
Declarative Specification
of Service Management Attributes

Vitalian A. Danciu, Nils gentschen Felde, Martin Sailer
Munich Network Management Team

University of Munich
Oettingenstrasse 67, D-80538 Munich, Germany

Email: {danciu|felde|sailer}@mnm−team.org

Abstract— Providers, operators and customers understand that
the concept of an IT service offers a beneficial abstraction from
actual IT operations, effectively encapsulating the provisioning of
the service. Yet, IT services are in fact provided by installations
composed of very large numbers of managed elements. Hence,
management of a service implies the management of the multi-
tude of elements and sub-services upon which the service relies.
The mapping of a service’s attributes onto resources to “make
the service visible” is as much of a challenge as the execution of
service management actions (i.e. actions directed at a service) on
the underlying infrastructure. Even today, practical solutions to
these issues are scarce.

In this paper, we propose a methodology for the synthesis
of service attributes to create the foundation for a service
management information base. We present a declarative language
suitable for the representation of service attributes in dependence
of management attributes of the provisioning infrastructure. In
addition, we discuss a service monitoring architecture driven by
service attribute specifications.

I. I NTRODUCTION

In the last decades, effective concepts have been developed
and deployed to cope with the management of elements and
systems. These concepts were facilitated by the simple base
structure of elements and systems—from a management point
of view—and by the idea of the managed object (MO). They
constitute the foundation of current management systems by
providing a common representation of the devices or systems
to be placed under IT management [11]. Such tools have en-
abled an increasingly efficient control of resources despite their
increasing complexity and the growing number of devices.

It is desirable to adapt the same concepts for the use with
services. In the same way the managed objects representing
resources are specified in a management information base
(MIB), services could be described by creating aService
Management Information Base(SMIB). However, service
management suffers from the complexity inherent to services.

The presence of a suitable view on a target of manage-
ment is prerequisite to effective management of that target.
However, unlike resources and, to some extent systems and
networks, services are less palpable entities. They can be
described as the result of the operation of a compound of
resources including devices, applications and persons. Most
of the technical information needed to describe a service is
already available with the resources that compose the service.

As resource monitoring is in place pervasively, this informa-
tion is available at a technical level, in a manner reusable by
service management.

We illustrate our requirements to service description by
means of a simplified management scenario taken from the
Grid community in Section II. Grids are well-known for their
complex, service-based structure and pose additional chal-
lenges (such as inter-domain service provisioning) compared
to the IT services commonly encountered.

A service can be described by a set of attributes—in
analogy to the attributes defined in resources’ MIBs. Attribute
definitions for a number of general purpose attributes have
been specified in the literature. In most cases, however, it
is mandatory to assemble service-proprietary attributes in
order to describe a service. A generic approach to attribute
definition for managed services is still missing. An inherent
challenge when attempting to specify service management
attributes is the virtually infinite number of possibilities when
constructing a service. Even the “standard” internet services
can be provisioned in a vast variety of different ways. We
discuss the structure of service attributes in Section III and
propose a methodology for the synthesis of service attributes.

Taking into account the associations between the resources
used in service provisioning is paramount when attempting to
describe services in a formal manner. Based on the concepts
presented in Section III, we have developed the Service
Information Specification Language (SISL), a declarative lan-
guage suited to express service attributes in dependence of
management data gathered from resources. We describe SISL
in detail in Section IV.

In any IT management setting, the amount of change to the
deployed infrastructure made necessary by an approach is an
important benchmark for the approach itself. In Section V, we
discuss an architecture aiming to leverage the deployed base of
management tools while providing a realisation of the service
view.

Service management is not a new discipline and our ap-
proach has drawn on existing concepts. In Section VI, we
give an overview of related work with regard to information
modelling as well as related formal languages and approaches.
We conclude the paper in Section VII with a discussion of the
open issues remaining.

II. SCENARIO AND REQUIREMENTS

Due to their highly distributed nature, the number of differ-
ent stakeholders from different administrative and legislative
domains, Grids exhibit all but overwhelming management
needs. Services are provided by autonomous entities thus
barring inter-domain management access at a more technical
level.

A. A broader view

The D-Grid project (http://www.d-grid.de) infras-
tructure is funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) and reaches for providing a
robust, flexible and sustainable Grid infrastructure for scien-
tific purposes. This Grid is used by so-called communities, one
among them the HEP (High Energy Physics) Community Grid
performing computations using the tremendous amount of data
produced by the Large Hadron Collider (LHC) at CERN in
Switzerland. It is expected to produce about 15 Petabytes
of data each year which needs to be stored and analysed
by thousands of scientists working for different organisations
at different locations. All of the participating organisations
provide storage and computing resources in order to store the
data produced at CERN redundantly and to provide enough
computing power for the analysis by the researchers around
the world.

B. Scenario details

The simplified scenario is adapted from the computing
service provided within Grids. It motivates the service man-
agement requirements that determine the goals of our work.

A Grid computing service is composed of several computing
services provided by different sites. Thus, the status of the Grid
computing service depends on the statuses of the computing
services it relies on. In turn, these computing services depend
on the components required for their operation and thus their
status depends on the underlying infrastructure and compo-
nents. In our simplified example sketched in Figure 1 a local
computing service depends on a router, the DNS service and
the local nodes providing the actual computing power.

