
Formalisms for
IT Management Process Representation

Vitalian A. Danciu
Munich Network Management Team

Ludwig-Maximilians-University
Oettingenstr. 67

D-80538 Munich, Germany
danciu@mnm-team.org

Abstract— With recent years’ accelerated convergence to process
oriented service management frameworks, IT management is
adopting business methods. As organisations model and docu-
ment their management processes, they apply suggestions and
best practices found in document collections like the eTOM or
the ITIL. Formal representation of the emerging management
process definitions can be accomplished by means of process or
workflow definition formalisms. However, many IT management
processes may differ from other business processes in that they
are executed by technical personnel. More important, an IT
infrastructure as the target of management processes offers
compelling opportunities for automation at an operational level.

To help leverage these opportunities, formalisms for process
representation need to express IT management process details
at a technical level. This paper analyses formalisms designed
for business process representation, assesses their suitability to
express IT management process definitions, and categorises the
examined formalisms according to IT management requirements.

I. I NTRODUCTION

The importance of process oriented management increases
steadily. A major driving force behind this increase is the focus
on IT Service Management (ITSM). ITSM itself is strongly
motivated by the requirements of cost control and customer
orientation, and catalysed by the availability of ITSM process
frameworks. A growing number of organisations define their
IT management processes relying on frameworks like the IT
Infrastructure Library or the Enhanced Telecom Operations
Map. This ongoing transition to process-centric thinking and
adoption of best practices introduces the need to manage the
processes themselves, while offering opportunities for process
automation at different levels of process detail.

For a long time, IT divisions have been largely exempted
from the accountability imposed on other organisation parts
(e.g. enterprise production divisions). In order to reduce costs,
a certain level of cost and benefit controlling is being de-
manded from IT centres in most companies. This demand is
being addressed by introducing a service view and adopting
documented management processes based on best practices
collections and process frameworks.

For the time being, many organisations still focus on modelling
and documenting their processes. To collect on the promise

given by process oriented management, process execution
needs to be automated wherever possible. Depending on the
process template (i.e. the collection of best practices provided
for a process) and its adaptation to organisation specific needs,
more or less parts of a process (i.e. subprocesses) are suitable
for automation. In general, a coarse distinction between three
kinds of subprocesses can be made:

a) Automated subprocesses:that can be executed without
human interaction. For ITIL, candidates include parts of the
service support processes, e.g. parts of incident or config-
uration management process specifying direct enactment of
management operations on the infrastructure.

b) Manual subprocesses:that are executed by hand. Manual
processes may of course be supported by work-flow systems;
the decisive characteristic is the need of human decision mak-
ing during the process. Any subprocess dependent on human
interaction, e.g. a Change Advisory Board (CAB) meeting or
provider-customer negotiations, falls into this category.

c) Hybrid subprocesses:that can be described as automated
processes containing distinct parts that need human interaction.

This distinction becomes important when considering the
overall management tasks performed within an organisation.
Available process frameworks concern themselves with man-
agement from a service perspective in order to achieve a tighter
business alignment. Though not thoroughly investigated, it
seems plausible that other management disciplines (e.g. system
management) could profit from a process oriented approach.

To make the transition from modelling and documentation
of processes to their assisted/automated execution, the doc-
umented processes need to be expressed in a suitable machine
readable formalism. Subprocesses of different kinds (with
respect to the distinction above) can be provided automation
support by different kinds of tools: manual subprocesses can
be assisted by work-flow systems, automated subprocesses
can be executed on – more or less specialised – Operations
Support Systems (OSS) tools, while hybrid processes require
a cooperation between such tools.

Existing languages for process formalisation originate in the
domain of business processes. A cursory review of these

formalisms suggests that they focus on the assistance of
manual processes or highly encapsulated (i.e. business logic
hidden behind a high-level API) automatable process parts.

The objective of this paper is to evaluate a selection of
process formalisms regarding their suitability to encode opera-
tional IT management processes. The evaluation encompasses
analysis of the expressiveness regarding the execution of
actions/functions, the definition of data types and the support
for a priori defined objects and roles as well as the support
for data path modelling provided by each formalism.

The formalisms themselves are discussed in Section II, in-
cluding their origin and interrelations. The evaluation criteria
derived from general requirements posed by operational IT
management are explained in Section III and applied to each
language in Section IV. The analysis results are summarised
in Section V along with conclusions regarding the use of
the formalisms examined in the context of IT management
processes.

II. BACKGROUND AND RELATED WORK

Formalisms suited or intended for process representation have
been devised from different perspectives. This paper discusses
a selection of languages that differ in scope, degree of
technology binding and, as Section IV will show, general
applicability. This section will introduce these formalisms in
short and show the relationships between them, as well as the
relationships between the standardisation bodies maintaining
them. In addition, examination of these and similar languages
under different aspects are discussed.

