JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 3, NO. 4, DEC. 2001 1

Dynamically Adaptable Mobile Agents for

Scaleable Software and Service Management

Raimund Brandt, Christian Hortnagl, Helmut Reiser

Abstract:

Two hard sub-problems have emerged relating to the use
of mobile agents for service management tasks. First, what is
their impact on security, and second, how can they receive a
flexible capacity to adapt to an open range of different envi-
ronments on demand, without introducing too stringent prior
assumptions.

In this paper, we present work towards solving the sec-
ond problem, which is of particular interest to management
software, because it typically needs to excert fine-grained
and therefore particular resource control. We suggest a
mechanism that reassembles mobile agents from smaller sub-
components during arrival at each hop. The process incor-
porates patterns of unmutable and mutable sub-components,
and is informed by the conditions of each local environment.

We discuss different kinds of software adaptation and draw
a distinction between static and continuous forms. Our soft-
ware prototype for dynamic adaptation provides a concept for
exchanging environment-dependent implementations of mo-
bile agents during runtime. Dynamic adaptation enhances
efficency of mobile code in terms of bandwidth usage and
scaleability.

Index Terms: service management, software manage-
ment, mobile agents, dynamic software adaptation, design
pattern

I. INTRODUCTION

Internet services are built on top of middleware platforms
that allow for a wide horizontal span in terms of number
and diversity of connected hosts, but also entail consider-
able vertical differentiation due to varying local resource
availability and characteristics. This is caused by increas-
ingly large and heterogeneous networks.

In this paper we describe an approach that allows soft-
ware components to adapt to their local execution environ-
ments at runtime, by undergoing dynamic reassembly from
smaller constituents. This process occurs mostly transpar-
ently, without involvement of application-specific code. It
is provided by an enhanced service management layer that
builds components from environment-appropriate sets of
unmutable and mutable sub-components.

We discuss our approach in the particular context of mo-
bile agents, because these software elements migrate be-
tween local environments by definition, and hence present
good applications for the kind of adaptation that we study.
The illustrative example, which we highlight throughout
the paper concerns a simple software management task
dealing with the configuration of a set of distributed web
clients.

We have chosen it as an efficient means to display charac-
teristic features of our approach. We envision more practi-

cally driven use cases (beyond the scale of this paper) e.g. in
the area of end-to-end network service configuration, where
agents may roam to prepare remote equipment to conform
to given central policies, whose interpretations and enforce-
ment are environment-specific (e.g. some Cisco router func-
tionality is only available via specific IOS commands, but
not via the standard SNMP protocol; on other vendors’
platforms the specific mix and feature set of available APIs
may vary similarly). Diffserv [Bla98] for instance requires
the coherent participation by multiple devices, with dif-
ferent functional behavior prescribed for e.g. edge and core
devices, hence inserting yet another dimension of variation.

The use of mobile agents for system and network man-
agement tasks has been widely explored in the past
[BPWOg], [FKO1]. Last-generation efforts were boosted by
the launch of Java, whose use of byte code makes it also
suitable for execution on small consumer devices, e.g. un-
der Java 2 Micro Edition [J2ME]. Java environments exist
in a particular variety of concrete forms and can hide a
large portion of the heterogenous nature of those devices.

Our particular agent-related aim is to reduce the foot-
print of mobile agents from the absolute sizes of their non-
adaptive versions, and to device an adaptation mechanism
with competitive relative runtime performance for mean-
ingful workloads. For our prototype we have exclusively
concentrated on a Java-based environment, and hence we
regard transition of code only (weak mobility, i.e. no tran-
sition of state). Although we did not exploit this so far,
adopting Java also presents us with the opportunity to
relate to its intrinsic component models (JavaBeans and
EJBs) [Tho98], [MS00].

Mobile agents belong under the larger paradigm of code
mobility. [FPV98] contains a concise overview of the ex-
isting technologies, design paradigms and applications in-
volved. Code mobility can be defined as the capability to
dynamically change bindings between code fragments and
the location where they execute [CPV97]. Code mobility
is concerned with the relative placement and migration of
functionally related pieces of code and data in a distributed
system. Mobile agents form a particular specialization of
the paradigm, being concerned with autonomous behavior
and the movement of code towards data sources. Because
of the heterogeneous nature of real-world distributed sys-
tems, the need to cope with changing environments natu-
rally arises for them.

Discrepancies between heterogenous environments can
be commonly alleviated by introducing abstractions or vir-
tualizations, such as those implicit in operating systems
(file systems, etc.), virtual machines (Java core libraries) or
runtime systems for mobile agents [[LO98]. They form well

1229-2370/01/$10.00 © 2001 KICS

2 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 3, NO. 4, DEC. 2001

established practice and work as long as there are common
conceptual denominators, but they do also have a price tag
both in terms of overhead [WCO01] and in terms of loosing
refinement (they expose only a shared subset of all func-
tionality).

With dynamic adaptation we introduce another mecha-
nism to refine the tradeoff involved. To highlight its merits
we emphasize a scenario where fine-grained environment
control (of the kind normally lost during abstractions) is
needed, and where mobile agents need access to function-
ality not covered under an “abstract” umbrella (e.g. func-
tional scope of Java core APIs). We simulate the scenario
by requiring access to highly specific operating system re-
sources (the Windows registry in one environment, and
Unix configuration files in others, in the particular exam-
ple), where access at times even requires going from Java
through native language libraries.

The specific working example deals with a mobile agent
that is responsible for the configuration of web browsers
installed on workstations throughout a network. We as-
sume that their configuration involves setting up Intranet
homepages, disk caches, proxies, etc., and that it needs to
be carried out by manipulating specific setup information
on each host.

