.status=3). If a different response is received from the
scanner, it is logged as an error and no changes are applied. The connection is terminated
after one exchange.

8 3. Implementation Details

The second operation tries to collect results for scans currently running, the database
is queried for running scans (history.status=1), for all such scans, a connection to the
responsible scanner is established and a ’get_result’ command and the scan-id are sent.
The response is read line-by-line with each line corresponding to one target results, if
the first line contains only the value ’0’, this signifies that results are not ready, in this
case the connection is terminated and the scan is skipped. Otherwise, results are written
to database, the scan status is set to 'completed’ (history.status=2). A ’delete_result’
command and the scan-id are sent to the scanner, the connection is terminated and a
notification email is sent to the scan owner.

The final operation is checking for new scans to perform, it starts by querying the database
for one-time (scheduling_method=1) with no history records (no previous runs) and the
’scheduled_time’ less than the current time, the results are sorted ascending by ’sched-
uled_time’ to preserve the order of running. If no pending ’one-time’ scans found, the
database is queried for 'periodic’ (scheduling method=2) scans where the current time is
between ’valid_after’ and ’valid_before’ values and no history records (no previous runs).
If no such scans pending, the database is queried for ’periodic’ scans where the current
time is between ’valid_after’ and ’valid_before’ values and the last running time (his-
tory.started_on) added to the scan interval (scan.period) is less than the current time.

For each pending scan found, a new scanner is chosen from the scanner pool, the first choice
is any idle scanner available, if all scanners are busy, the one with the earliest expected
finishing time is chosen, this is calculated using the following equation:

SCANNER_AVATL = MAX(SCAN_START_TIME + SCAN_WEIGHT * TARGETS_COUNT)

The maximum is calculated over all scans that are currently assigned to each scanner
and the scanner with the smallest SCANNER_AVAIL is picked (see Scan Types Weights
Section 3.7).

A connection is then established to the chosen scanner and 'new_scan’ command and the
scan metadata are sent, the targets are then sent one per line and at the end, an 'OK’
response is expected from the scanner. If ’'OK’ received, the scan history is updated and the
connection terminated, otherwise, the received message is logged as error and no changes
are applied.

3.1.1.2 Interface

This component is defined in the file interface.py.

On startup, the interface tries to parse the configuration file "server-config.ini” (see Config-
urations Section 3.2), opens a socket listening on all machine addresses and port number
defined in configuration. A received connection dispatches a new handler thread (we will
call it connection-handler) and the main thread goes back to accepting more connections.

The connection-handler starts by creating an SSL socket wrapper for the received con-
nection, it acts as the server side and uses the server certificate and key files defined in
configuration. TLSv1 is used as the encryption protocol. All exchanged messages uses
JSON and the communication specifications defined in 3.3, if a format error in a received
message is detected, the connection is terminated immediately.

The connection-handler waits for a message from the client, the message is then passed to
a command handler instance, which is expected to return either a response message or an
error message, this is then encoded as per the communication specifications and passed
back to the client over the established channel and the connection is terminated.

3.1. Components Details 9

The received message is expected to be in the form of one or more (key,value) pairs, one of
the keys should be a valid command, its value depends on the command itself and can be
irrelevant in some cases. Some commands requires other (key,value) pairs to be present in
the message, this is validated and an error message is returned otherwise. The expected
data type is validated as well.

The command-handler first checks for a valid username and password in the message by
querying the database for the given username and the SHA512 hash of the given password,
an error message is returned otherwise. Then it searches for a valid command in the user
message and handles it, if none is found, an error message is returned.

The allowed_subnets command queries the database for the list of subnets the user is al-
lowed to access (readonly or read/write) and returns them. If the user is an administrator,
all subnets defined in the database are returned.

The change_password command is expected to contain a username value, a new_password
key is also expected. If the current user is an administrator, the password can be changed
for any username, otherwise, the username should be the same as the current user.

The recent_scans command is expected to contain an integer value between 0 and 50 as
the number of scans to return, the database is queried for the most recently executed scans
that the user is allowed to view (see Permissions System 3.4). Only scan information and
history are returned, individual scan results can be retrieved using the result command
and the scan-id returned here.

The target_count command is expected to contain a valid scan-id. The current user is
checked for at least readonly permissions to the given scan. If so, the database is queried
for the number of targets for the specified scan and is returned to the user. If not, an error
message is returned.

The result command is expected to contain a valid scan-id. The current user is checked
for at least readonly permissions to the given scan. If so, the database is queried for the
results of the specified scan and is returned to the user. If the user is allowed access to
only a subset of the scan targets, only the results of these targets are returned.

The cancel command is expected to contain a valid scan-id. Only an administrator or
the issuer of the scan are allowed to perform this action. The current status of the scan is
queried, if it has already been cancelled (active=0) or not currently running, the scan is
deleted entirely, otherwise, the active flag is set to O.

The allowed_scan_types command queries the database for the list of scan types the
current user is allowed to run, it returns them along with other scan-type permission
values (see Permissions System 3.4).

The new command is used to issue a new scan. It starts by checking for the existence of
other mandatory arguments (target, scan_type and (once or periodic)).

It prepares the list of targets by validating the format of the target list, resolves any
hostnames, checks that the current user has enough permissions to scan the given targets
and expands any subnets to individual IP addresses.