From the perspective of a Grid user, the “Grid itself”
provides a computing service. In contrast, the providers of
the Grid computing service rely on services hosted at the
different Grid sites and technically usually provided to them
by an agreed upon Grid middleware.

C. Management Challenges and Requirements

Aided by current management systems, we are able to
acquire information about the managed objects within the
management domain. This information represents the isolated
state of the resources being managed. In the case of our
scenario (Figure 1), we can for example easily determine the
status of the DNS, router or any of the computing nodes
by means of a management tool or direct manual access.
However, we are interested in the status of the computing
service provided by means of these resources—not in the
status of each single resource.

Router DNS

Node
1

Node
10

Router
DNS

Node
1

Node
100

Computing Service

Grid Middleware

Grid Computing Service

Local User

Grid User usage of

dependence on
Legend

In
de

p.
P

ro
vi

de
r

C
us

to
m

er
P

ro
vi

de
r

In
de

p.
C

us
to

m
er

...

Site A

. . .

Site X

...

Computing Service

re
al

is
e

Local User

Fig. 1. A simple Grid computing scenario

The provisioning of Grid services is distributed between
different autonomous domains that employ different technolo-
gies, management techniques and specify different policies
for access to and use of resources. Therefore, any approach
targeted at the Grid community must be generic in terms
of technology and light on requirements imposed onto sites
wishing to implement it.

An approach suitable for our scenario should therefore

• address the structure of attributes describing a service,
• support definition of attributes for any given service,
• support translation into a unified format for the data

gathered from resources,
• allow reuse of existing resource management tools,
• lead to the production of service attribute values that

represent the state of a service at a certain point in time,
• be technology independent to the highest possible degree.

D. Scope

Structurally, the scenario setup follows the MNM Service
Model [8] as sketched in Figure 2. The applicable roles
according to the service model are indicated by the bars on
the left-hand side in Figure 1.

Customer
<<role>>

Service

<<role>>
Provider

<<role>>
User

provider
side

side
independent

customer
side

Fig. 2. MNM Service Model
(Bird’s eye view)

Note that the bars overlap, in-
dicating different roles for one
entity depending on the context
(local or Grid) of the service.
We apply the service model
roles to decompose the Grid
service. Most of this paper fo-
cuses on one occurrence of a
service, as denoted by the darker background trapeze; for a
discussion regarding the nested service (i.e. the Grid service
as a whole) the reader is referred to Section VII-.4.

http://www.d-grid.de

Router

Service
MIB

Specification
Aggregation

m
ap

 o
nt

o

describes
re

al
is

ed
 b

y

describes

DNS

RepresentationImplementation

S
er

vi
ce

R
es

ou
rc

e

Service
attributes

Component
parametersComponents

Service

� � �
� � �
� � �

� � �
� � �

� �� �
� �� �

�
�
�
�
�
�

�
�
�
�
�
�

Fig. 3. Interrelationships of services and components

III. SYNTHESISING SERVICE ATTRIBUTES

A key to meeting the requirements delineated in the previous
section is a comprehensive, management-oriented description
of services. In this section, the concepts required to facilitate
such a description are presented. Based on these concepts, a
methodology for the generic specification of service attributes
is proposed.

A. Attribute-based service definition

Services represent an abstraction of a collection of resources
that can be treated as a single entity for management tasks.
They can, in effect, be managed, reported on and visualised in
a similar manner to physical resources. This allows a clearer
association between services and customers to be made and
thus a better alignment to customers’ requirements.

Figure 3 illustrates in principle a management setup for
a service. The service draws on components described by
component parameters. The latter are traditionally provided
by management agents implementing a component MIB. The
items in the top right region of the figure are part of the
approach presented in this paper. The goal is to provide access
to a service’s description in the same manner as is common
in network and systems management.

The Service Management Information Base (SMIB) that
contains a description of the service is supported by the com-
ponent parameter values of the components providing (parts
of) the service. Any aspect of the service may be dependent
on several component parameters. We call such an aspect of a
service aservice attribute. The aggregation instruction associ-
ated with the path between component parameters and SMIB
specifies the manner in which those parameters are aggregated
to form a service attribute. Note that the internet management
approach is a possible but not mandatory reification of the
SMIB idea. We intend the SMIB to be a conceptual container
for service-related management information.

1) Example: A model of the example service presented
in Section II shows the dependencies between components
providing the ComputingService as well as the qualified
attributes relevant to the aggregation (Figure 4). In this case,
the availability of the serviceavailCS is dependent on the
combined availabilities of DNSavailDNS , routeravailRout

availCS

availNode

availRout

availDNS

depends on

: float
availabilityOfComputingPower

Computing Service
<<service>>

<<resource>>
DNS server

co
m

pu
te

 a
ttr

ib
ut

e
va

lu
e

<<resource>>
Router

status : int

status : int

Computing Node
<<resource>>

status : int

<<aggregation>>
ServiceAvail.

1

1

100

Fig. 4. Example model of service attribute dependencies

TABLE I

ATTRIBUTE DEFINITION

Name totalCurrentlyAvailableComputingPower

Description The computing power available to service users.

Synonym N/A

Type float

Unit none

Constraint 0 ≤ computingPowerAvailable≤ 1

Related Router (Availability→ R)

Component DNS (Availability → D)

Parameters Node* (Availability, Strength→ ai, pi)

Aggregation D · R ·
PN

i=1(piai)PN
i=1 pi

and computing nodesavailNode . The resulting attribute
value is calculated by means of theServiceAvailaggregation.