The mobile agent should be able to carry out its task
for as large as possible an assortment of web browsers
(Netscape Navigator, etc.) and operating systems (Linux,
Microsoft Windows 2000, etc.) each. By looking at a popu-
lar example application that is supported on many different
platforms we reach enough combinatoric variety to give our
agents exploratory space for realistic adaptation.

For instance, the required mobile agent may not be im-
plementable purely in Java. The configuration of the de-
fault web browser in Windows 2000 is based on entries in
the registry database and not normally accessible through
the (core) Java API. Apart from the operating system the
configuration also depends on the kind of web browser.

In the rest of this paper we concentrate on this simple
scenario for the purpose of illustration. It has the merit of
using a mobile agent that needs access to environment-
specific information, and can therefore highlight several
properties of our approach.

We will show that our solution both recovers control
(environment-specific aspects become visible and accessi-
ble again), and reduces the amount of code that is actu-
ally moved across the network, because subcomponents are
only requested on demand. This has to be paid for by some
new meta-information that must be maintained. We have
developed ways to keep its amount and impact low on bal-
ance.

The overall intention of this work is to offer a methodol-
ogy for creating mobile agents (or other software elements)
which are able to adapt themselves to the environments
where they are currently running. The variation is not
achieved simply by entering an appropriate section of code
as in a simple (and “hard-wired”) if-then-else cascade, but
by composing an environment-specific version of the agent
that assembles only appropriate constituents.

The result leads to a slimmer version in most non-trivial

instances, and to less movement of code across the net-
work. The mechanism includes a concept for exploring the
environment and the dynamic exchange of code parts as
needed in order to work properly in the detected environ-
ment. The exchange of code parts is carried out without
termination of the mobile agent, we therefore speak of dy-
namic adaptation.

We believe that this approach is particularily suitable
and interesting to the IT management discipline, because
there variations of equipment and environments are funda-
mental and always prevail, while fine-grained and therefore
particular resource control is also needed at the same time.

In section II we place our approach alongside other uses
of software adaptation, which we draw along a wide scale
whose margins we describe as static and continous adapta-
tion, respectively. After developing this local terminology,
we present our mechanism in more detail in section III.
This is followed by a short overview of a prototype imple-
mentation for configuration management of web browsers
in section IV; more information on this can also be found in
a related diploma thesis [Bra0l]. Section V briefly investi-
gates under which circumstances mobile agents can benefit
from dynamic adaptation. Finally we present our conclu-
sions.

II. SOFTWARE ADAPTATION AT WORK

In this section we observe uses of software adaptation by
investigating two margins on a wide scale. We label those
margins as static and continuous adaptation, respectively,
and proceed to place our own solution conceptually some-
where in between them. In particular, we investigate these
other adaptation mechanisms to learn which of their con-
cepts to use for our own approach, dynamic adaptation.
As a result, we will take two basic ideas on board, namely
reconfiguration and context awareness.

A. Static Adaptation

We found the closest match to the kind of adaptation
that we wish to enable for mobile agents presently used in
the field of component based software engineering (CBSE)
in general [Hei99], and software evolution in particular.
One of the benefits of CBSE is the reuse of existing code
and components. The goal is to reduce programming to
the wiring of components. Since there the transformation
steps involved are typically carried out at compile time (not
runtime), we refer to this form overall as static adaptation.

Even if components are available for arbitrary function-
ality, it is probable that not every component fits together
with another component or fits into an application because
interfaces change over time (software evolution). The rea-
sons can be syntactical incompatibility or semantic differ-
ences of the interfaces. In order to use incompatible compo-
nents, adaptation can be used to modify the incompatible
parts of code in such a way that they fit together (again).

This kind of adaptation used in the field of CBSE can
be denoted as static adaptation because it is in general
applied before compilation time and not during runtime.

DYNAMIC ADAPTATION OF MOBILE AGENTS FOR SCALEABLE SERVICE MANAGEMENT 3

component C component C’

adaptation
—_—

component

executable

code

1=

compilation

component based application

Fig. 1. Static adaptation

This property makes most of the concepts of static adapta-
tion not applicable for the problem of dynamic adaptation,
which we wish to address.

The input of static adaptation is a component C' and
a description of the desired modifications. The output is
the modified component C’ which fits into the designated
application (Fig. 1).

In [Hei99] a collection and evaluation of component adap-
tation mechanisms is presented. These can all be classified
as members of the static adaptation category. Examples
for static adaptation are Binary Component Adaptation
(BCA) [KH98], Load-Time Adaptation (LTA) [DH99] and
a concept called MetaJava [GI97].

Static adaptation concepts in general do not provide sup-
port for adaptation during runtime as needed for dynamic
adaptation. However, they have as a common element the
process of reconfiguration where source or executable code
is modified or exchanged, i.e. the adaptation is effected
by performing a structural change of code substrates, as
opposed to simple tuning of parameters or selection of (si-
multaneoulsy installed) execution paths.

B. Continuous Adaptation

For some applications it is important to dynamically
adjust service parameters to availability and performance
fluctuations of the underlying resources. For instance, mul-
timedia applications over qualitatively unreliable connec-
tions such as wireless links or best-service Internet, may
transform data or alter its transmission according to the
conditions of the network in order to deliver usable results.
Many communication protocols, including TCP, include re-
lated mechanisms.

Changes of the resource conditions may occur without
following a prescribed pattern or any other synchronous
regularity. In particular, there may be a continuous se-
quence of small adaptive steps necessary during the run-
time of a piece of code, whereas for what we call static
adaptation transformations are typically rarer (often con-
fined to compile time), discrete, and more substantial in
each step.