A. An overview of process languages

In the following the formalisms treated in this paper are
introduced and related standards and formalism–specific back-
ground work is discussed.

a) Business Process Execution Language:One of the lan-
guages currently en vogue is the Business Process Execu-
tion Language for Web Services (BPEL4WS, or in short:
BPEL)[8]. An XML-based orchestration language, BPEL is
native to the Web Services (WS) domain and, for practical
purposes, constrained to it. It is used for specifying invocations
of APIs declared in the Web Service Definition Language
(WSDL)[11]. The actual API invocations are typically exe-
cuted by means of the Simple Object Access Protocol (SOAP).
BPEL is well known in the main-stream due to the popularity
of web-based services, and its use can be expected to spread
further.

b) XML Process Definition Language:A language less known
in the main-stream is the XML Process Definition Language
(XPDL, [7]) released by the Workflow Management Coalition
(WfMC). XPDL is stated to be a textual equivalent of the Busi-
ness Process Modeling Notation (BPMN, [20]), a graphical
process modelling formalism released by BPMI.org/OMG (see
Section II-B). BPMN provides a base for the development of
graphical process modelling and visualisation facilities. Both

languages make few assumptions as to process implementation
technology. The XPDL specification does, however offer a
BPEL4WS binding in addition to the generic facilities pro-
vided.

c) Business Process Modeling Language:Three years ago,
BPMI.org released the Business Process Modeling Language
(BPML)[9], a textual, XML-based language for process rep-
resentation. While still supported by process modelling tools,
BPML’s territory is being taken over by BPEL.

d) Business Process Specification Schema:A cooperation
between the United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT) and the Organization for
the Advancement of Structured Information Standards (OA-
SIS) under the label of Electronic Business using eXtensible
Markup Language (ebXML) develops the Business Process
Specification Schema (BPSS)[1]. The BPSS includes an XML
Schema definition intended to facilitate automation centred on
business document exchange.

e) Unified Modeling Language:Although it is designed to
be a general-purpose, (mostly) graphical language – with an
accent on software engineering needs – the Unified Model-
ing Language (UML) can be employed to model (business)
processes.

The obvious choice UML diagram kind for process representa-
tion is theactivity diagram. An evaluation of activity diagrams
for work-flow modelling can be found in [14], where control
flow aspects of activity diagrams are examined.

Several approaches to UML-based business process represen-
tation have been presented, some of them relying on former
UML versions’ extension mechanisms to provide language
elements adapted to business process requirements (e.g. [15]).
The current version 2.0 of the specification acknowledges
the need for process modelling by incorporating stereotypes
supporting process representation, as well as extensions in
the context of activity diagrams. Examples include a better
parameter mechanism and input/outputports for associating
activities and the data objects necessary for their execution.

UML 2.0 is specified in four documents[5], [4], [3], [2] that
cover different aspects of the language. For the purposes of this
paper, the Superstructure specification [5] is the most relevant.
UML has a textual correspondent in the XML Metadata
Interchange (XMI) [6], which is a supporting standard for the
Meta Object Facility (MOF)[3].

f) Petri nets: A well–researched alternative for specifying
processes are petri nets. A small, flexible mechanism with
a strong formal foundation, petri nets have been employed
successfully in work-flow engines.

By annotating petri net nodes, the requirements of IT manage-
ment process formalisation may be met provided a machine
readable form suitable for automation support is available.
When clearly specified/standardised, such annotations would
define a new formalism for process representation based on
petri nets. Its definition would include a specification of syntax
as well as a semantics description for (at least) a fixed set of

<<document>>
BPML 2002

<<document>>
BPEL4WS v.1.1

<<document>>
BPSS 2003

<<document>>
BPMN

relies on

<<document>>
XPDL v.2

<<document>>
UML v.2

applies to

applies to

<<document>>
ARIS

<<organisation>>
WfMC

<<organisation>>
BPMI

<<organisation>>
OASIS

<<organisation>>
UN/CEFACT

<<organisation>>
IDS Scheer

<<organisation>>
OMG

represents
as XML

binds to

<<document>>
Wf. Ref. Model

2002 2003 2004 200519951992

A
ut

ho
rin

g
or

ga
ni

sa
tio

ns

Fig. 1. Relationships between standardisation bodies and specifications

expressions to be used in annotations.

Analysis of such a language does make sense in the scope
of this paper; a representative formalism based on petri nets,
event-driven process chains, is described in the following
and assessed in Section IV. Serving only as the underlying
formalism, the petri net per se is exempted from analysis in
this paper.

g) Event-driven Process Chains:Another established lan-
guage for process representation is found with ARIS [16],
specifically its Event-driven Process Chains (EPC). Petri nets
by structure, EPCs are directed graphs containing activities,
events as well as control flow elements and exploit the idea
of event-driven process execution.

ARIS, really an architecture for process oriented management,
includes a specification of a graphical representation of EPCs.
A more concise description of language concepts and notation
can be found in [10]. Some parts of ARIS, some of them
unrelated to process modelling, rely on UML to represent
technical information related to classes/objects.

Unlike the other languages presented in this paper, ARIS
does not originate from a standardisation body, but from IDS
Scheer, a company with close ties to academic research in the
field of business processes and automation.

B. Interrelations of process formalisms

Despite their differences in scope and target audience, the
process formalisms discussed do relate to each other. The
specifications created by a standardisation body often reflect
the interest of associated (industry) stakeholders. Thus, in-
terrelationships between formalisms, as well as the relations
between the standardisation bodies, may allow conclusions
regarding the direction of future standardisation efforts.