2) Characteristics of a service attribute:In the general
case, a service attribute has the properties enumerated in the
leftmost column of Table I. While theName field of the
attribute can be used for its identification by both human
and machine actors, theDescriptionand Synonymfields are
designed to transport semantics in a human-readable form. The
Descriptionfield contains a textual description of the purpose
of the attribute while theSynonymfield stores the names of
equivalent attribute definitions from information models other
than the one employed. It is intended to facilitate transition
between information models or the concurrent use of several
such models. TheTypeandUnit fields refer to the value of the
service attribute and theConstraintexpression may specify a
valid range.

TheAggregationrule, often expressed as the right hand side
of an equation, specifies how the service attribute value is to be
computed from the component attribute values that it depends
on. The components involved in the aggregation clause are to
be specified in theRelated Component Parametersfield.

A formal specification of service attributes can be realised
by means of modern information modelling frameworks (e.g.
those discussed in section VI). In most cases, this requires
augmentation of the employed modelling framework by adding
the ability to express aggregation instructions and constraints.

B. Methodology for service attribute synthesis

To synthesise attribute definitions for a service we have de-
vised a methodology dividable into four phases (see Figure 5).
We describe each of these phases in short and focus on the
definephase that is shown in detail in the figure.

1) Derive: The primary aim of the first phase is to deter-
mine the information requirements for characterising a service.
Such requirements can be derived by analysing customers’
requirements and Service Level Agreements (SLAs) as well
as management frameworks, e.g. OSI’s FCAPS and ITIL (see
Section VII).
Example: An attribute relevant to the service described in
our scenario is the availability of the Computing Service. In
this case, the attribute is not actually derived systematically.
In many typical management cases however, the service at-
tributes result from the management requirements of the IT
organisation.

2) Define: Based on the information requirements iden-
tified in the previous phase, service attributes are defined
using a formal language. Such definitions can be realised by
means of information modelling frameworks (e.g. CIM [6],
SID [21], SMI [16]). In addition to a static description of the
service at hand, this includes aggregation instructions as well
as measurement parameters. Accordingly, the define phase can
be broken down into the following sub-steps:

1) Declaration of invariant fields.Static data about a
service attribute (e.g. name/id and a textual description)
is determined and the base structure of the attribute is
created.
Example: The name of the attribute (total-

CurrentlyAvailableComputingPower) as well as
its textual description (see Table I) can be determined
a priori. That also holds true for the attribute’s type (in
this case floating point) and unit.

2) Assessment of service component dependencies.The
composition of a service is either explicitly documented
in a model or management knowledge of the service ad-
ministrators. When employing an information modelling
framework, (functional) dependencies are represented
as associations. Identifying these associations therefore
yields the list of candidate components supporting the
service.
Example: Considering the dependencies in the model

1. Declare static attributes
− name/id
− description

3. Identify relevant attributes
per component

4. Determine measurement
parameters
− sampling rate, # of samples
− data format, API, Protocol

5. Determine aggregation rule
for service attribute

2. Identify relevant components

Phase

derive

define

monitor

use Management Application, PbM etc

CIM, SID, IIM, SISL

ITIL, SLAs, FCAPS, Customers’ requ.

Related Concepts, Tools etc.

ganglia, cacti, nagios, OpenView, SMONA

Fig. 5. Methodology overview

in Figure 4, we can establish that the service is depen-
dent on the DNS service, the router and the computing
nodes.

3) Identification of relevant component parameters.Some
of the parameters used to describe the components
identified in the previous step may influence the service
attribute at hand. Identifying these parameters therefore
constitutes a required step to the definition of aggrega-
tion instructions.
Example: Our computing service cannot be accessed
if the router or DNS server are unavailable. Also,
obviously, the presence of available computing nodes
impacts the availability of the service as a whole.

4) Declaration of measurement parameters.In order to sup-
port monitoring of the component parameters identified
in the former step, a number of instructions on how
actual measurement should be carried out is specified.
This includes parameters such as sampling rate and
number of samples to be acquired as well as the data
format, API and protocol.
Example: In our case, it is merely required to test
the state (up or down) of the components identified in
the previous step. The method employed to test their
state is highly dependent on the available management
tools. The resource declarations in Figure 10 show one
possible declaration applicable to our scenario.

5) Specification of aggregation rules.After having identi-
fied the relevant component parameters, it is declared
how these parameters are to be combined in order to
form the service attribute in question.
Example: For our service to be available, router and
DNS service must be operational. In addition, the
number of live computing nodes and their computa-
tional power determine the amount of computing power
available to users. The formula in Table I reflects an
applicable aggregation rule.

3) Monitor: To compose an integrated view of the service
attribute’s state, the (component-oriented) management data
gathered by network and systems management tools (e.g. Na-
gios, Cacti, etc.) needs to be combined. This can be addressed
by an architecture capable of aggregating data produced by
existing tools according to the aggregation and measurement
instructions given in the define phase of a service attribute (see
Section V).

4) Use: Service attribute values provided by the service
monitoring architecture can be leveraged in management ap-
plications. To describe a complete service, the attributes are
compiled into groups corresponding to that service. These
groups constitute the contents of the Service MIB.