Here the modification of a running application is pri-
marily done by tuning parameters, reflecting changes in

the present state of the execution environment (remain-
ing battery lifetime, location and context of user, etc.).
The triggers for the continuous adaptation are continuously
changing conditions of resources, but not discrete events as
for dynamic adaptation. The property of being able to re-
act to changes in the environment (almost) continuously is
what we take notice of for our work.

For continuous adaptation the resources are monitored
and the adaptation process is initiated as the resource con-
ditions change. The input for continuous adaptation is
a running application relying on frequently and strongly
changing resources and classes of resource or Quality of Ser-
vice (QoS-) parameters. The result of the continuous adap-
tation is typically the modification of parameters steering
the resource usage, data processing or data presentation.

In [STW92] environment dependent parameters are man-
aged by dynamic environment servers. Clients can sub-
scribe at a server, if they are interested in the parameters
managed by the server. If a parameter value changes the
server notifies all clients which have subscribed to that pa-
rameter. The clients are also able to retrieve the current
parameter value.

Further scenarios of continuous adaptation can be found
n [Nob00], [ADOB98] where a small personal digital as-
sistant (PDA) serves as portable, electronic guide through
museums or cities by delivering appropriately tailored mul-
timedia information about touristic attractions. Web con-
tent transcoding also involves many related use cases.
What is typical here is that it is not the application it-
self that undergoes structural change to alter its behavior
(emit different content in these cases), but that parame-
ter adjustment lead to the desired effect. Hence change
primarily effects data, not procedural code.

Although we are looking at ways to change and rearrange
code, there is common ground between continuous adap-
tation and dynamic adaptation in the requirement for the
recognition of the present and local state of the environ-
ment (context awareness), because this is what determines
the appropriate form and extent of adaptation. Since in-
formation retrieval from the environment is often based
on user-related sensors (e.g. active badges) and not on the
execution environment of code, we have to refine context
awareness for our cause.

III. FRAMEWORK FOR DYNAMIC ADAPTATION

As introduced in section I dynamic adaptation offers a
technology for creating mobile agents which are able to
adapt themselves to the environment where they are cur-
rently running. Starting from this point we have designed a
methodology for developing adaptable agents and a frame-
work supporting the process of dynamic adaptation.

Adaptation of mobile agents occurs without termination
of the agent, which is why we speak of dynamic adapta-
tion at runtime in the first place. We assume the trigger
for dynamic adaptation is the movement of code, i.e. that
each environment ist stable in terms of library support,

c., during the local lifetime of an agent. Hence a new
adaptation decision only needs to be taken whenever the
agent reaches a new place.

4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 3, NO. 4, DEC. 2001

The input to dynamic adaptation is a set of (big-
ger) environment-dependent implementations, a (small)
environment-independent core agent and a description of
the local environment. Each environment-dependent part
holds enough meta-information to allow a matching pro-
cess between its requirements and actual features of a local
environment. Hence the result of dynamic adaptation is
the selection of an appropriate implementation for an en-
vironment and the linking of the selected implementation
with the core implementation.

Dynamic adaptation differs from static adaptation not
only concerning the time of adaptation, but also concern-
ing the adaptation function. Static adaptation typically
transforms existing source code into new source code hav-
ing to be compiled after adaptation. Our style of dynamic
adaptation selects a sub-component from an existing set
of environment-specific implementations; it exchanges and
instantiates these sub-components dynamically.

The mobile agent is divided into several environment-
dependent adaptable parts (boxes X, Y in Fig. 2) and
a small environment-independent and non-adaptable core.
The adaptable parts are exchanged in order to fit into the
current environment. The environment-independent core
and the environment-dependent adaptable part form the
mobile agent executing its task on a host. The agent pro-
grammer develops the core and might also develop the en-
vironment dependent parts. However adaptable parts are
normally built by a component developer who has special
knowledge about a particular execution environment. The
movement from one host to another is done by the small
core agent as a vehicle for the computational flow. The
core can be used as bootstrapper for the dynamic adap-
tation, which may also occur in recursive stages. After
the arrival on a new host adaptation is applied deliver-
ing the mobile agent with its full functionality according
to local needs. Before the mobile agent moves to a new
host, the environment-specific implementation is dropped
again and the mobile agent is temporarily reset to its small
environment-independent core. Thus, only code which is
actual needed on particular host migrates over the network
towards them.

core moves over network

j -t

- !

non-adaptable AN -7 !
core -7 f
~ - 1

~ B , 1 mobile agent AN

2 ,////,' k} }/
ﬁ//

adaptable AN
- t
Lo part

adaptation

framework
supports adaptation

process

environment B

environment A

Fig. 2. Generic Concept for Dynamic Adaptation

In the following the architectural parts of the framework

and the methodology will be explained. The development
tools supporting the building process of adaptable agents
will be presented in section IV.

A. Components of Dynamic Adaptation

As section II showed, we need facilities for reconfigura-
tion and context awareness in our generic architecture. In
addition there is need for a repository service, to store and
supplying environment dependent implementation classes.
The core agent uses adaptors for identifying, loading and
integrating environment specific methods into the mobile
agent. These adaptor includes the context awareness mod-
ule and the reconfiguration component. Fig. 3 gives an
overview of the life-cycle of the agent including reconfigu-
ration and context awareness.

After arriving on a host the core initially finds itself in
an environment about which it has only little knowledge.
Discrimination at this stage is coarse, and can only be made
in broad terms such as operating system platform, etc. (1).