The documents reviewed in this paper include work of the

WfMC, OASIS, UN/CEFACT, OMG, BPMI and IDS Scheer.
Figure 1 depicts the release of documents originating from
these different organisations over time. The horizontal swim-
lanes hold documents released by the organisation shown on
the left aligned along a time scale. The relations between
organisations and documents are marked in the diagram and
suggest a certain degree of convergence. On the level of
organisations this has manifested in cooperations and mergers,
while a higher alignment of the standardisation documents can
be seen in recent releases. While only the merger between
BPMI and OMG constitutes a strong binding between two of
the standardisation organisations, several other cooperations
exist (not shown in the figure) that are manifested in common
web presences of the cooperation partners.

The relations between documents are also manifold. WfMC’s
Workflow Reference Model has provided a common under-
standing of work-flows and has been taken into account by
the current versions of BPMN and XPDL, as well as by
former versions. XPDL and BPMN are strongly related in
that XPDL aims to provide a textual, machine readable format
for BPMN’s graphical representation of processes. BPMN, on
the other hand, provides an explicit binding to BPEL4WS by
defining a mapping of elements and constructs into BPEL4WS.
The ARIS model family relies on UML (since former versions
of the UML) in parts, though the event-driven process chains
(EPCs) treated in this paper are based on petri net concepts.

The overall picture seems to suggest a convergence of organ-
isations as well as of standardisation efforts.

C. Pattern-based analysis of process language

Surveys and analysis of process formalisms have been per-
formed extensively before, albeit from a different view point.
Notably, pattern based analysis of work-flow formalisms and
products has been pursued for some time at Eindhoven Univer-
sity of Technology and has resulted in a pattern catalogue [18].
The catalogue is applied to different formalisms to compare
their expressiveness from a work-flow perspective.

Activity A

Activity B Activity C

Activity A

Object
Managed

Parameter
Action

Result
Action

**

*

Condition 1 Condition 2

Fig. 2. Pattern example: Exclusive choice pattern.

The patterns employed in this approach are abstractions of
recurring control flow in work-flows/processes. They concern

themselves with the coordination of generic actions, excluding
the technical details of actions from view. The pattern col-
lection has been effectively employed for testing the support
for a specific kind of process structure in formalisms and
architectures/products.

IT management process modelling and implementation must
take into consideration language aspects that support the
mapping of management process specification onto technical
IT management. Patterns can help by supplying the outer,
structural framework for the information associated with an
action. Figure 2 shows (in its lower part) the “Exclusive
Choice” pattern as an UML activity diagram congruent to
the one depicted in [19]. By design, it does not take into
account the inner form of its elements (in this case, actions
and conditions).

This paper, in contrast, revolves around requirements originat-
ing in technical IT management and therefore focuses on the
details associated with a formalism’s elements rather than on
the overall structures allowed by a formalism. The upper part
of Figure 2 indicates (organised aroundActivity A) some
of the features sought-after in a formalism for technical IT
management processes.

III. R EQUIREMENTS OFIT M ANAGEMENT PROCESSES

The process formalisms discussed in this paper were not de-
signed with management processes in mind. They are intended
for use in any business process scenario. Although manage-
ment processes are a type of business processes themselves,
they can be defined based on specific assumptions as to the
execution environment and the involved personnel. At least
in part, the processes introduced into IT management are
tightly adherent to the infrastructure providing IT services.
Manual subprocesses are executed by persons with knowledge
about the process activities (e.g. activities pertaining to service
support) that at the same time are (typically) knowledgeable
about the function of the OSS tools employed to execute the
activities. In consequence, the knowledge “distance” between
the process activity (e.g. registering a new configuration item)
and the software supporting it (database, application server
etc) is relatively small. In contrast, knowledge about a business
process (e.g. in automated manufacturing or content manage-
ment) does not typically imply knowledge about the tools
utilised to support it.

This difference can be exploited to achieve a higher degree of
automation and integration through adaptation of OSS tools to
execute process parts (semi-)automatically by directly interact-
ing with the IT infrastructure. For this purpose, automated and
hybrid subprocesses (as described in Section I) require access
to object databases, coupling with monitoring tools as well
as integration into facilities for enactment of administrative
measures.

In concrete terms, the process automation facility must have
access to definitions of entities (persons, components/systems,
accounts etc), roles and domains; it must be coupled to the

monitoring facilities available, in order to be able to execute
process parts in response to events; and, it must be provided
a means to influence the managed objects by executing man-
agement operations.

To integrate such technical aspects in the process specification,
a certain degree of support in the formalism employed for the
process definition is required.

The requirements described in the remainder of this section
provide a basis for comparable examinations of the process
formalisms.