IV. SISL: A LANGUAGE FOR SERVICE INFORMATION

SYNTHESIS

TheService Information Specification Language(SISL) is a
formal language capable of expressing in a declarative manner

1) resource attributes relevant to a service,

〈aggregation 〉::= ”aggregation{” 〈identifier 〉
〈description 〉 〈resource 〉 〈function 〉
〈notification 〉 ”}”

〈description 〉::= ”description{” [〈author 〉] [〈date 〉] [〈text 〉]
”}”

〈identifier 〉::= ” id = ” 〈id 〉
〈id 〉::= 〈string 〉
〈author 〉::= ”author{” 〈string 〉 ”}”
〈date 〉::= ”date{” 〈dateString 〉 ”}”
〈text 〉::= ” text{” 〈string 〉 ”}”

Fig. 6. SISL Basic Expressions

2) data sources providing such resource attributes,
3) aggregation operations to be performed to synthesise a

service attribute from resource data, as well as
4) constraints to be applied to the acquisition of data.
It is designed to be generic in regard to both services and

technologies in order to allow its use with every service,
dependent on any resource or sub-service. To allow the ex-
ploitation of existing, deployed management tools, the use of
such tools as data sources has been considered in the language
design. SISL is XML-based to facilitate its integration into
management tools.

In the following, we will describe the most important
syntactic structures of the language and explain their objective
and use. In order to avoid using hard-to-read XML listings,
we will give the SISL syntax in a simplified notation that
is equivalent to its XML grammar. The expressions in braces
correspond to the content of an XML element, while the token
preceding the opening brace corresponds to the name of that
element. Attributes are given using a “name=value” notation
at the beginning of an element’s contents.

A. Basic expressions

The base element of SISL is theaggregation that can
be employed to represent a service attribute. An aggregation
encapsulates specifications regarding data sources, process-
ing instructions for the data gathered as well as conditions
pertaining to the delivery of data. Figure 6 shows the basic
structure of an SISL aggregation in Extended Backus Naur
Form (EBNF). An aggregation is composed of a declarations
of resource(s) (see IV-B), function(s) (see IV-C), a
notification (see IV-D) and adescription .

SISL is a typed language supporting integers, floating point
numbers, strings, temporal expressions (date, time) as well
as boolean. The precision of the types (and thus the value
range of a type) is intentionally left unspecified as it would
either require a large number of different types (e.g. short and
long integers) or force assumptions regarding the range of the
values originating with a data source.

B. Resource and data related expressions

SISL design assumes that data have to be acquired from
the underlying resources periodically. Therefore, the resources
which shall be polled have to be declared and the at-
tributes which are of further interest have to be specified. An

〈resource 〉::= [〈resource 〉] ” resource{” 〈identifier 〉 [
〈description 〉] 〈source 〉
〈sourceAttrib 〉 ”}”

〈source 〉::= ”source{” 〈string 〉 ”}”
〈sourceAttrib 〉::= [〈sourceAttrib 〉] ”sourceAttrib{” 〈id 〉

〈interval 〉 〈return 〉 ”}”
〈interval 〉::= ” interval{” 〈float 〉 ”}”
〈return 〉::= ” return{” 〈integer 〉 | 〈float 〉 |

〈boolean 〉 | 〈date 〉 | 〈string 〉 ”}”

Fig. 7. SISL Resource and Data Related Expressions

〈function 〉::= ” function{” 〈identifier 〉 〈description 〉
〈method 〉 〈parameters 〉 〈return 〉 ”}”

〈method 〉::= ”method{” ” sum” | ”diff ” | ”mult” | ”div” | ...
”}”

〈parameters 〉::= ”parameters{” 〈valueset 〉 ”}”
〈valueset 〉::= [〈valueset 〉] ”valueset{” 〈resourceRef 〉 |

〈functionRef 〉 ”}”
〈resourceRef 〉::= ” resourceRef{’ ” 〈id 〉 ”@” 〈id 〉 ” ’,”

〈integer 〉 ”}”
〈functionRef 〉::= ” functionRef{’ ” 〈id 〉 ” ’}”

Fig. 8. SISL Processing Instructions

aggregation may include one or more resource entries and
one resource may deliver one or more attribute value pairs.

Figure 7 shows the grammar of a resource entry. Mainly,
thesource specifies the resource which serves as information
providing entity and thesourceAttrib defines the attributes
necessary for further aggregation. Theinterval specifies the
period of time between queries to the resource.

C. Processing instructions

To make a statement about a service aspect, the data
acquired from resources has to be processed. For example,
the actual value of a resource attribute may be less relevant
to a service compared to the variance of the value. In many
cases, sampled values need to be consolidated into medians, or
sums be computed over a number of values. SISLfunction s
(Figure 8) address this requirement. They consist of a set of
parameters that are aggregated using the givenmethod . Pa-
rameters may either be literals, references to resource attributes
or the result of other functions. SISL offers a basic set of
built-in processing instructions. Though the set of available
operations is kept small, a mechanism for future extensions is
provided (see also Section V-B).