If the once argument is present, it is expected to contain a valid timestamp which is
the running time of the scan. If the periodic argument is present, it is expected to
contain a value in the format of an integer (between 0 and 999) followed by ’d’, 'h’ or 'm’
corresponding to 'day’, ’hour’ and 'month’ respectively. In case of periodic scheduling,
two more optional arguments can be present, from containing a valid timestamp which is
the start datetime for running the scan, if not found, the current datetime is used, and to

10 3. Implementation Details

containing a valid timestamp which is the expiry datetime for the scan, if not found, it is
set for a year after the current datetime.

The scantype argument is checked for a valid scantype, user permissions are queried to
ensure that the user has access to this scantype, and in case of a periodic scan, that the
user can run this scan periodically with the specified period (see Permissions System 3.4).

At this point, the scan is ready to be added, a new scan record and a record for each scan
target are inserted into the database, a "New scan issued” message is returned.

3.1.2 Scanner Components

We present a detailed description of the components running on the individual scanner
machines, namely the Agent and Interface components.

3.1.2.1 Agent
The agent is defined in the file scanner/agent.py.

On startup, the agent tries to parse the configuration file "scanner-config.ini” (see Configu-
rations Section 3.2), it then moves into the main loop which performs two main operations
before sleeping for a period defined in configuration (default: 60 seconds) then repeating
until the agent is externally terminated.

The first operation scans the ’cancel’ directory (defined in configuration) for ’cancel scan’
commands, which are represented by empty files with the name as the scan-id to cancel. If
found, the agent searches for the given scan-id in an inner dictionary of (scan-id, process-
instance) that contains the currently running scans and terminates the corresponding
process. The agent then removes all traces of the scan from the ’scans’ and ’results’
directories and the running-scans dictionary.

The second operation checks for new scans to run in the ’scans’ directory, from the sorted
(by scan-id) list of scans, it retrieves the next scan that is not currently running (not in
running-scans dictionary). The first line in the file is read, it corresponds to the scan
metadata as key-value pairs, a new process is spawned to handle the new scan and an
entry in the running-scans dictionary is created for the scan.

The new process creates an instance of the specific scan handler according to the scan-type
found in the scan metadata then creates a new results file with its name as the scan-id in
the 'results’ directory. The scan file is then read line-by-line with each line corresponding
to a single target definition, for each target a new thread is spawned to run the scan
handler on it, the number of threads running at the same time is limited by a ’parallelism’
parameter defined in the configuration. To avoid problems arising from multiple threads
writing results to the same file simultaneously, each thread writes the results of the scan to
a thread-safe queue structure, the main thread reads results from this structure and writes
to the results file. When all targets are scanned successfully, the scan file is removed from
the ’scans’ directory.

3.1.2.2 Interface
The scanner interface is defined in the file scanner/scanner-interface.py.

On startup, the interface tries to parse the configuration file "scanner-config.ini” (see Con-
figurations Section 3.2), opens a socket listening on all machine addresses and port number
defined in configuration. The connection is SSL-wrapped and the scanner interface uses
its key and certificate files defined in configuration, it uses the server certificate file setup
on installation to verify incoming connections since only the server is allowed to establish
a connection to the scanner.

3.1. Components Details 11

Once a connection is received from the server, the scanner interface waits for a command,
processes it and sends a response back then waits for another command and so on until
the connection is terminated from the server side. All exchanged messages are encoded
according to the communication specifications (see 3.3).

The new_scan command creates a new file in the ’scans’ directory (path defined in con-
figuration), the file name is the scan-id, content is written as received from server, it is
expected that the first line contains the scan metadata and each subsequent line contains
one target definition. On success, ’OK’ message is returned.

The get_result command expects an 'id’ item containing the scan-id being requested. If
a file exists with its name as the scan-id in the 'results’ directory (defined in configuration)
and no file exists with the same name in the ’scans’ directory, this signifies that the scan
is complete, the contents of the results file are sent back to the server, it is expected to
contain the target results one per line. If the scan is not yet finished, ’0’ is returned instead.

The delete_result command expects an ’id’ item containing the scan-id being deleted.
The file with the name as the scan-id in the ’results’ directory is deleted and an 'OK’
response is returned.

The cancel_scan command expects an ’id’ item containing the scan-id being cancelled.
An empty file with its name as the scan-id is created in the ’cancel’ directory (defined in
configuration) and an 'OK’ response is returned.

The get_pending_scans command reads the ’scans’ directory and returns a sorted list of
scan-ids that are not yet complete.

3.1.3 Client Interfaces

We present a detailed description of the components used by end users to access the
framework’s functionality, namely the Command line interface and the Web interface.

3.1.3.1 Command Line Interface
The CLI is defined in the pentest-cli.py file.

On startup, the CLI tries to parse the configuration file "client-config.ini” (see Configura-
tions Section 3.2), commandline arguments supplied by the user are then parsed into a
dictionary structure (see CLI Usage section 4.3.1 for description of supported arguments).

For collecting user credentials, the environment variables 'LRZSCANUSER’ and ’LRZS-
CANPWD’ corresponding to username and password respectively are used, if not defined,
the user is prompted to enter his/her username and password.

In case the user requests that results are written to an output file instead of stdout (—
output-file argument), the specified filename is opened and the output-file argument is
removed from the arguments dictionary.

If the user requests a password change, he/she is prompted for the new password and
password confirmation which are checked for equality.

The arguments dictionary is prepared for sending by removing any keys with empty values,
converting datetime values to timestamps and adding user credentials. The dictionary is
then encoded according to the communication specifications (see 3.3), an SSL-encrypted
connection is opened to the server (server host/port and certificate file specified in con-
figuration) and the encoded dictionary is sent over the established connection. The CLI
then waits for a response from the server and writes it to stdout or output file if requested
so by the user.