A. Actions

Due tasks in work-flow or process definitions are often called
activities. On an operational, technical management level, we
refer to due tasks as managementoperationsor actions. The
following requirements refer to actions in the latter sense, i.e.
more like function calls against an API than human-executed
procedures. Requirements to action specification are detailed
in the following.

a) Unique name or identifier:To be able to map an action
from a process specification to a feature of a process support
tool, the process formalism employed must allow specification
of unique action identifiers.

b) Input or formal parameters:Many examples of (graphi-
cally) modelled processes show only the due actions; the input
data for the action is neglected or implied from the context.
Machine execution of an action requires explicit specification
of input data to an action.

c) Output or return values:The output of an action, be it
a value, a document or a status code signifying success or
failure, is often needed as input of another process part. As
with action input, explicit support for modelling output data
is required.

d) Control flow: Though not an intrinsic of actions them-
selves, language constructs for control flow determine how
actions are executed. Common constructs include those for
parallel execution (forking and joining execution threads), and
conditional branching.

e) Error handling: Actions may fail during execution and/or
cause further faults in the system executing them. The mini-
mum requirement for error handling is error detection, which
suffices to ensure that a process is executed correctly, or not
at all. However, this is a quite spartan mode of error han-
dling. Extended requirements appropriate for realistic process
support include:

• Notification in case of error. This could mean the notifica-
tion of an operator if the system is incapable of handling
the error condition. Such notification is a criterion applied
when more sophisticated error handling (as described
below) is missing.

• Error handlers. As with most programming languages,
some process formalisms include the concept of error
handlers, that are invoked when the normal control flow

is interrupted by a fault. The characteristics of such
error handlers are dependent on the way the actions
themselves are specified. Hence, for the purposes of
comparing process formalisms, the mere existence of a
error handling concept remains the only criterion.

• Recovery from error handling. Upon successful error
handling, it may make sense for the process to continue
at the point of interruption, thus requiring a mechanism
for storing and retrieving that position in the process
specification. As with error handlers, the criterion in our
scope is the mere existence of a recovery mechanism.

B. Events and messages

Management processes are often invoked (or resumed) as a
result of events or messages originating from a change of state
in a system or from operator input to the process. In addition,
such events may transport information to the process. In the
same way, messages can be sent from within a process to
convey information to human or machine recipients. Some
of the formalisms examined rely on message exchange for
the greater part of their control flow or for their information
exchange. The analysis criteria with regard to messaging
support are described in the following.

a) Ability to expect messages:To be able to react to messages,
facilities to specify expectance of a message need to be
included in a formalism. Optionally, the type of the message
may be included in the specification, as detailed further on in
this section.

b) Ability to send messages:Apart from notifications in case
of errors, processes may need to send messages about their
progress, successfully performed important action etc. The
specification for the sending of a message may include more
or less detail, such as message type and optionally enclosed
information (see below).

c) Information transport in messages:As with low-level
mechanisms relying on asynchronous messages (e.g. SNMP
traps), it does make sense to allow piggy-backing of process
internal information in messages.

d) Typing and naming of messages:To allow automated
reaction to messages, the format of messages must be known
or accessible to the tool supporting the process parts dealing
with a certain kind of message. Obviously, the format must
also be advertised to the recipient. Well-known means of
achieving this is unique naming of message types associated
with a definition of their content.

C. Conditional expressions

Requirements for conditional expressions do not originate
solely from IT management process needs. In more technical
management processes, however, a powerful conditional ex-
pression mechanism can be leveraged to make control flow
decisions based on system state or data, thus promoting
automation endeavours. For this reason, the formalisms in
this paper are examined regarding the expressiveness of their

conditional expressions, as well as regarding the language
elements where these may be included.

a) Values:Values can be constants that are part of the process
definition, they can be held in attributes of the process or of the
runtime system (e.g. process support tools) or they can origi-
nate from actions (as return values) or arithmetic expressions.
Requirements regarding values are found in Section III-E.

b) Operators:Conditional expressions require operations that
can be relational (<, ≤, =, ≥, >) to compare values, as well
as logical operators to create complex conditions, including
and, not, or etc.

c) Arithmetic expressions:Common cases of conditional
expressions include values obtained by the evaluation of
arithmetic expressions in the process definition. Hence, the
formalisms are examined for the support of basic arithmetic
operators (add, subtract etc.) and their applicability in different
contexts.

D. Reference to managed objects

IT management relies more and more on system and service
models based on object oriented modelling frameworks. Ex-
amples of such frameworks include DMTF’s Common Infor-
mation Model (CIM, [13]), Telemanagement Forum’s Shared
Information/Data Model (SID, [17]) or models based directly
on the UML.

The modelled infrastructure and the provided services ob-
viously have high relevance to the management processes
defined. Therefore, a formalism used for IT management
process definition should provide a way to reference these a
priori defined object collections. At the very least, a concept
of objects in the formalism could be employed to reference
tailored “copies” of the (mostly object oriented) management
information in the models.

Management objects may relate to several of the expression
classes mentioned in this section. For instance, they may be
referenced in actions, either as parameters or as targets of an
action; Their attributes may be part of conditional expressions;
and they may be referenced when creating messages or events.
Therefore, the formalisms examined in this paper are checked
for the following characteristics:

• Existence of the concept of process-external objects.
• References to objects in action input or output.
• References to objects in conditional expressions.
• Direct references to externally defined objects.