D. Notifications and conditions

The notification clauses (Figure 9) determine if and
when (according to acondition clause) processed informa-

〈notification 〉::= [notification] ”notification{” 〈condition 〉
〈declaration 〉 ”}”

〈condition 〉::= ”condition{” 〈identifier 〉
〈description 〉 〈boolExpression 〉 ”}”

〈declaration 〉::= ”declaration{” 〈valueset 〉 ”}”

Fig. 9. SISL Conditions

tion should be relayed. Adeclaration rule indicates whether
single or multiple values should be submitted.

Conditions are given in the form of logical expressions
in normal form (conjunctive or disjunctive normal forms are
valid options). They can be constructed from binary predicate
expressions (e.g. comparisons of values) or unary expressions
when booleans are concerned. The common relational and
arithmetic operators are supported, as for example equality,
greater/less, AND, OR, XOR and so forth.

E. Example

To illustrate the usage of SISL, we employ an example de-
rived from the scenario in Section II. Consider the computing
service (see Figure 1, shaded area) that provides computing
power originating from the underlying computing nodes and
that is dependent on the DNS service and router in order to
provide its service.

Thus, we define the available computing power to the user
c ∈ R, 0 ≤ c ≤ 1 of N computing nodes as follows:

c = D · R ·
∑N

i=1(piai)∑N
i=1 pi

,

whereD ∈ {0, 1} and R ∈ {0, 1} specify the availability
of the DNS service and router respectively,pi is a value
describing the “strength” of computing nodei ∈ {1, .., N}
and ai ∈ {0, 1} states the availability of computing nodei.
The values ofpi are out of scope of this work. Comparability
of e.g. computing elements is a research area of its own.
Representative work in the area of Grid accounting and billing
includes [1]. The precise values ofpi are modelled as attributes
of the resources and could be realised as database records.

The SISL representation of this example is shown in Fig-
ure 10. In lines 7 to 30 the resources and their attributes of
interest are specified. Lines 31 to 59 present the functions
executed by the adapters, while the functions executed by the
service attribute factory are listed in lines 60 to 111. Finally,
beginning at line 112, the condition under which a notification
shall be passed on to the service management application is
declared.

V. TOOL SUPPORT FOR SERVICE INFORMATION SYNTHESIS

As indicated in Section I, a basic requirement to an architec-
ture supporting synthesis of service information is the reuse of
existing data sources, such as already deployed management
tools. Obviously, such data will be delivered in different
formats. To interact with such tools, different APIs will have
to be used, e.g. for requesting data or configuring monitoring
options. Therefore, the consistent specification noted in SISL
needs to be broken down into different “languages” according
to whatever tools are used as data sources. In addition, the data
received from all sources must be converted into a common
syntax that can be used to describe the service.

A. Architecture overview

The Service Monitoring Architecture (SMONA) [3], [4]
extended by aService Attribute Factory(see Figure 11)
component addresses these needs.

Technology specific interfaces

Vendor specific interfaces

Unified interface

Service monitoring interface

Application

Configurator Attribute Factory

Adapter

R−GMA

Adapter

cacti

Adapter

Nagios

Adapter

MDS

Composer

Router
DNS

Node
1

Node
100

. . .

Site X

Integration/
configuration

layer

layer
Application

layer

Platform
independent

Platform

layer
specific

Resource
layer

configuration
workflowdata flow

event
delivery

Service Attribute
specification

configuration
request

Rich Event
specification

Rich Event
delivery

callback

configuration

Service Attribute
delivery

Legend

Management

Adapter ServiceRichEvent

SISL

Fig. 11. An architecture for Service Attribute Synthesis

a) The resource layer:This layer encompasses infras-
tructure components, applications and other sources of “raw”
data. The data available at this layer is specific to each
resource/component, though some standardised interfaces and
data formats may be available.

b) The platform specific layer:Resources are often man-
aged by means of more or less specialised management tools
(including scripts and “homemade” tools) that are found in the
platform specific layer; they provide information pertaining to
the infrastructure. Typically, information extracted from the
resource layer will be processed and made available in a
variety of formats.

c) Platform independent layer:To overcome the het-
erogeneity in the data sources at the platform independent
level,adaptersprovide unification of the data format and basic
configuration options. Every adapter needs to be capable of
configuring the underlying resource (or tool) and of extracting
the required data. The adapters present a common interface
towards the higher layers.

The adapters’ main task is to harvest the data and perform
pre-processing as required by applicablefunction statements
and deliver it in a common format to theRichEvent Composer
component. Delivery is governed by conditions that pertain
to temporal aspects, the method of delivery (push/pull) as
well as conditions regarding other events in the data gathering
process. Examples include the number of samples collected
and thresholds for collected values.

d) Integration and configuration layer:To produce the
service information required, as defined e.g. in a SISL doc-
ument, adapters may need to be selected and configured