12 3. Implementation Details

3.1.3.2 Web Interface

The web interface is programmed using python-django framework [Foun], definition under
the pentest_www/ directory.

The web interface acts as a thin-client to the server interface with no defined database
of its own, it performs the same functionality as the CLI with the adition of two main
features. It provides a virtual ’login’ where the user credentials are stored in a session
variable on the web server and sent to the framework server with each request. It also
provides the option to download scan results as a .tar.gz archive with results separated
into files, one for each target.

The website skeleton is created automatically by the django framework which follows the
Model-View-Controller (MVC) architecture.

In the pentest_www/pentest/views.py file, we define a view for each page as a single func-
tion, each view performs login validations, prepares the user message, passes it to an
instance of a 'Client” model (defined in pentest_www,/pentest/models.py) which communi-
cates the message to the server (server host/port and certificate file specified in configura-
tion file: pentest_www/pentest/client-config.ini) and sends the response back to the view
which presents it to the user appropriately.

The views use HTML templates defined in pentest_www/pentest/templates/ directory.

3.2 Configurations

In this section we describe the configuration parameters used by server, scanner and client
components.

3.2.1 Server Configuration

Server configuration is defined in server-config.ini.

It is divided into three sections: interface, scheduler and default. Following is a de-
scription of each configuration parameter.

Parameter Name Description

interface.port port number that the server interface listens on
interface.max msg len maximum message length accepted by the server
interface from a client to protect against malicious clients
interface.logfile path to the interface log file
interface.loglevel interface logging level
(1 - DEBUG , 2 - INFO , 3 - WARNING , 4 - ERROR)

Parameter Name Description

scheduler.sleep_time time in seconds that the scheduler sleeps for between
performing its regular operations

scheduler.logfile path to the scheduler log file

scheduler.loglevel scheduler logging level
(1 - DEBUG , 2 - INFO , 3 - WARNING , 4 - ERROR)

3.2. Configurations 13
Parameter Name Description
default.server_certfile path to the server certificate file
default.server_keyfile path to the server private key file
default.scanners_certfile path to the file containing defined scanners’ certificates
default.admin_email administrator email address

default.db_name
default.db_user
default.db_pass

name of PostgreSQL database instance
username for accessing the database
password for accessing the database

3.2.2 Scanner Configuration

Server configuration is defined in scanner/scanner-config.ini.

It is divided into three sections: interface, agent and default. Following is a description
of each configuration parameter.

Parameter Name

Description

interface.keyfile
interface.certfile

path to the scanner private key file
path to the scanner certificate file

interface.server_cert path the server certificate file

interface.port
interface.logfile
interface.loglevel

port number that the scanner interface listens on

path to the interface log file

interface logging level

(1-DEBUG , 2 - INFO , 3 - WARNING , 4 - ERROR)

Parameter Name

Description

agent.sleep_time

agent.logfile
agent.parallelism
agent.loglevel

time in seconds that the agent sleeps for between
performing its regular operations

path to the agent log file

defines the number of targets to scan in parallel

agent logging level

(1 - DEBUG, 2 - INFO , 3 - WARNING , 4 - ERROR)

Parameter Name

Description

default.scans_dir
default.results_dir
default.cancel_dir

path to the directory that stores scan commands
path to the directory that stores scan results
path to the directory that stores cancel commands

3.2.3 Client Configuration

Required by the command line interface and web interface clients, it is defined in client-
config.ini which should be in the same directory as pentest-cli.py for the CLI and under
pentest_www/pentest/ for the web interface.

It contains one section: default. Following is a description of each configuration parame-

ter.

14 3. Implementation Details

Parameter Name Description
default.server_host hostname or IP address of server to connect to
default.server_port port number that the server interface is listening on

default.server_certfile path to the server certificate file

3.3 Communication Specifications

All communications between system components follow the same specifications.

If one side requires a message to be sent, firstly the message should be encoded using
JSON;, the length of the resulting JSON-encoded message is sent followed by a new line
then the JSON-encoded message is sent. The receiving end will parse the first line to know
the size of the message to expect.

In some cases, the message size is unknown or difficult to calculate beforehand. For
example, when the server is reading scan results from the database and sending them to
the client, it is infeasible for reasons of memory constraints to read the results of a large
scan and calculate its size before sending. In such cases a length of -1 can be sent instead.
The receiving side will keep accepting data until an empty line is detected which signifies
end-of-message. This is only accepted by the receiving side if the server is the sending side
since it is the only side trusted to not act maliciously.

3.4 Permissions System

Users are divided into two types:

1. Admin: Full-access to all subnets, scan types and issued scans.

2. Normal User: Permissions have to be explicitly set.

3.4.1 Subnet Permissions

User can be assigned permission for a specific network subnet. The user can read results of
any scan performed on hosts within the specified subnet (in case the scan spans multiple
subnets, the user will only see results for subnets he/she is assigned permissions for) and
run his/her own scans on targets within the specified subnet.

If the readonly flag is set, the user is not allowed to perform new scans on targets within
the specified subnet.

3.4.2 Scan Type Permissions
User can be allowed to issue a scan type with the following parameters defined:
e periodically_allowed flag: if set, the user can perform a periodic scan of this scan
type.

e min_periodic_time: in case the periodically_allowed flag is set, this puts a limit on
the minimum interval for the issued periodic scan (e.g. 1d, 12h..etc).