E. Data types, variables and values

Business work-flows have a weaker relation to typed data
than is common in IT-centric environments. Instead, data is
encapsulated in forms or “documents” and often transported in
the form of character strings. Independently of its encoding, IT
management processes interacting with IT infrastructure could
take advantage of clear definitions of data types.

Beside facilitating the design of process-supporting applica-
tions, a set of data types is indispensable if automation of

process parts is desired. A basic set of data types includes
general purpose types for the representation of numeric and
textual data as well as special types such as time and date rep-
resentation. To summarise, process formalisms are examined
as to the support for representation of:

• Integer and floating point numbers
• Character strings
• Date/Time expressions
• Boolean values

IV. A NALYSIS OF PROCESS FORMALISMS

In this section, the scheme described in the previous section
(IV-A) is applied to the formalisms mentioned in Section II-A.
A description of the language accompanies the analysis in an
attempt to capture the intent of the formalism’s authors with
respect to its mode of use.

A. Assessment scheme for process formalisms

In essence, the analysis is performed by means of a list of
criteria that are applied to every formalism analysed. The list
is a summary of Sections III-A through III-E capturing the
most important formalism features to check for. The leftmost
three columns of Table I show the examination criteria at a
glance.The columns captioned with a formalism name contain
the grade of compliance of that formalism to a criterion. A
“
√

” denotes the criterion to be satisfactorily fulfilled. When
set in parenthesis “(

√
)” it denotes partial fulfilment, while a

“×” marks a failed criterion.

Examination of a formalism is not about searching for for-
malism elements with certain names but identifying features
of a language that can perform a certain desired function.
Therefore, in the following discussion of the examined for-
malisms, alternatives to the direct specification of language
elements (i.e. opportunities for constructing missing functions
from elements present in the formalism) have been taken into
account.

B. BPEL4WS

As its name suggests, BPEL is intended as a formalism forex-
ecutablebusiness processes. In consequence, it addresses those
requirements aiming at enabling automation. IT management
specific bindings, however, are less prominently developed.

a) Actions: BPEL defines actions as invocations of remote
API functions, typically in a business partner’s domain. The
target domain to be invoked is identified by apartnerLink
and a portType expression. The action to be invoked is
identified by its symbolic name. It can receive literal formal
parameters and be assigned a variable name to be used as a
container for the return value. References to externally defined
objects (e.g. MOs) are not supported.

Control flow features include parallelisation of actions
and conditional branching by means ofswitch state-
ment. Fault signalling is supported by an exception mech-
anism and facility for error handling is provided through

compensationHandler s. The latter consist of alternative
actions to be executed when the primary action fails.

b) Messaging: BPEL specifies event handlers capable of
invoking an operation or instantiating a process in reaction
to receiving an event. Conversely, event handlers can be
invoked (remotely) to transmit an event. Format guidelines
for information transport in events are not provided.

c) Support for objects:Externally defined objects are not
easily made available to a BPEL process. Similarly, actions
are associated with scalar variables for parameters and result.

d) Conditional expressions:Conditions are specified for spe-
cial language elements, such asswitch constructs or ex-
ecution thread joining. They can be temporal conditions or
expressions formulated in XPath. Relational and arithmetic
operators are supported.

e) Data types:BPEL relies on common XML data types for
user data providing integer, string and date/time types.

C. XPDL/BPMN

This specification combo consisting of a graphical notation and
its mapping to XML target process authors from the business
domain. For instance, the BPMN defines graphical elements
designed to be easily comprehensible by non-technical person-
nel, e.g. by use of icons representing messages or stereotype
actions. Nevertheless, many of the requirements formulated for
operational IT management processes are addressed by their
specifications.

Because of the equivalence in expression of these languages
BPMN is described representatively for both formalisms (with
the exception of formalism features where BPMN and XPDL
differ). Its specification includes normative text regarding
the graphical representation of language elements and the
behaviour of compliant modelling tools.

a) Actions: BPMN specifies atomic or compound ac-
tions (“activities”) that are associated with zero or more
InputSets providing data to the action as well as zero
or moreOutputSets that represent the action result. Input
and output are defined asArtifact s that can be of a
DataObject type and encapsulate documents or parameters
made available to the actions.

Control flow can be modelled by means ofgatewaysthat
specify flow forks and joins as well as conditional and event-
based branching. BPML specifies different control flow vari-
ants, including theException Flow , that is triggered by
an event (i.e. error notification) and constitutes an alternative
control flow path that can be merged into theNormal Flow
by means of the general joining mechanisms provided by the
formalism.

b) Messaging: The atomic actions (“tasks”) are typed and
are optionally associated with incoming and outgoing mes-
sages. Special task types denote acceptance and transmission
of messages as alternatives to action execution. Events can
contain messages that are named and may contain a set of
Properties consisting of named strings.