The context awareness component is responsible for fur-
ther inspecting the environment and refining descrimina-
tions to account for more granular circumstances that are
relevant to particular applications needs (this stage may
e.g. involve running application-specific benchmarks to de-
termine the platform’s specific capabilities). It must know
which environment-dependent values are important for im-
plementations and how they can be deduced. In section
ITI-C we will see that each environment-specific implemen-
tation provides a description of its desired environment,
and how these descriptions can be inquired from the im-
plementations.

A new detail in this concept is the repository serving en-
vironment dependent implementations and their descrip-
tions. The repository service is used by the context aware-
ness component to retrieve implementation descriptions (2)
called profiles. With these profiles the context awareness
module is able to determine the execution environment
where the core is currently running. This result is delivered
to the reconfiguration component (4) which now loads the
appropriate implementation for the current environment
(5) from the repository, instantiates the implementation
and thereby links it into the core (6).

B. Reconfiguration

Although context awareness excerts its effect before re-
configuration, the reconfiguration component will be ex-
plained first because it determines the structure of the core
and the implementations. The context awareness tool is the
subject of the next section. As a result of our initial require-
ments analysis (in [Bra01]) we conclude that the linking of
the implementations into the core must occur without ter-
mination of the mobile agent and as transparently to any
application-specific code as possible. This implies for in-
stance that adaptation should not be explicitly initiated by
the core, but should be controlled by the underlying run-
time environment alone. Another requirement is the invo-
cation of methods as first-level language constructs, i.e. we
do not want to go through any “invoke” methods to gain
access methods past their adaptation.

DYNAMIC ADAPTATION OF MOBILE AGENTS FOR SCALEABLE SERVICE MANAGEMENT 5

inspects
environment

m @

runs in
environment
context|| e~
aware- | | config
uration

context
awareness

loads

implementation @
description

environment
(hard- and software configuration)

repository

l implementations

C

links implementation

determines into core

implementation

®

®

loads
implementation

reconfiguration

environment
(hard- and software configuration)

Fig. 3. Agent Life—Cycle during Dynamic Adaptation

From these requirements we have derived a design pat-
tern that must be followed by the agent programmer de-
veloping mobile agents using dynamic adaptation as pre-
sented in this work. Note that this limits the application
area of dynamic adaptation to OO technology. The use of
several environment-dependent implementations alongside
each other is known as strategy pattern [GHJV95], which
can be implemented through an abstraction via inter-
faces. The agent programmer must define an environment-
independent interface which is implemented by all imple-
mentations providing single functionality for multiple en-
vironments.

We also refer to the environment-independent inter-
face as functionality interface and to the environment-
dependent class as implementation class. The core idea is
obviously that only functionality interfaces are exposed in
application-specific code, and that the adaptation frame-
work takes charge of bringing the right implementation
classes into play. The functionality interface is specified by
the agent programmer and the implementation classes for
different environments implementing the functionality in-
terface are developed by the component developer. Classes
implementing the same functionality interface form an im-
plementation group, and adaptation essentially performs
environment-directed searches within the scope of each
group.

We put an adaptor class in place to achieve flexible con-
trol of the relationship between a functionality interface
and its candidate set of implementation classes; it is the
place where adaptation “strategy” (as in strategy pattern)
is decided. An adaptor is similar to a Corba or RMI
stub, providing an extra level of indirection between its
two clients. Adaptors are concerned with the appropriate
delegation of method calls from functionality interfaces to
implementation classes.

Code for adaptor classes can be generated from function-
ality interface descriptions, and we provide a corresponding
tool with our prototype implementation (see section IV).

In the example of the browser configuration, the mo-

bile agent needs to acquire system information such as
the size of physical memory. By way of our exam-
ple, operating-system and CPU-architecture-specific imple-
mentation classes are needed for this information retrieval.
There are environment-dependent implementation classes
for every supported environment. The agent programmer
defines the functionality interface IMemory with a method
getPhysicalMemory () which is then implemented by all
implementation classes in the same implementation group,
thereby accounting for physical memory size in different
ways.

core
browser
configuration

- configuration
N
- N /> -
\\
N e
browser

configuration

core
browser

AL . IMemory_Adaptor

repositdfy

AIX, PowerPC

Fig. 4. Adaptor Class for IMemory Functionality Interface

Fig. 4 shows the usage of the adaptor class in the example
application. The adaptor IMemory_Adaptor is used in the
core of the mobile agent for accessing information about
the memory situation. This adaptor is derived from the
functionality interface IMemory by an automatic step, as
explained. The core moves without implementation classes,
but with the adaptor over the network. When it comes
to a new host the adaptor initiates adaptation by calling
library code context awareness and reconfiguration which
loads the suitable class, in this case the implementation
class Memory _PPC_AIX.

6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 3, NO. 4, DEC. 2001

C. Context Awareness Tool

Determination and location of the proper implementa-
tion classes for a particular execution environment is the
responsibility of the context awareness tool. It first yields
a description of the environment and its attributes. The
difficulty is that only the component developer, which im-
plements environment-dependent implementation classes,
knows what environment-dependent attributes his imple-
mentation assumes. To solve this problem we introduced
profiles.

With each implementation class exactly one implemen-
tation profile is associated, which is specified and imple-
mented by the component developer. This profile is loaded
and executed in the current environment where the mobile
agent is running. The result of the execution of an imple-
mentation profile is an environment profile which can be
used to decide which implementation class can be used in
the detected environment.