1 aggregation{
id=compServAvailability

3 description{
author{DanciuFeldeSailer}

5 date{20060901134242}
}

/* parameters needed by adapters */
8 resource{ id=siteA.DNS

source{siteA.DNS}
10 sourceAttrib{up_down}

interval{1}
12 return{boolean}

}
14 resource{ id=siteA.router

source{siteA.router}
16 sourceAttrib{up_down}

interval{1}
18 return{boolean}

}
20 resource{ id=siteA.node*

source{siteA.node*}
22 sourceAttrib{ up_down

interval{1}
24 return{integer}

}
26 sourceAttrib{ strength

interval{0}
28 return{float}

}
30 }

/* functions executed on adapters */
32 function{ id=strength.node*.siteA

description{
34 text{strength of node}

}
36 method{mult}

parameters{
38 valueset{resourceRef{’strength

@siteA.node*’, 1}}
40 valueset{resourceRef{’up_down

@siteA.node*’, 1}}
42 }

return{float}
44 }

notifications{
46 condition{ id=nodeAvailability

description{
48 text{pass Availability of

nodes to factory }
50 }

timeout{60} // in seconds
52 }

declaration{
54 valueset{functionRef{

’strength.node*.siteA’}}
56 valueset{resourceRef{

’strength@siteA.node*’, 1}}
58 }

}

60 /* functions executed by factory */
function{ id=sumStrength

62 description{
text{calculate sum of strengths}

64 }
method{sum}

66 parameters{
valueset{resourceRef{’strength

68 @siteA.node*’, 1}}
}

70 return{float}
}

72 function{ id=sumAvailability
description{

74 text{calculates sum of nodes}
}

76 method{sum}
parameters{

78 valueset{functionRef{
’strength.node*.siteA’}}

80 }
return{float}

82 }

function{ id=availability
84 description{

text{calculate ratio of values}
86 }

method{div}
88 parameters{

valueset{functionRef{
90 ’sumAvailability’}}

valueset{functionRef{
92 ’sumStrength’}}

}
94 return{float}

}
96 function{ id=serviceAvailability

description{
98 text{currently available

computing power }
100 }

method{mult}
102 parameters{

valueset{functionRef{
104 ’availability’}}

valueset{resourceRef{’up_down
106 @siteA.DNS’, 1}}

valueset{resourceRef{’up_down
108 @siteA.router’, 1}}

}
110 return{float}

}

112 notifications{
condition{ id=service-

114 AvailabilityNotification
description{

116 text{Availability of service}
}

118 timeout{60} // in seconds
}

120 declaration{
valueset{functionRef{

122 ’serviceAvailability’}}
}

124 }
}

Fig. 10. SISL example: Specifying a service management attribute of the exemplary computing service, see also Table I and Section IV-E

accordingly. The task of managing the adapters, including
deployment, activation and configuration, is performed by the
Adapter Configuratorcomponent. The configurator uses the
resource (Figure 7) declarations to determine the appropriate
adapters, instantiate and configure these according to the
interval , function andsource clauses (see Figures 7 and
8).

TheRichEvent Composerperforms the composition of data
according to SISL specification. It gathers the (pre-processed)
data from all adapters related to a service attribute and
produces data records in accordance toaggregation (Figure
6) specifications. Thenotification (Figure 9) clauses de-
termine when data records are compiled and dispatched. The
resulting records (calledRichEvents) can be made available
to a management application (indicated by the dashed line in
Figure 11) and/or relayed to other components. In practice, a
middleware bus is used for transport of notifications.

e) Application layer:The architecture’s clients found in
this layer can be management applications or—later on—
Service Agents that implement a Service MIB.

B. Synthesis of service attribute values

Typically, the synthesis of service attribute values requires
further processing of RichEvents produced by the composer
component. TheService Attribute Factorycomponent applies
the processing instructions expressed infunction clauses
(see Figure 8) on the RichEvent to produce an attribute value.
It is equipped with an extensible library of mathematical
operations and functions used to operate on the elements
of service information contained in the RichEvent. Dynamic
binding of operation names referenced in SISL documents
to library functions is used to ensure flexibility in future
extensions.

VI. RELATED WORK

In this section, we present representative work in the area
of service information modelling and service description lan-
guages and discuss its significance to the approach proposed
in this paper.

a) CIM Metrics: The Common Information Model [6]
introduced by the Distributed Management Task Force is an
object-oriented information model that aims at providing a

common way to represent information about networks and
systems, as well as services. Within CIM, theMetrics Model
connects to our work, in that it provides a means to express
arbitrary metric information for all kinds of objects in the CIM
class hierarchy, including the classCIM Service. Keller et al.
[13] describe an extension of the Metrics Model for metric
aggregation, along with a CIMMeasurement Providerthat
implements an aggregation service based on the model. This
approach is built around the CIM framework; it assumes a
CIM-based infrastructure model being in place and relies on
CIM Providersfor data harvesting.

b) Internet Information Model:The Internet Informa-
tion Model (IIM) [16] designed by the Internet Engineering
Task Force revolves traditionally around the Simple Network
Management Protocol (SNMP). In this context, two MIBs
have been devised that deal with aggregation of management
information, namely the Distributed Management Expression
MIB [17] and the Event MIB [12]. Both approaches combined
allow to synthesise new MIB objects by performing mathemat-
ical operations on existing attributes, monitor these objects
and specify conditions for triggering events (e.g. sending a
notification).