3.4. Permissions System 15

3.4.3 Scan Permissions

Scan permissions are not explicitly set but are inferred from the user’s subnet permissions.
Two types of permissions are possible per a pair (user, scan). Full permissions means the
user can read all scan results and cancel/delete scan, this applies only for users of type
’Administrator’ and the scan issuer. Read permissions means the user can read all or part
of the scan results depending on the scan target subnets and the user’s subnet permissions,
for example, a scan targeting '192.168.0.1° and ’10.0.0.1°, a user A can only read results
for the target ’192.168.0.1" if he has read permissions for subnet '192.168.0.0/16" but no
permissions for subnet ’10.0.0.0/8’.

3. Implementation Details

16

3.5 Database

The server uses a PostgreSQL database for data storage, in this section we present the

database schema diagram and a description of each database table grouped by logical

entities.

3.5.1 Database Schema Diagram

The following is the database schema diagram showing table fields and foreign key relations

between tables. Primary key fields are underlined.

Jauueds _ T

—

BWTYo
TIUETEM,

yblam adijueds

FIVEET
sJdalawededy
Japueye

BWEUg

PTy

— s1abdelg
- vﬁlwwcnswo SATIDE,
Lo .nﬂlcmowo P 84048q_pT1EAe
sseappeo| U 18348 prISfe
PPEo poTdads
Pt 3WT} pa1Npay2se
12biey poyisw BuTiNpayose
pT adfiuesscle
,..qr pPT J8nssTe o
» PT JBUUEDS, 1 Pt
T Sn1E7180 ueas
U0 pPaYsSTUT}e
uo pajle}se
PT UEDSoleg
PTs R
Aioisiy CIED
JjuswiJdedspe
SsaJlppe HoTLEeole
PPEs UTWPES T
BlEUs awelq BWTT 51poTled Ullg
PT 1 Ajuopeade pJdomsseds pamo]1e A11e0TpoTdads
jauqns PT 38UQqNS, SWEUJIISNG PT SUATUEDS,
Pt J@sn mej.ﬂ Pls N Pt _Josn,
j2uqns 13sn 13asn adAjueds 1asn

adfjuess

Figure 3.1: Database diagram

3.5. Database 17

3.5.2 Description

The following is a description of each logical entity stored in the database and the under-
lying database tables.

3.5.2.1 Scantype

Describes the types of scans supported by the framework. Scantype information are stored
in two different tables, table scantype stores core scantype information.

Column Type Description

id integer Primary key

name varchar Name assigned to scan type

handler varchar Name of the python handler class

parameters varchar General parameters that can be passed to handler
weight integer Foreign key referencing scantype_weight(id)

scantype table references scantype_weight table which stores possible weight classes (see
Scan Type Weights section 3.7).

Column Type Description

weight integer Primary key
time interval Estimated time of this weight class

3.5.2.2 Subnet

Describes network subnets that can be scanned by the framework, subnet information are
stored in one table: subnet.

Column Type Description

id integer Primary key
name varchar Name assigned to the subnet
address varchar Address in CIDR notation

3.5.2.3 User

Describes individual users configured to use the framework and the user permissions. User
information are stored in three different tables. Table user stores core user information.

Column Type Description

id integer Primary key

username varchar Username used for login
password varchar SHAJ512 encrypted password
name varchar User’s full name

isadmin integer Flag (is user an administrator?)
location varchar User’s address

department varchar User’s department or institute within the MWN
email varchar User’s email address

18

3. Implementation Details

Table user_scantype stores information about user permissions in regard to supported

scantypes.
Column Type Description
user_id integer Foreign key referencing user(id)
scantype_id integer Foreign key referencing scantype(id)
periodically_allowed integer Flag
min_periodic_time varchar Minimum periodic interval allowed

Table user_subnet stores information about user permissions in regard to supported sub-

nets.

Column Type

Description

user_id integer
subnet_id integer
readonly integer

Foreign key referencing user(id)
Foreign key referencing subnet(id)

Flag

3.5.2.4 Scan

Describes instances of scans performed by the framework. Scan information are stored in
three different tables. Table scan stores main scan information as supplied by the user.

Column Type Description

id integer Primary key

issuer_id integer Foreign key referencing user(id)

scantype_id integer Foreign key referencing scantype(id)
scheduling_method integer 1: once, 2: periodic

scheduled_time double Timestamp for when to run (one-time scans)
period interval In case of periodic scan

valid_after double Timestamp for when to start doing periodic scan
valid_before double Timestamp for when to stop doing periodic scan
active integer Oor1

targets varchar List of comma-seperated targets

Table target stores individual target results for each scan.

Column Type

Description

id integer
address varchar
scan_id integer
subnet_id integer
result text

Primary key

Target hostname or IP address
Foreign key referencing scan(id)
Foreign key referencing subnet(id)
Result text for scanning for this target

Table history stores information about the execution history of each scan.

3.6. Implemented Scan Types 19

Column Type Description

id integer Primary key

scan_id integer Foreign key referencing scan(id)
started_on double Timestamp of start datetime
finished_on double Timestamp of end datetime

status integer 1: started, 2: finished, 3: canceled
scanner_id integer Foreign key referencing scanner(id)

3.5.2.5 Scanner

Describes configured scanner machines. Information are stored in one table: scanner.

Column Type Description

id integer Primary key

name varchar Name assigned to scanner

host varchar Hostname used to connect to scanner

port integer Port that the scanner interface is listening on
outside_LRZ integer Flag

status integer 0: Down, 1: Up

3.6 Implemented Scan Types

The following scan types are already implemented into the project. All scans are and
should be defined inside the scanner/handlers/ directory.

3.6.1 Nmap Scans
Nmap scans are defined in the file: nmap_handler.py.

It performs regular nmap scans with different command line parameters, therefore, nmap
should be installed on all scanner machines.