It is important to realize that profile information, while
strictly belonging to implementation classes, should be kept
apart from them in terms of object structure, because of
the stages involved in the decisions taken during the adap-
tation process: Profiles have to be aquired at a new site,
in order to determine whether implementation classes have
to be brought in as well. Hence the profiles act like (small)
probes that precede (optional) migration of (larger) im-
plementation classes over the network as the mobile agent
moves between different hosts.

implementation profile

NETSCAPE

M D\~
- Y

L/

WINNT

[Configuration_x86_WI NNT_NETSCAPE]

types of profile values

O
/N

default browser

CPU architecture

operating system

Fig. 5. Implementation Profile

The implementation profile includes placeholders profile
values and code to calculate their values. Profile values
stand for particular characteristics, such as installed oper-
ating system or available memory size. The profile value
includes methods to inspect the environment accordingly.
We call this code generating function. To compare pro-
file values with the value requested by the implementation
class, we use other methods and call them matching func-
tions, which are also part of the implementation profile. Al-
ternativelly, this metric can be aligned with normal object
comparison semantics, by overriding a programming lan-
guage’s intrinsic comparators, such as equals in the case
of Java-based profiles.

For instance an implementation class which has the func-
tionality to configure Netscape running on an Intel-based
processor with Windows 2000 would have an implementa-
tion profile as shown in Fig. 5. It may not be obvious why
the configuration of a web browser, for instance, should
depend on the CPU architecture. We use this particular
relationship to exemplify cases where a configuration deci-
sion may depend on the result of a local benchmark (e.g.
choose larger cache if network connecetivity is slow), and
the benchmark in turn involves such particular dependen-
cies as upon CPU-architecure.

Continuing with the above example, this would generate
the environment profile values for the environment through
the generating function as shown in Fig. 6 if executed
on a PowerPC running AIX and Netscape as default web

browser.
AIX

/I}‘ generating function

a

WINNT

NETSCAPE

Ul
b

il

Netscape

PPC

X86

environment
Netscape, PPC, AIX

Fig. 6. Environment Profile generated by Implementation Profile

After comparing the profile values of the implementation
class and the profile values of the environment the con-
text awareness tool may conclude in this case that the im-
plementation class Configuration_X86_WINNT_NETSCAPE is
not suitable for the environment because the CPU archi-
tecture and the operation system does not match closely
enough. Hence the profile of another implementation which
implements the same functionality interface must be lo-
cated in another iteration.

This is a very simple but instructive example. The
profile values in the example are attributes which can
be deduced relatively easily. The generating func-
tion can be simple too, such as comprising a call to
System.getProperty("os.name") in Java. However, the
concept is also useful for more complicated configuration
tasks. An adaptable agent configuring e.g. a SAP e-
business application may need implementation profiles in-
cluding ABAP calls to determine specific SAP parameters.

IV. IMPLEMENTATION OF A CONFIGURATION
MANAGEMENT AGENT

After the presentation of the architecture providing dy-
namic adaptation for mobile agents, this section deals with
the specific implementation of the adaptation framework
and a mobile agent for configuring browsers (see introduc-
tion in section I).

DYNAMIC ADAPTATION OF MOBILE AGENTS FOR SCALEABLE SERVICE MANAGEMENT 7

The implementation of the adaptation framework is in-
dependent of the mobile agent’s configuration task and in-
dependent of the agent system. The configuration of the
browser relies on the adaptation mechanism. It implements
the configuration of a set of web browsers running on var-
ious operating systems and CPU architectures. In our
implementation, the configuration is brought to different
hosts by the mobile agent using the ObjectSpace Voyager
agent system platform [Obj00], which extends Java base
functionality.

Since the mobile agent is relying on the adaptation
framework, it will be described first.

A. Adaptation Framework

Our prototype implementation assumes the program-
ming language Java and a Java-based mobile agent environ-
ment, such as ObjectSpace Voyager. In the case of Java we
specifically benefit from its functionality for dynamic class
linking and reflection, as will be explained.

The adaptation framework includes three components.
Two stand-alone tools — the adaptor generator and repos-
itory — and a library of classes which are introduced into
the existing agent framework by their use in adaptor stubs.
This covers functionality related to reconfiguration and
context awareness, plus functionality related to the expres-
sion and comparison of profiles and profile values. Fig. 7
gives an overview of the components involved in adapta-
tion, again refering to our standard example involving soft-
ware configuration tasks.

The adaptors are generated by the adaptor genera-
tor presuming that the adaptation design pattern has
been followed by the mobile agent programmer. That
means the adaptable parts are realized as implementa-
tion classes and the functionality interface between the
core and the adaptable parts is described as a Java in-
terface. The adaptor generator reads the Java byte code
of the interface, and produces the adaptor class in Java
source code format. The adaptor class is used in the
core instead of the implementation classes. By conven-
tion the adaptor class name is derived by the adap-
tor generator from the functionality interface name as:
<adaptor name> — <interface name>_Adaptor.

As a more sophisticated alternative to the current adap-
tor generator, we foresee an implementation that operates
transparently at runtime, in a mode similar to the one ap-
plied by ObjectSpace Voyager for its own remote commu-
nication stubs.

The adaptor class implements the methods as declared
in the interface. The body of the method implementations
contains the adaptation and the delegation of the method
call to an implementation class instance. The adaptation
includes the context awareness module and reconfiguration
component. The name of the implementation class is re-
solved by the context awareness module and the right im-
plementation class is loaded by the reconfiguration compo-
nent. The actual method is executed by the instance of the
loaded implementation class. Since the adaptor generator
needs to retrieve the interface name and the method dec-
larations from the interface, it introspects the interface by

using Java reflection.

Fig. 7 shows that the methods setDiskCache() and
setMemoryCache () are declared in the functionality inter-
face IConfiguration and are implemented by the adaptor
class IConfiguration_Adaptor. The adaptor class per-
forms the adaptation by making use of functionality in
ContextAwareness and Loader.