Despite the structural similarity to the Service MIB ap-
proach, the RFCs inherently target the internet management
domain. While isolated attempts to model single service
classes [10] are part of the specification, IIM focus clearly lies
on the network and systems management, where a plethora of
MIBs have been specified. In that context, however, it con-
stitutes a rich source of component parameters for synthesis
of service attributes, exploitable by SNMP adaptors within
SMONA (see Section V).

c) Shared Information/Data Model:As part of the New
Generation Operations Systems and Software (NGOSS) pro-
gram the TeleManagement Forum released SID (Shared In-
formation/Data model) [21]. SID’s strength clearly lies in its
modelling of higher-level concepts (e.g. service , SLA), where
most entities and attributes have been defined. While in this
regard SID offers considerable benefits over IIM and CIM in
terms of maturity, it currently shows deficits in expressing low-
level details of resources (component parameters). However,
SID’s sound modelling of service and component interrelation-
ships render it easy-to-apply for Step 3 of the methodology
presented in this paper (Figure 5).

d) Service Modelling Language:Gopal’s Service Mod-
elling Language (SML) [9] allows services to be defined by
selecting appropriate values in a 9-dimensional space, namely
type, size, duration, connectivity, QoS parameters, protocol
parameters, value added features, assurance, and pricing. Since
these dimensions are used to describe services unambiguously,
they can be seen as a sort of service attributes. SML features
a set of primitives to combine or aggregate services, mainly
by performing mathematical operations on the values in the 9-
dimensional space. SML’s focus on these nine dimensions for
describing services attributes constrains its general applicabil-
ity. However, it exhibits a number of sound language features,
e.g. the use of patterns in declarations.

e) Web Services:Modelling and composition of services
has been the subject of intense research in the area of Web
Services. The Web Service Description Language (WSDL) [2]
constitutes a XML-based language to describe how web-based
services can be invoked. Its scope is similar to that of interface
definition languages, such as CORBA’s IDL. The OWL-S
coalition has authored a markup language for describing the
properties and capabilities of Web Services [19]. OWL-S is
intended to be used by software agents for discovery and
planning of services (e.g. generation of composite services
in accordance with user goals). A principle underlying both
languages is the abstraction of implementation details; they
are agnostic regarding the components that form a service.
However, they do not address the issue of binding component
parameters to services.

f) Web Service Level Agreement Framework (WSLA):
The WSLA Framework [14], [5] is targeted at defining and
monitoring SLAs for Web Services. It consists of a formal
language for SLA specification and a runtime architecture. The
WSLA language allows developers to define three aspects of a
SLA, namely parties, service description and obligations. The
service description entails the definition of SLA parameters
(e.g. OverUtilization) as well as instructions on how these
parameters should be aggregated. Aggregation instructions
can either be defined in terms of functions or measurement
directives. The latter specifies how an individual parameter
is to be measured, e.g. by providing an URI (Universal
Resource Identifier), a protocol message or script execution.
The specification of instructions is, however, imperative in
nature and the binding to concrete resources is deferred to
the implementation of the respective instruction. The WSLA
language is intended to drive the configuration of the runtime
architecture. It is implemented as a collection of Web Services
includingSLA Establishment, SLA Deployment, SLA Measure-
ment and ReportingandSLA Termination.

g) RDF—Resource Description Framework:The World
Wide Web Consortium’s RDF [22] specifies a XML-based
format for resource description in form of directed graphs. In
RDF anything represented by aUniversal Resource Identifier
(URI) is regarded as aresource. Properties or attributes of
these resources are described as RDFdescriptions and can
either be aliteral or a pointer to another resource. A set of
descriptions form the RDF graph, the resources and literals
being the nodes and the properties forming the edges.

VII. D ISCUSSION

In this paper we have emphasised the importance of service
attributes in the management of contemporary and future IT
services. We have proposed a methodology for the specifi-
cation of such attributes and presented SISL, a declarative
language suited for formal attribute specification. To facilitate
technical realisation of service attributes, we have proposed an
architecture capable of synthesising attribute values from ex-
isting resource data. In this section, we will address a number
of issues left for further study and discuss the limitations of
the approach presented.

1) Language extensions:The aggregations performed in
the Integration layer of SMONA (specifically in the Ser-
vice Attribute Factory, see Figure 11) rely on a library of
mathematical operations being present. The contents of this
library effectively limit the power of expression offered by
SISL. As there is virtually an infinite number of conceivable
mathematical and statistical operations that can be performed
on resource data, it is probable that users will eventually re-
quire operations not provided. The dynamic binding (by name)
of the required library operations offers an implicit, generic
extension mechanism. However, it is subject to uncontrolled
growth of the library set. The most frequently used operations
should be compiled into a “standard operations set”.

2) Derivation of generic service attributes:The larger
part of this paper is focused on the specification of service
attributes with a given semantics. However, as suggested in

Activities

Cases
Use

Service Mgmt Process

Service Management
Information

Service Management
Tasks

specify specify

require require

Fig. 12. Service attributes
originating from ITSM pro-
cedures

Figure 5, attributes of IT ser-
vices are selected or derived from
the overall management paradigm
used and the high-level manage-
ment requirements imposed onto
the IT organisation. Three sources
of service attributes are discussed
in short in this section: process-
oriented IT Service Management
(ITSM) frameworks, the classic
functional areas of management
and the IT management alignment to the (formalised) needs
of business. For the assembly of a Service MIB domain limits
as well as the life-cycle of IT services must be taken into
account.

a) Taking into consideration ITSM frameworks:The in-
creasing use of ITSM frameworks like ITIL’s Service Support
[18] suggests that such frameworks constitute a source of
requirements with regard to service attributes [20]. The main
goal of such process-oriented frameworks is to control—under
business aspects—the life-cycle of services provided in an
IT organisation. As shown in Figure 12, the introduction of
management processes implies the specification of manage-
ment tasks and use-cases that must be executed manually
or in reliance on service management tools. In either case,
managers have no direct interest in the current operative state
of infrastructure elements. The service related information they
do need can be specified as a set of service attributes.