Domain Element Criterion BPEL4WS BPSS XPDL UML EPC
Actions name/ID existence of

√
(
√

)
√ √ ×

and formal parameters named (
√

) × √ √
(
√

)
control typed × × √ √ ×

flow return value existence of
√

(
√

)
√ √

(
√

)
complex value (

√
) (

√
)

√ √
(
√

)
reference to MOs support for × × × √

(
√

)
as target × × × √

(
√

)
parallel execution support for

√ √ √ √ √

conditional branching support for
√ √ √ √ √

error notification support for
√ √

(
√

)
√ ×

error handler existence of
√ × √ √ ×

recovery from error support for reentry × × √ × ×
Conditional operators relational

√ × √ √
(
√

)
expressions logical

√ × √ √
(
√

)
arithmetic

√ × √ √ ×
Events message expect

√ × √ √ ×
and send

√ × √ √ ×
messaging typing name/ID × × (

√
)

√ ×
format definition × × × (

√
) ×

information transport support for
√ × √ √ ×

Types integer numbers in process definition
√ × √

(
√

) ×
floating point numbers in process definition × × √

(
√

) ×
character strings in process definition

√ × √
(
√

) ×
boolean type in process definition × × √

(
√

) ×
date/time expressions in process definition

√ × √
(
√

) ×
Objects object concept existence of × × √ √

(
√

)
reference to objects in action input × × (

√
)

√
(
√

)
in action output × × (

√
)

√
(
√

)
in conditional expressions × × (

√
)

√ ×
externally def. objects direct ref. to × × √

(
√

) ×
TABLE I

ASSESSMENT CRITERIA ANDEVALUATION RESULTS

c) Support for objects:Objects can be referred to via the
Participant class that encapsulates an entity or role ex-
pression identified by a name. A mapping to externally defined
objects is not supported explicitely in the BPMN specification,
though a facility to reference such objects is present in XPDL.

d) Conditional expressions:Conditions can make use of rela-
tional and logical operators. They can be associated with flow
control elements (gateways).

e) Data types:XPDL defines basic data types including all
data types required as per Section III, and additional data
types for representation of externally defined entities as well
asparticipantsof the process.

Complex data types include records, arrays, unions enumera-
tions and lists.

D. ebXML/BPSS

The Business Process Specification Schema is a quite high-
level business process description language. It has a focus
on business document exchange and can be described as a
document flow language more than a work-flow language.

a) Actions and control flow:There are several definitions of
activities/actions in BPSS, however they have quite different
semantics compared to the concept of actions as described in
Section III-A. For instance, aBusinessAction is a named
coarse description of an interaction with a business partner.
Its instances are associated withDocumentEnvelope s.The

BPSS describes a state–machine–like concept (capturing busi-
ness state) that can be employed for modelling business
interactions.

b) Messaging:Processes can be described as message driven
but not as event driven in the IT management sense: messages
always originate with business roles (i.e. machine or human
actors from different domains) and constitute an exchange
of business documents. While event mechanisms employed
in IT management (e.g. low-level traps, notifications from
management tools) are similar in structure, the messaging
concept of BPSS has more in common with documents ex-
changed by email. A BPSSBusinessDocument is a named
entity wrapped in one or moreDocumentEnvelope s, which
contains state information to determine whether the document
included is intended as a request or a response. In the latter
case, a simple boolean flags a positive/negative response. Ad-
ditionally, an envelope containing a document may transport
one or more attachments related to the document.

c) Support for objects, roles and domains:The two roles of
requesterand responderare the only roles defined in BPSS.
There is no apparent mechanism to refine or complement these
roles. Domain expressions are not supported and while objects
may be described inside documents, no reference can be made
to predefined objects as described in Section III-D. Document
format or structure is not given in the specification.

d) Conditional expressions: Collaboration between two
roles is governed by pre- and post-conditions. Condi-

tions can be also be imposed on the association of a
BusinessDocument to a DocumentEnvelope in order
to determine if the envelope is suitable for the document it
wraps. However, there is no formal specification of condition
features or syntax.

e) Data types:Data types for use in process modelling are not
defined. Internally, the language relies on the common XML
data types to represent information.

E. UML

The UML has been used for process definition before even
though it does not provide specialised means for that purpose.
It does, however, provide generic means to express most of the
elements noted in Section III. In this case, generic means are
at the same time a blessing and a curse: while conveying the
ability to express all required elements, they make necessary
the introduction of conventions regarding accepted ways of ex-
pressing elements. This analysis focuses on Activity Diagrams.
Process representation options available by use of other UML
features and the use of extension mechanisms have not been
taken into account.

a) Actions: The requirements formulated for management
actions are addressed by a group of activity diagram classes.
Activities model the execution of primitive functions
as well as invocation behaviour, transmission of signals and
the accessing of object attributes. The requirements regard-
ing functional parameters of actions and return values are
satisfied by theParameterSet/Parameter classes that
allow the association of input/output objects to actions. Par-
allel execution of actions as well as conditional branching is
provided by means of the well–knownDecisionNode (di-
amond) andForkNode (parallelisation/synchronisation bar)
elements. Error handling is modelled explicitely by use of the
ExceptionHandler class.

b) Messaging: Activity diagrams allow the modelling
of transmitting and expecting typed signals (events)
using specialised actions (SendSignalAction,
AcceptEventAction . Similarly, event payload relaying
can be expressed by means ofSendObjectAction . A
means for format definition is not provided explicitely; the
type of the objects transmitted can be used to map to the
payload format.