Assuming Configuration XY is the right implemen-
tation class for the current environment where the
core is running, the method calls, setDiskCache() and
setMemoryCache (), are delegated by the adaptor class to
the instance of implementation class Configuration XY
when a corresponding call is made by the core. Hence the
actual adaptation occurs in between two events: first when
the call through the interface commences, and second when
the call reaches an implementation class.

The context awareness 1is realized by the class
ContextAwareness which loads the implementation pro-
files of all available implementation classes from the repos-
itory and executes them. The execution of the implementa-
tion profiles includes the generation of environment profiles
and the comparison of the profile values. The implemen-
tation profile is realized as a Java class containing the set
of profile values. A profile value is also represented by a
subclass of the abstract class ProfileValue.

ProfileValue

OperatingSystem

getEnvProfileValue

/A

[Linux | [AIX] [HP-UX] [Solaris]

Fig. 8. Profile Value Classes

Fig. 8 shows the hierarchy of the profile values used
for the operating system. The abstract super-class
ProfileValue is refined into a concrete class Operating-
System which implements the inherited method getEnv-
ProfileValue() for retrieving the name of the operat-
ing system in the current environment. The class Oper-
atingSystem represents a type of a profile value. For in-
stance CpuArchitecture and DefaultWebBrowser might
be other profile value types needed by the implementation
class descriptions in the example of the configuration for
the browser. Classes such as Linux, AIX, etc. are grouped
together as Unix flavors under class UNIX and each of these
can be used by the programmer of the implementation
classes (component developer) for describing the necessary
environment. The properties of the profile values can be

8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 3, NO. 4, DEC. 2001

core

setDiskCache()

setMemoryCache()

| IConfiguration_Adapter |

generated by
Adaptor Generator - - - - -

loadimplementationClass()

communication over network

= local method calls

Configuration_XY_implementation

Loader Context Pl -
| Awareness | getProfiles() -‘% g
i | getimplementa- 25 repository
1| tionClassName() &
I
! getClass()
e P .
L '
1 : dynamic_ :
: 1 linking |
I I
1 \ 1
vy !
I
| I
| I
| I
I

Fig. 7. Overview of the Adaptation Architecture for the Configuration Management Agent

mapped into the OO hierarchy as shown for the case of
Unix. The component developer simply uses the class UNIX
if the implementation class is suitable for any Unix flavor.
In this way we achieve a flexible metric for comparing envi-
ronment properties, at the price of defining few additional
classes.

The implementation profile and the profile values must
be integrated into the implementation class by the com-
ponent developer. Every implementation class includes a
method getProfile() which retrieves the profile values.
The body of this method realizes the environment descrip-
tion of the suitable environment. Fig. 9 shows an example
for an implementation class suitable for a x86 host run-
ning Windows NT and Netscape as configured default web
browser.

public Profile getProfile(){
Profile result = new Profile(new ProfileValue[] {
new W ndowsNT(),
new X86(),
new Net scape(),
1)

return result;

Fig. 9. getProfile()

The loading of the implementation classes is done by a
modified Java class loader. Loader loads the implementa-
tion class according to the class name delivered from the
context awareness tool. The implementation class is loaded
by the Loader class from the repository through the class
RepositoryClient (Fig. 7). The same class is used by
ContextAwareness for communication with the repository.

In our prototype implementation the repository is a

stand-alone application serving the profiles and implemen-
tation classes. For keeping the autonomy of the mobile
agent the chosen repository concept provides proxy reposi-
tories which are started along the route of the mobile agent.
This maintains agent autonomy at a higher level, yet it
also keeps the possible communication overhead caused by
adaptation relatively low.

We distinguish between central repository and proxy
repositories. Communications between a nascent mobile
agent and repository should be ”sufficiently local” to make
efficient use of bandwith. For this purpose a neighbor-
hood metric can be defined depending on the application
scenario. Using this metric the agent can determine the
”nearest” repository, with e.g. one repository proxy serv-
ing per subnet.

B. Mobile Agent for Configuration Management

For the example application using dynamic adaptation,
a mobile agent has been designed for the configuration of
the default web browser. The task of the mobile agent
is to visit a set of workstations, to retrieve local system
information (physical memory, free disk space) and ac-
cording to this information to change the parameters of
the default web browser. This includes the setting of
memory cache size, disk cache size, and various other pa-
rameters of web browsers. Adaptation is needed for the
information retrieval which must be done in a system-
specific, operating-system, browser-specific and even CPU-
architecture-specific way, hence supporting our worst-case
assumption that it cannot be implemented in pure Java.

Following the adaptation design pattern the functional-
ity interfaces IMemory (retrieving physical memory), IDisk

DYNAMIC ADAPTATION OF MOBILE AGENTS FOR SCALEABLE SERVICE MANAGEMENT 9

(retrieving free disk space) and IConfiguration (setting
the browser parameters) have been declared. The adap-
tor generator creates the according adaptor classes from
functionality interfaces taken as input: IMemory_Adaptor,
IDisk_Adaptor and IConfiguration Adaptor. A set of
implementation classes for each functionality interface has
been written for supporting various environments, with ex-
act available choices currently determined by the selection
of available platforms in our test lab.

V. QUALITATIVE EVALUATION OF DYNAMIC
ADAPTATION

Dynamic adaptation promises a reduction of footprint
and network bandwidth used by mobile agents. We have
therefore compared the dynamic adaptable configuration
management agent and the implementation classes for the
different environments against a monolithic (conventional)
agent with the same overall functionality by making mea-
surements. The monolithic agent transports its entire code
for all environments and picks different paths of execution
by switching through if-then-else cascades; it represents our
reference point.