Three different nmap scans are defined, each with different scan parameters. Since they all
use the same scan handler, more can be easily added by adding a record in the ’scantype’
database table with the same values but different parameters.

e Nmap quick: -Pn -sS -T4 -F
e Nmap normal: -Pn -sS -sV
e Nmap full: -Pn -sS -p1-65535 -A

Following is a description of each parameter used, taken from [Nmap].

e -Pn: Treat all hosts as online — skip host discovery

e sS: TCP SYN scan

-T<0-5>: Set timing template (higher is faster)

-F: Fast mode - Scan fewer ports than the default scan

e sV: Probe open ports to determine service/version info

e -p <port ranges>: Only scan specified ports

-A: Enable OS detection, version detection, script scanning, and traceroute

20 3. Implementation Details

3.6.2 Nmap NSE

Defined in the file: nmap_nse_handler.py.

It uses Nmap Scripting Engine (NSE) to do a basic vulnerability scan of open parts detected
using nmap. The scan scripts are defined in the scanner/nmap-nse/ directory.

3.6.3 SSH Basic

Defined in the file: ssh_handler.py. Modified OpenSSH client under scanner/ssh/

This scanner tries to connect to the default SSH port (if no port number supplied by
user). Based on the SSH scanner developed by Gasser et al.[GaHC14], it uses a slightly
modified OpenSSH client to perform and log a complete SSH handshake with the target,
the OpenSSH client is modified to log SSH host keys used by the server. Useful information
collected include server and protocol versions, supported cipher suites and public keys.

3.6.4 HTTP Server Version

Defined in the file: httpversion_handler.py.

Sends a HEAD request to a HTTP server on the default HTTP port (if no port number
supplied by user) and returns the value of the ’Server’ header which by default contains
the HT'TP server version.

3.6.5 Joomla! Version

Defined in the file: jversion_handler.py.

Connects to the HT'TP server and performs a series of defined checks to try and detect the
installed Joomla! version. Certain files served by the Joomla! website are searched for an
occurrence of a specific string or regular expression. For regular expression searches (2,3
and 4), the value between brackets is matched as the version number. These checks are
not guaranteed to be correct.

The following is the list of checks performed:

File String/Regex Joomla! version
/ ’Joomla! - Copyright’ 1.0

’Joomla! (1.[567])’ 1.[567]
/administrator/manifests/files/joomla.xml ’<version>([0-9\.]*) < /version>’ [0-9\.]*
/language/en-GB/en-GB.xml *<version>([0-9\.]*) < /version>’ [0-9\.]*
/language/en-GB/en-GB.ini # $1d: en-GB.ini 11391 2009-01-04 13:35:50Z ian $’ 1.5.26
/language/en-GB/en-GB.ini ’; $Id: en-GB.ini 20196 2011-01-09 02:40:25Z ian $’ 1.6.0
/language/en-GB/en-GB.ini ’; $Id: en-GB.ini 20990 2011-03-18 16:42:30Z infograf768 $’ 1.6.5 - 1.7.1
/language/en-GB/en-GB.ini ’; $Id: en-GB.ini 22183 2011-09-30 09:04:32Z infograf768 $’ 1.7.3 - 1.7.5

3.7 Scan Type Weights

Each scan type created is assigned a weight class, a weight class defines the expected
running time of the scan for one target. This is used to estimate the time at which a
scanner machine will finish its current assigned scans to maximize load balancing.

The following weight classes are defined by default:

3.8. Adding New Scan Types 21

Weight

Time

© 00 O Ut s W N

—_
o

1 second

1 minute
10 minutes
30 minutes
1 hour

12 hours

1 day

7 days

1 month

1 year

3.8 Adding New Scan Types

The framework is designed to be easily extensible by adding new scan types.
To do that, two main steps need to be done:

1. Write the scan handler class:

2. Add

Under the ’scanner/handler’ directory, create a new python file. The naming
convention used is 'XXX_handler.py’

The class needs to have the following method defined:

target: one target ip/hostname

port: port number if supplied by user, ignore if not applicable

parameters: additional parameters defined in server database,
ignore if not applicable

Returns: scan result string

def run(self, target, port, parameters):

scan type to server database:

Add a new record to the ’scantype’ table:

INSERT INTO scantype (name, handler, parameters, weight)
VALUES

(
’<name>’ ,
’<handler>’,
’<parameters>’,
<weight>

);

<name>: used by users when creating new scans

<handler>: name of the handler class created in the previous
step without the ’.py’

<parameters>: parameters that will be passed to the handler,
this enables the user to create multiple scan types that used
the same handler but with different parameters

<weight>: expected weight class (see ’Scan Type Weights’ section
for more details)

22 3. Implementation Details

3.9 Startup Scripts

Both server and scanner installations can be started using defined bash startup scripts,
server script in bin/server and scanner script in scanner/bin/scanner. Both scripts accept
one the following arguments: start, stop, restart. They can be used in combination with
crontab to ensure that the server/scanner is always running.

Both scripts use the start-stop-daemon utility to start/stop its components, component
PID’s are stored in files under the same directory as the script.

4. Installation, Administration and Usage

In this chapter we present detailed installation steps for all framework components, de-
scription of possible administrative operations and end-user’s usage instructions.