c) Support for objects:The UML’s support for object def-
initions in the context of actions and events is quite good.
References to external object definitions may be facilitated by
the fact that such definitions (e.g. deposited in a CIMOM) are
mostly based on UML1

d) Conditional expressions:The preferred way to express
conditions in the UML is the Object Constraint Lan-
guage (OCL). OCL statements can be associated with e.g.
DecisionNode s in activity diagrams to implement condi-

1Note that although CIM uses a somewhat different meta-model, it is
compatible with UML when only access to single object definition is regarded.

tional branching. Support for relational, logical as well as
arithmetic operations is included.

e) Data types:Support for complex data types (classes) is
inherently good, while primitive types as those listed in III-
E can be expressed as attributes of classes/objects. A precise
primitive type definition (e.g. including value ranges of num-
ber types), however, is not provided.

F. Event-driven Process Chains

EPCs describe process partitions (chains) incorporating ac-
tions, conditions, objects and logical connectors for control
flow. The language elements are intended for high-level,
human-readable representation of processes. To achieve a con-
sistent machine-readable form, a set of conventions regarding
the inner structure of the elements addressed would need to
be created.

It should be noted that the event-driven process chain for-
malism is embedded within the ARIS family of modelling
techniques that relies among others on entity-relationship
modelling for data and UML for class/object modelling. In
consequence, some aspects of process modelling are addressed
by other formalisms than EPCs. An extension of EPCs termed
enhanced event-driven process chainsallows reference to
entities relevant to the process (e.g. organisational entities).

a) Actions: Actions in EPCs are textual descriptions of
tasks and can be associated with objects, thus allowing the
modelling of action input and output. However, support for
a formal representation is not provided. Parallelisation and
joining of process threads as well as conditional branching
is supported by means of logical operators (OR, XOR, AND).

b) Messaging vs. EPC events:Events in EPCs serve to invoke
a chain (i.e. instantiate a process) as well as to determine a
change of process state (e.g. an altered attribute value) or a cer-
tain point in time. Although EPCs rely heavily on events, the
event concept used is not intended for transmitting messages
within or outside processes. EPC events have a declarative
nature and their semantics overlap with those of conditions.
In other words, an event can consist of a statement (e.g. “data
available”) that triggers a process partition if deemed to be
true. Readers familiar with petri nets will recognise the origin
of the EPC event/condition concept.

c) Support for objects:EPC actions can be associated with
objects and organisational units. However, a formal represen-
tation of these entities is not supported directly.

d) Conditional expressions:Conditions and events are de-
scribed using the same graphical notation. They are not
differentiated between explicitely.

e) Data types:Data types adhering to the requirements de-
scribed in this paper are not defined.

V. CONCLUSIONS

This paper has presented requirements for the representation of
technical IT management processes as well as an assessment

of process formalism based on those requirements. Although
the languages analysed pursue similar goals, the findings show
striking differences in their suitability for the representation of
technical process details.

Good candidates include the UML, XPDL/BPMN and, to
some extent, BPEL4WS. The latter is constrained by its
focus on Web Services, but that constraint is increasingly
offset by the popularity of web based frameworks and by the
proliferation of BPEL itself.

XPDL and BPMN were designed with automation in mind. In
consequence, they fulfil the automation requirements shared
by common business and technical processes. The growing
support for these formalism in business process modelling
tools further motivates them as a choice for IT management
process modelling.

The UML exhibits very good characteristics with regard to the
requirements formulated. Since it is an established formalism,
modelling tool support is also abundant.

BPSS is suitable for modelling only the most high-level,
business-like IT management processes. It does not fulfil the
requirements described in Section III. It is clear that it is
intended to deliver some support for business document ex-
change. It makes few assumptions regarding its target business
domain and therefore it cannot provide support for detailed
process representation.

ARIS’s event-driven process chains likewise focus on flow
control and include summary support for operational IT man-
agement needs.

To summarise, all languages provide suitable control flow
features but generally lack expressiveness regarding the for-
malisation of actions. UML seems the best choice for the
operational processes targeted in this paper (automatic and
hybrid subprocesses). However, the modelling of business
processes outside the scope of IT management may force the
selection of a formalism more accessible to business people
than the comparatively formal UML. In such cases, when a
common language is needed for use with both core business
processes and IT management processes, BPMN/XPDL may
be the language of choice.

A. Further work

The work having been presented here covers a narrow aspect
of IT management process formalisation.

The criteria used have been treated equally, even though the
formalism features examined may have different degrees of
importance to management processes. A differentiation with
respect to the impact of formalism features and a complemen-
tation of the analysis using weights should yield more accurate
verdicts on the usability of a given formalism for management
process representation.

The criteria presented in Section III address important aspects
of IT management processes with respect to automation, but
do not constitute a comprehensive set. The selection of further

criteria not yet addressed and the refinement of those used
in this paper would help provide a more complete picture of
the formalisms in question. While analysis of formalisms is
a necessary first step, a requirements set aiming at amending
suitable formalisms would be a future step on the way.