The gain of bandwidth depends obviously on the size
of the implementation classes and the number of environ-
ments. As a rule of thumb it can be seen that if only small
implementation classes for few environments are used, the
adaptive version is less efficient than a conventional ver-
sion. The efficency of adaptation increases with the size of
implementation classes and the number of environments.
A more quantitatively-oriented analysis of observed band-
with gains can be found in [Bra0l].

The cost for gained bandwidth occurs as runtime over-
head, which consists of two parts: for context awareness
expression and for loading the implementation classes. To
measure this runtime overhead the runtime of the different
methods of the monolithic agent have been compared with
the runtime of the adaptable agent.

Table 1. Comparison between conventional version and dynamic
adaptation
conventional | dynamic
scenario case adaptation
long running methods + ++
big implementation classes - +
many different environments - ++

As expected, the runtime overhead for adaptation and
loading implementation classes becomes negligible if the
environment-dependent method has a long running time on
a host, or if the agent uses the dynamically loaded method
more than once. Table 1 gives an overview in which cases
adaptation may be a better choice than the conventional
conventional version in a monolithic agent.

VI. CONCLUSIONS

Our motivation for dynamic adaptation in this paper was
to improve mobile agents in terms of efficency and flexibil-

ity (which translates into scaleability if applied to software
and service management tasks), while avoiding undue com-
plications and cost in terms of software engineering. In our
approach, the code which is moved over the network is
limited to the parts that are environment-independent and
needed everywhere, and environment-dependent parts are
only transferred when needed. On the software engineer-
ing side, we use a well-known design pattern to establish
simple practice.

As a result of studying the state-of-the-art in software
adaptation two styles have been identified: static adapta-
tion, operating on the level of code, and continuous adap-
tation, operating on the level of instrumentation. Both
cannot fulfill our demands immediately, but we conceptu-
ally drew from them to build our own adequate solution
for dynamic adaptation. In particular, we have isolated
and captured the concepts of reconfiguration and context
awareness, respectively.

Aside from describing the overall concept and framework
architecture, we have also implemented a Java-based pro-
totype for dynamic adaptation. The framework consists of
the following parts:

1. An adaptor generator automates the creation of adap-
tors for the application programmer. The functionality in-
terfaces are read by the adaptor generator and transformed
into adaptor classes using Java reflection. The output of
the adaptor generator is an adaptor class in Java source
code format. As we use reflection, our implementation de-
pends on the use of Java (or typically another interpreted
programming language).

2. The context awareness tools includes a pool of profiles,
several commonly used profile values like operating system,
CPU architecture, and instances which are needed for the
example application in the domain of web browsers. Profile
values for a future application can be added as needed. Fur-
thermore the context awareness tool includes an execution
environment for the profiles embedded into the adaptors.
3. The loader extends the default Java class loader. It
loads the appropriate implementation class as specified by
the context awareness module, and prepares for dynamic
linking against the Java adaptor class.

4. Both the context awareness and the loader rely on the
service of a repository which serves the implementation
profiles and the implementation classes. In order to mini-
mize the impact on the autonomy of the mobile agent we
use proxy repositories. Proxy repositories reside on hosts
close to the mobile agent and reduce communication over-
head when loading profiles or implementation classes for
adaptation, hence restricting actully occuring code migra-
tion not only in amount but also in geographic distance.

We are satisfied that dynamic adaptation has proved
valuable for crafting agents that fulfill a dedicated task
(such as software configuration) in a range of different en-
vironments (such as on heterougenous workstations) effi-
ciently. In this paper, we have described our overall archi-
tecture and its prototype implementation with consistent

reference to an illustrative use case.
Our main focus for future works concern security and
performance related questions of mobile agent based man-

10 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 3, NO. 4, DEC. 2001

agement. Interesting problems in this context are, e.g.,
authentication of code sources of mobile agents and adapt-
able parts, their integrity, questions of responsibility for
activities of mobile agents and access control for them, as
well as a evaluation of their cummulative effect on perfor-
mance, as opposed to what can be observed in a conven-
tional scheme.

ACKNOWLEDGMENT

This paper mostly summarizes the results of a diploma thesis car-
ried out by the first author as part of a joint program between the
University of Munich (Munich Network Management MNM Team)
and the IBM Zurich Research Laboratory!. The Distributed Sys-
tems and Network Managment Group at the IBM Zurich Research
Laboratory is headed by Dr. Metin Feridun. The MNM Team? di-
rected by Prof. Dr. Heinz-Gerd Hegering is a group of researchers
of the University of Munich, the Munich University of Technology,
and the Leibniz Supercomputing Center of the Bavarian Academy of
Sciences. We thank our colleagues at these sites for their encourage-
ment, helpful discussions and comments on previous versions of this
paper.

REFERENCES

[ADOB98] Gregory D. Abowd, Anind Dey, Robert Orr, and Jason
Brotherton. Context-awareness in wearable and ubiqui-
tous computing. Virtual Reality, 3:200-211, 1998.

Black, S. An Architecture for Differentiated Services.
Technical report, Internet Engineering Task Force, De-
cember 1998. RFC 2477.

Andrzej Bieszczad, Bernard Pagurek, and Tony White.
Mobile agents for network management. IEEE Commu-
nications Surveys, 1(1), 1998.

Raimund Brandt. Dynamic Adaptation of Mobile Code®.
Master’s thesis, Technical University of Munich, February
2001.