4.1 Installation

We describe the installation procedure for all system components, all steps were tested on
a Debian 7.0 system. The user is assumed to have shell access and root permissions on
the target system

4.1.1 Installing Server
We list the dependencies and installation steps for server components.

4.1.1.1 Dependencies
e python

e postgresql
e python-psycopg?2

e Python package: netaddr

4.1.1.2 Installation Steps

PostgreSQL database installation:

cd lrz_pent/

sudo -u postgres createuser -s pentest

Replace password in the next command appropriately.

sudo -u postgres psql -c "ALTER USER pentest WITH PASSWORD ’pentest’"

sudo -u postgres psql -c "CREATE DATABASE pentest WITH OWNER = pentest"

echo -e "local \t pentest \t pentest \t\t md5" | sudo cat -
/etc/postgresql/9.1/main/pg_hba.conf > temp && sudo mv temp
/etc/postgresql/9.1/main/pg_hba.conf

sudo /etc/init.d/postgresql restart

psql -U pentest -d pentest -f db/schema.sql

psql -U pentest -d pentest -f db/data.sql

24 4. Installation, Administration and Usage

Generate server keys:

cd auth/

touch scanners.crt

openssl req -x509 -newkey rsa:2048 -keyout self.key -out self.crt -nodes

cd ..

editor server-config.ini

Change the configurations accordingly, most importantly:
server_certfile, server_keyfile, admin_email

At this point, the server is installed but not running. You can set it to run automatically
using crontab:

sudo crontab -e

and adding the following to the crontab file:

Replace /<path>/<to>/lrz_pent appropriately
* * x * *x /<path>/<to>/lrz_pent/bin/server start

Note that some scans such as Nmap with operating system detection need to run as root,
we are using sudo crontab.

4.1.2 Installing Scanner

The scanner can be installed on the same machine as the server, the framework requires
at least one scanner installed to function correctly. Same instructions can be followed for
each scanner machine required.

4.1.2.1 Dependencies
e python

e nmap

4.1.2.2 Installation Steps

Generate scanner keys:

cd scanner/auth/

openssl req -x509 -newkey rsa:2048 -keyout scanner.key -out scanner.crt -
nodes

cd ..

At this point, the server and scanner need to exchange certificates.

Copy the scanner public key to the server and into the ’auth/scanners.crt’ file.

Copy the server public key to the scanner auth folder. If the scanner is on the same
machine as the server:

cat auth/scanner.crt >> ../auth/scanners.crt

Change values in scanner-config.ini accordingly.

Configure the scanner to start automatically using crontab:

sudo crontab -e

4.1. Installation 25

Then add the following;:

Replace /<path>/<to>/lrz_pent appropriately
* x * *x *x /<path>/<to>/lrz_pent/scanner/bin/scanner start

On the server, connect to the database by running:

psql -U pentest -d pentest

Then issue the following SQL statement:

INSERT INTO scanner (name, host, port, "outside_LRZ")
VALUES

(
’<name>’,
’<host>’,
’<port>’,
011°

¥

Replace values appropriately, the port number is the one configured in the scanner config-
uration file.

4.1.3 Installing Web Interface

You can choose to install the web interface on the server, it is optional since all the main
functionality are provided by the CLI.

4.1.3.1 Dependencies
e django
e apache?2

e libapache2-mod-wsgi

4.1.3.2 Installation Steps

Apache site configuration:

sudo editor /etc/apache2/sites-enabled/pentest

Add the following to the file:

WSGIScriptAlias /pentest
/<path>/<to>/lrz_pent/pentest_www/pentest_www/wsgi.py
WSGIPythonPath /<path>/<to>/lrz_pent/pentest_www

<Directory /<path>/<to>/lrz_pent/pentest_www/pentest_www>
<Files wsgi.py>

Order deny,allow

Allow from all

</Files>

</Directory>

26 4. Installation, Administration and Usage

Replace ’/pentest’ with the path you HTTP path you wish to use for the web interface.
Replace ’/path/to/Irz_pent’ with the correct path.
Copy cert file to web interface authentication folder:

cp auth/self.crt pentest_www/pentest/auth/

Restart apache:

sudo /etc/init.d/apache2 restart

4.2 Administration

Most administration tasks will require performing SQL statements directly on the database.
To first connect to the postgresql database, issue the following command on the server:

pentest -U pentest -d pentest

When prompted for the password, enter the password defined in 4.1.1.
4.2.1 Add Subnet
Run the following SQL statement on database:

INSERT INTO subnet (name, address)
VALUES (

’<name>’ ,

’<address>’

)

Replace the values accordingly.
‘name’ is symbolic and is not used for address resolution.
’address’ should be a valid IP network (e.g. 127.0.0.1, 192.168.0.0/16)

4.2.2 Add User

1. Generate password hash:
Run the following command on a system with python installed:

python -c "import hashlib; print
hashlib.shab12(’<pass>’) .hexdigest ()"

2. Add user record:
Run the following SQL statement on the database:

INSERT INTO public.user (username, password, name, isadmin,
location, department, email)

VALUES

(

’<username>’,

’<pass-hash>’,

’<name>’,

0117,

’<location>’,

’<department>’,

’<email>’

); SELECT LASTVALQ);

4.2. Administration 27

Replace the statement values with the appropriate values.

(location, department, email) are optional, can be replaced with NULL (without any
quotes).

The statement will output the ID of the new user, take note of it for future operations.

3. Assign scan type permissions:
This step is not necessary if the user is an administrator (i.e. ’isadmin’ flag set).
Run the following SQL statement on the database to get all available scan types:

SELECT * FROM scantype;

Note the IDs of the scan types you want to assign to the new user, then run the
following SQL statement for each scan type:

INSERT INTO user_scantype (user_id, scantype_id,
periodically_allowed, min_periodic_time)
VALUES
(
’user_id>’,
’}<scantype_id>’,
0117,
’<min_periodic_time>’

Dk

Replace values accordingly.