Current process frameworks are invariably designed from a
service management vantage point. However, formalisation of
work processes in other management disciplines, e.g. manage-
ment of systems or networks, could also profit from a process-
oriented approach. Most probably, the requirements given in
this paper will apply to the needs of these disciplines. How-
ever, modelling processes for yet more technical management
disciplines may pose additional challenges to the selection of
suitable formalisms.

Finally, all processes – whether describing core business
procedures or IT management – are meant to constitute a
representation of goals. To ensure compliance with the original
management intent, processes can be analysed and validated
against these goals. Direct validation of process definitions is
one option, perhaps with the aid of assertions included in the
process definition. Another option is the analysis of operational
policies derived from process definitions, as suggested in
[12]. With this approach, reasoning techniques developed for
management policies could be used for the analysis.

ACKNOWLEDGMENT

The author wishes to thank the members of the Munich
Network Management (MNM) Team for helpful discussions
and valuable comments on previous versions of this paper.
The MNM Team directed by Prof. Dr. Heinz-Gerd Hegering
is a group of researchers of the University of Munich, the
Munich University of Technology, the Federal Armed Forces
University Munich and the Leibniz Supercomputing Center of
the Bavarian Academy of Sciences. Its web–server is located
at http://www.mnm-team.org.

REFERENCES

[1] Business Process Specification Schema. Technical report, UN/CEFACT
and OASIS, 2001.

[2] UML 2.0 Diagram Interchange Specification. Object Management
Group Adopted Specification ptc/03-09-01, Object Management Group,
September 2003.

[3] UML 2.0 Infrastructure Specification. Object Management Group
Adopted Specification 03-09-15, Object Management Group, September
2003.

[4] UML 2.0 OCL Specification. Object Management Group Adopted
Specification ptc/03-10-14, Object Management Group, October 2003.

[5] UML 2.0 Superstructure Specification. Object Management Group
Adopted Specification ptc/03-08-02, Object Management Group, August
2003.

[6] MOF 2.0 / XMI Mapping Specification, v. 2.1. Object Manage-
ment Group Formal Specification formal/05-09-01, Object Management
Group, September 2005.

[7] Process Definition Interface – XML Process Definition Language.
Workflow Management Coalition Workflow Standard WFMC-TC-1025,
Workflow Management Coalition, October 2005. Version 2.0.

[8] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,
Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business
Process Execution Language for Web Services Version 1.1. Technical
report, OASIS, May 2003.

http://www.mnm-team.org

[9] Assaf Arkin. Business process modeling language. Draft, BPMI,
November 2002.

[10] J. Becker, M. Kugeler, and M. Rosemann, editors.Process management
– A guide for the design of business processes. Springer-Verlag, 2003.

[11] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) 1.1. W3C
Recommendation, W3C, March 2001.

[12] V. Danciu and B. Kempter. From Processes to Policies – Concepts for
Large Scale Policy Generation. InManaging Next Generation Con-
vergence Networks and Services: Proceedings of the 2004 IEEE/IFIP
Network Operations and Management Symposium (NOMS), volume
2004, Seoul, Korea, April 2004. IEEE/IFIP.

[13] Distributed Management Task Force (DMTF). Common Information
Model (CIM) Version 2.9. Specification, June 2005.

[14] M. Dumas and A. ter Hofstede. UML activity diagrams as a workflow
specification language. InProceedings of the International Conference
on the Unified Modeling Language (UML), Toronto, Canada, 2001.
Springer-Verlag.

[15] Hans-Erik Eriksson and Magnus Penker.Business Modeling with UML
– Business Patterns at Work. John Wiley & Sons, ISBN 0-471-29551-5,
2000.

[16] A.-W. Scheer. ARIS – Business Process Modeling. Springer, Berlin,
1999.

[17] TeleManagementForum. Shared Information/Data (SID) Model Con-
cepts, Principles, and Domains. Technical Report GB 922 Member
Evaluation Version 3.1, TeleManagement Forum, July 2003.

[18] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barons. Workflow Patterns. 2002.

[19] Stephen A. White. Process Modeling Notations and Workflow Patterns.
White paper.

[20] Stephen A. White. Business Process Modeling Notation (BPMN)
Version 1.0. Technical report, Business Process Management Initiative,
May 2004.

Printed in: Information Technology Management from a Business
Perspective, p. 45-54, IEEE, 1st IEEE/IFIP International Workshop
on Business Driven IT Management, Vancouver, Canada, April, 2006

	I Introduction
	II Background and related work
	II-A An overview of process languages
	II-B Interrelations of process formalisms
	II-C Pattern-based analysis of process language

	III Requirements of IT Management processes
	III-A Actions
	III-B Events and messages
	III-C Conditional expressions
	III-D Reference to managed objects
	III-E Data types, variables and values

	IV Analysis of process formalisms
	IV-A Assessment scheme for process formalisms
	IV-B BPEL4WS
	IV-C XPDL/BPMN
	IV-D ebXML/BPSS
	IV-E UML
	IV-F Event-driven Process Chains

	V Conclusions
	V-A Further work

	Literatur
	References