A. Carzaniga, Gian Pietro Picco, and Giovanni Vi-
gna. Designing distributed application with mobile code
paradigms. In Proceedings of the 19th Internation Con-
ference in Software Engineering (ICSE97), pages 22-32.
ACM, 1997.

Andrew Duncan and Urs Holzle. Load-time adaptation:
Efficient and non-intrusive language extension for virtual
machines. Technical Report TRCS99-09, University of
California, Santa Barbara, April 1999.

Metin Feridun and Jens Krause. A Framework for Dis-
tributed Management with Mobile Components. Com-
puter Networks, Special Issue on Management, 35, Jan-
uary 2001.

Alfonso Fugetta, Gian Pietro Picco, and Giovanni Vi-
gna. Understanding code mobility. IEEE Transactions
on Software Engineering, 24(5):352-361, May 1998.
Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patters: FElements of reusable
object—oriented software. Addison—Wesley, Reading, Mas-
sachusets, 1995.

Michael Golm and Jiirgen Kleindder. Metajava — a plat-
form for adaptable operating-system mechanisms. In 11th
European Conference on Object-Oriented Programming
(ECOOP ’97) — Workshop on Object-Orientation and
Operating Systems, Jyviksyld, Finland, June 10 1997.
H.-G. Hegering, S. Abeck, and B. Neumair. Integrated
Management of Networked Systems — Concepts, Archi-
tectures and their Operational Application. Morgan Kauf-
mann Publishers, ISBN 1-55860-571-1, 1999.

George T. Heineman. An evaluation of component
adaptation techniques. In International Workshop on
Component-Based Software Engineering, May 17-18
1999.

Java 2 Platform, Micro Edition (J2ME Platform)?.
Ralph Keller and Urs Holzle. Binary code adaptation. In
12th European Conference on Object-Oriented Program-
ming (ECOOP ’98), Brussels, Belgium, July 20-24 1998.

[Blags]

[BPWOS)

[Bra01]

[CPV97]

[DH99]

[FKO1]

[FPVO8]

[GHJIV95]

[GKO7]

[HAN99]

[Hei99]

[J2ME]
[KHO8]

Thttp://www.zurich.ibm.com/

2http://wwwmnmteam. informatik.uni-muenchen.de/

Shttp://wwwmnmteam. informatik.uni-muenchen.de/common/
Literatur/MNMPub/Diplomarbeiten/bran01/bran0O1.shtml

4http://java.sun.com/j2me/

[LO9g| David Lange and M. Oshima. Programing and Deploying
Mobile Agents with Java. Addison-Wesley, 1998.

Vlada Matena and Beth Stearns. Applying Enter-
prise JavaBeans: Component-Based Development for the
J2EE Platform. Addison Wesley, 2000.

Brian Noble. System support for mobile, adaptive appli-
cations. IEEE Personal Communications, pages 44-49,
February 2000.

Objectspace. Voyager ORB 3.3 Developer Guide, 2000.
Bill N. Schilit, Marvin Theimer, and Brent B. Welch.
Customizing mobile applications. In Proceedings of
the USENIX Symposium on Mobile and Location-
independent Computing, pages 129-138, August 1992.
Anne Thomas. Enterprise JavaBeans Technology —
Server Component Model for the Java Platform. Tech-
nical report, Patrica Seybold Group, 1998.

Matt Welsh and David Culler. Virtualization considered
harmful: Os design for well-conditioned services. In 2001
Workshop on Hot Topics in Operating Systems (HotOS),
May 2001.

[MS00]

[Nob00]

[Obj00]
[STW92)

[Tho98)

[WC01]

Raimund Brandt, studied from 1995 to
2001 Computer Science at Munich Uni-
versity of Technology, Germany. He
made 1999 an internship at Eurocon-
trol Experimental Centre (European or-
ganisation for the safty of air naviga-
tion). His diploma thesis was done at
the Munich Network Management Team
(at Munich University of Technology) in
co—operation with IBM Zurich Research
Laboratory. Since 2001 he is employed
air navigation services).

Christian Hortnagl is a Research Staff
Member at the IBM Zurich Research
Laboratory. He holds an M.Sc. in Com-
puter Science from the Technical Uni-
versity of Vienna and an Ph.D. from
the University of Innsbruck, Austria.
His current research interests include in-
formation management and implemen-
tation aspects of large-scale distributed
systems in general, and distributed stor-
age in particular.

Helmut Reiser, received his Diploma
(M.Sc.) in Computer Science from the
the Munich University of Technology,
Germany, in 1997. Since then he is a
Ph.D. student at the University of Mu-
nich (LMU) and a Member of the MNM
Team. At the LMU he is also working
as a research and teaching assistant. His
research interests center around IT man-
agement especially with mobile agent
technologies and under security consid-
erations. He is member of IEEE, ACM and GI.

http://www.zurich.ibm.com/
http://wwwmnmteam.informatik.uni-muenchen.de/
http://wwwmnmteam.informatik.uni-muenchen.de/common/Literatur/MNMPub/Diplomarbeiten/bran01/bran01.shtml
http://wwwmnmteam.informatik.uni-muenchen.de/common/Literatur/MNMPub/Diplomarbeiten/bran01/bran01.shtml
http://java.sun.com/j2me/

	I Introduction
	II Software Adaptation at Work
	II-A Static Adaptation
	II-B Continuous Adaptation

	III Framework for Dynamic Adaptation
	III-A Components of Dynamic Adaptation
	III-B Reconfiguration
	III-C Context Awareness Tool

	IV Implementation of a Configuration Management Agent
	IV-A Adaptation Framework
	IV-B Mobile Agent for Configuration Management

	V Qualitative Evaluation of Dynamic Adaptation
	VI Conclusions