For the min_periodic_time, ’0’ is a valid value, otherwise specify the timing in terms
of minutes, hours or days (e.g. 30m, 8h, 1d).

If the user is not allowed periodic scanning (i.e. periodically_allowed = 0), you can
specify an empty value for min_periodic_time, but not NULL.

4. Assign subnet permissions:
This step is not necessary if the user is an administrator (i.e. ’isadmin’ flag set), but
a subnet has to exist in database for admin to be able to scan it.
Run the following SQL statement on the database to get all available subnets:

SELECT * FROM subnet;

Note the IDs of the subnets you want to assign to the new user, then run the following
SQL statement for each subnet:

INSERT INTO user_subnet (user_id, subnet_id, readonly)
VALUES

(
’<user_id>’,
’<subnet_id>’,
01

);

Replace values accordingly.

4.2.3 Enabling a Disabled Scanner

In the case that the server is unable to connect to a scanner, the scanner is marked as
’"down’ in the database and an email is sent to the administrator (email address defined in
server configuration file).

To re-enable the scanner after the issue has been fixed:

28 4. Installation, Administration and Usage

UPDATE scanner SET status = 1 WHERE host = ’<hostname>’;

4.3 Usage

In this section we describe usage instructions for end-users, users are created by an ad-
ministrator by following the instructions in 4.2.2.

4.3.1 Command Line Interface

pentest-cli.py is a command line interface used to interact with the Pentest server.
Use

python pentest-cli -h

to view command details.

All CLI commands will prompt for a user/pass before communicating with the server.
To prevent the CLI from prompting for user/pass with each command, you can set the
following environment variables with the user/pass:

export LRZSCANUSER=’<username>’
export LRZSCANPWD=’<password>’

4.3.1.1 Configuration

To configure the CLI to run correctly, you will need to have a copy of the server certificate
file and the configuration file ’client-config.ini’.

Change the values in the configuration file to point to the correct server:port and the
location of the server cert file.

4.3.1.2 View Allowed Subnets

python pentest-cli.py -A

4.3.1.3 View Allowed Scan Types

python pentest-cli.py -S

4.3.1.4 Issue New Scan

Some examples of a new scan command:

Quick nmap scan of localhost every one day

python pentest-cli.py -n -t ’localhost’ -s ’nmap-quick’ -p 1d

Full nmap scan of two IP addresses once

python pentest-cli.py -n -t ’192.168.0.10,192.168.0.11° -s ’nmap-full’ -o

4.3.1.5 Get Summary of Recent Scans

python pentest-cli.py -R
python pentest-cli.py -R 3 # Gets only the latest 3 scans

4.3. Usage 29

4.3.1.6 Cancel Scan

python pentest-cli.py -c 10 # Where 10 is the scan-id, retrieved with -R

4.3.1.7 Get Scan Results

python pentest-cli.py -r 10 # Where 10 is the scan-id, retrieved with -R

4.3.1.8 Change Password

python pentest-cli.py -cP

Will be prompted to enter and confirm new password.

4.3.1.9 Output to File

If the user needs to redirect the output of any of the above commands to file:

python pentest-cli.py -r 10 -f results.out # Outputs the results of scan
10 to results.out

30

4. Installation, Administration and Usage

5. Evaluation

Multiple scans were performed to test and evaluate the performance of the framework. In
this chapter we present some of the performed scans and a summary of the results.

5.1 MWN SSH Scan

A scan of type ssh-basic (see 3.6.3) targeting the entire Munich Scientific Network (MWN)
of 1,640,192 IP addresses was performed. The scanner was configured with a parallelization
parameter of 100 to speed up the scan. The scan was started on the 5th of December 2013
and was completed after approximately 46 hours, corresponding to approximately 6 hosts
per minute for each scan process.

5,578 out of 1,640,192 hosts scanned had SSH server listening on port 22, figure 5.1 shows
the distribution of SSH versions detected.

95,393

5,000 - -
4,000 | =
EO 3,000 |- -

BIS
2,000 + -
1,000 |- =

! ! T

SSH 2.0 SSH 1.99 SSH 1.5

Figure 5.1: SSH Version
A total of 12,226 cryptographic keys were extracted from scanned hosts, 646 keys were
shared between more than one host within the MWN with 1,607 hosts using a shared key.

Collected keys were also checked against keys encountered in the world-wide SSH scan
performed by Gasser et al. [GaHC14] in the period from January to July 2013, results

32 5. Evaluation

show that 305 hosts within the MWN are using keys encountered outside the MWN,
these hosts span 60 different MWN institutes, table 5.1 shows the top 5 institutes with
duplicate keys. Figure 5.2 shows the distribution of the keys outside the MWN that were
also encountered within the MWN. Table 5.2 shows the top 5 Autonomous Systems where
such keys were found.

Institute # Duplicate keys
LMU Miinchen,Maier-Leibnitz-Laboratorium der Universitdt und der Technischen Universitdt Miinchen 33
LMU Miinchen,Meteorologisches Institut 26
LMU Miinchen,Institut fiir Astronomie und Astrophysik mit Universitéits-Sternwarte 26
TUM,WWW & Online Services 23
TUM,Lehrstuhl fiir Genomorientierte Bioinformatik 16

Table 5.1: Duplicate keys top MWN institutes

Figure 5.2: Duplicate keys map

ASN # Hosts
6830 804
174 648
8220 546
5580 498
13768 470

Table 5.2: Duplicate keys top ASNs

Heninger et al. [HDWH12] describes a weakness in RSA keys caused by insufficient entropy
during key generation, this causes some keys to share common factors which allows an
attacker to easily retrieve the private key from the public key. Keys collected during the
MWN scanned were checked and 1 key was found to be factorable using this method.

5.2 Joomla! Scan

To test that a Joomla! scan would correctly detect the running Joomla! version, two URLs
were scanned in November 2013. The first URL www.lrz.de does not run Joomla! at all,
the second URL joomla.de is expected to run a recent Joomla! version. Returned results
are as follows.

5.2. Joomla! Scan 33

URL Scan Result

www.lrz.de Failed to get Joomla version!
joomla.de 3.1.5

Joomla! version 3.1 was indeed the latest version at the time of scan, scan results were as
expected.

34

5. Evaluation

6. Future Work

The framework collect scan results as a single block of text for each target scanned, this
makes it difficult to extract meaningful information on a large scale. For example, how
many hosts have port 22 open or which hosts run an old HTTP server version. More work
needs to be done to parse scan results which will enable the implementation of features
that can not be implemented at the current state of the system such as security alerts and
risk analysis.

Additionally, the framework can be extended with more scan types to increase its usability.
Examples of possible scans are: default or weak passwords scan, common vulnerabilities
scan, testing possible exploits. The Joomla! scan can be improved by differentiating
between hosts not running Joomla! at all and hosts that run Joomla! but we fail to detect
its version number.

36

6. Future Work

References

[beyo

[Foun]

[GaHC14]

[GFI]

[HDWH12)

[mpyt]

[Nmap]

[Rapi]

[Secul]

beyondtrust. Retina CS Threat Management Console.
http://www.beyondtrust.com/Products/RetinaCSThreatManagementConsole/ .

Django Software Foundation. The Web framework for perfectionists with dead-
lines | Django. https://www.djangoproject.com/.

Oliver Gasser, Ralph Holz und Georg Carle. A deeper understanding of SSH:
results from Internet-wide scans. Proc. 14th Network Operations and Man-
agement Symposium (NOMS), May 2014.

GFI. GFI LanGuard. http://www.gfi.com/products-and-solutions/network-
security-solutions/gfi-languard.

Nadia Heninger, Zakir Durumeric, Eric Wustrow und J. Alex Halderman.
Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network
Devices. In Proceedings of the 21st USENIX Security Symposium, August
2012.

mod python. Apache / Python Intergration. http://modpython.org/.

Nmap. Nmap - Options Summary. http://nmap.org/book/man-
briefoptions.html.

Rapid7. Metasploit Framework. https://github.com/rapid7/metasploit-
framework.

Tenable Network Security. Nessus Vulnerability =~ Scanner.
http://www.tenable.com/products/nessus.

	Contents
	1 Introduction
	1.1 Background
	1.2 Requirements
	1.3 Related Work

	2 Overall Design
	2.1 Architecture
	2.2 Components Overview
	2.2.1 Server Components
	2.2.1.1 Scheduler
	2.2.1.2 Interface

	2.2.2 Scanner Components
	2.2.2.1 Agent
	2.2.2.2 Interface

	2.2.3 Client Interfaces
	2.2.3.1 Command Line Interface
	2.2.3.2 Web Interface

	2.3 Technologies and Languages

	3 Implementation Details
	3.1 Components Details
	3.1.1 Server Components
	3.1.1.1 Scheduler
	3.1.1.2 Interface

	3.1.2 Scanner Components
	3.1.2.1 Agent
	3.1.2.2 Interface

	3.1.3 Client Interfaces
	3.1.3.1 Command Line Interface
	3.1.3.2 Web Interface

	3.2 Configurations
	3.2.1 Server Configuration
	3.2.2 Scanner Configuration
	3.2.3 Client Configuration

	3.3 Communication Specifications
	3.4 Permissions System
	3.4.1 Subnet Permissions
	3.4.2 Scan Type Permissions
	3.4.3 Scan Permissions

	3.5 Database
	3.5.1 Database Schema Diagram
	3.5.2 Description
	3.5.2.1 Scantype
	3.5.2.2 Subnet
	3.5.2.3 User
	3.5.2.4 Scan
	3.5.2.5 Scanner

	3.6 Implemented Scan Types
	3.6.1 Nmap Scans
	3.6.2 Nmap NSE
	3.6.3 SSH Basic
	3.6.4 HTTP Server Version
	3.6.5 Joomla! Version

	3.7 Scan Type Weights
	3.8 Adding New Scan Types
	3.9 Startup Scripts

	4 Installation, Administration and Usage
	4.1 Installation
	4.1.1 Installing Server
	4.1.1.1 Dependencies
	4.1.1.2 Installation Steps

	4.1.2 Installing Scanner
	4.1.2.1 Dependencies
	4.1.2.2 Installation Steps

	4.1.3 Installing Web Interface
	4.1.3.1 Dependencies
	4.1.3.2 Installation Steps

	4.2 Administration
	4.2.1 Add Subnet
	4.2.2 Add User
	4.2.3 Enabling a Disabled Scanner

	4.3 Usage
	4.3.1 Command Line Interface
	4.3.1.1 Configuration
	4.3.1.2 View Allowed Subnets
	4.3.1.3 View Allowed Scan Types
	4.3.1.4 Issue New Scan
	4.3.1.5 Get Summary of Recent Scans
	4.3.1.6 Cancel Scan
	4.3.1.7 Get Scan Results
	4.3.1.8 Change Password
	4.3.1.9 Output to File

	5 Evaluation
	5.1 MWN SSH Scan
	5.2 Joomla! Scan

	6 Future Work
	References