b) The functional areas of management:The classic OSI
functional areas (FCAPS) can be leveraged as a guideline to
service management [7]. Every FCAPS area has specific needs
for information regarding a management target. These needs
could be met by creating suitable service attributes—or by
providing templates as described later on in this section. Such
attributes should support the management tasks defined for the
functional areas they are derived from.

c) Business-driven technical service management:Man-
agement requirements derived from business needs can be
acquired from SLAs, OLAs or similar contracts. These should
reflect customer demands as well as the impact of service

failures on the business. As such, they present requirements on
the management information (i.e. service attributes) available
with respect to the services offered. For this task, however,
specialised approaches (such as WSLA) already exist.

3) Assessing the impact of device failure:The aggregations
specified for service attributes allow reasoning regarding the
“importance” of a device. Taking a closer look at the aggregat-
ing function in our example (see section IV-E), it is obvious
that failures of the DNS serviceor the router will cause a
failure of the service. This identifies those resources as single
points of failure.

The adaptation of aggregation rules along the service life-
cycle raises additional interesting questions. In particular,
automation support for adjusting an aggregation function in
response to changes in the service provisioning constitutes a
challenging issue.

4) Inter-domain and Grid management:Initially, SISL has
been designed to specify service attributes in single domain
setups. As one next step, the language shall be enhanced
to work in multi-domain and Grid environments. Therefore,
several requirements beyond the ones mentioned in Section
II have to be taken into account, especially security consid-
erations like authorisation, authentication, data integrity and
confidentiality, performance considerations (e.g. delay), clock
synchronisation and the enforcement of information sharing
and privacy policies. Further, the application of SISL and
the before mentioned service monitoring architecture will be
deployed in a Grid environment. Thus, VO (Virtual Organ-
isation) Management Systems have to be interfaced. This
leads to the necessity to respect both the policiesof VOs
and the existing policiesapplicable to VOs. Additionally,
highly dynamic service composition has to be supported as a
typical Grid characteristic, implying highly dynamic resource
allocations and possibly short-lived VOs.

5) Service templates:Inherently, the methodology pre-
sented in Section III relies on manual execution. It is tied
to expert knowledge in that scenario-specific characteristics
need to be accommodated. Since services can be provisioned
in a wide variety of ways—varying across different vendors,
technologies, and product offerings— this seems unlikely to
change. As an alleviation of this problem, we are working
on a template library for standard services. These templates
are intended to provide a basic set of attributes and aggre-
gation rules that can be adapted—and consequently refined—
to match a specific scenario. Towards this goal, we analyse
common application domains in order to identify invariant
service characteristics. For instance, we assume a standard web
hosting service to be composed of a web server, middleware
server, and database, as well as a router. Based on this
simple model, a number of generic service attributes and
aggregations can be derived, e.g. that the connectivity of the
web hosting server depends on both the connection of the
employed servers and the router. Although a serious effort is
obviously required to build a comprehensive template library,
related work [15], [7] shows that a template-based approach
to describing services is indeed feasible.

6) Application in distributed security scenarios:As future
work, the application of SISL and SMONA in the context
of Grid security management is planned. We are trying to
leverage our approach to support development of a Grid
intrusion detection and reporting system while taking the Grid-
typical issues mentioned in VII-.4 into account.

7) Implementation:Up to now, most of our implementation
efforts have concentrated on the platform specific and platform
independent layer of SMONA (see section V). In this context,
we have developed several adaptors, including annagiosbridg-
ing adapter as well as aniptables adapter. Communication
with upper layers of SMONA has been facilitated using the
CORBA middleware. Since a number of CORBA bindings for
programming languages exist, this also introduces flexibility in
adapter development – with adaptors today being implemented
in C++ or JAVA. While the basic functionalities (such as
parsing SISL documents or basic aggregation functionalities)
of the integration and configuration layer have been realised,
the development of a graphical user interface would further
ease the application of SMONA. This is being addressed by
future work, together with an extended mathematical library
for aggregation functions.

ACKNOWLEDGEMENT

The authors wish to thank the members of the Munich Network
Management (MNM) Team for helpful discussions and valuable
comments on previous versions of this paper. The MNM Team
founded by Prof. Dr. Heinz-Gerd Hegering is a group of researchers
of the University of Munich, the Munich University of Technology,
the University of Federal Armed Forces Munich and the Leibniz
Supercomputing Centre of the Bavarian Academy of Sciences. Its
web-server is located at http://www.mnm-team.org.1

REFERENCES

[1] Alexander Barmouta and Rajkumar Buyya. GridBank: A Grid Account-
ing Services Architecture (GASA) for Distributed Systems Sharing and
Integration. ipdps, 00:245a, 2003.

[2] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) 1.1. Technical
report, W3C, March 2001. W3C Note.

[3] V. Danciu, A. Hanemann, H.-G. Hegering, and M. Sailer. IT Service
Management: Getting the View. In E. M. Kern, H.-G. Hegering, and
B. Brügge, editors,Managing Development and Application of Digital
Technologies. Springer Verlag, June 2006.

[4] V. Danciu and M. Sailer. A monitoring architecture supporting service
management data composition. InProceedings of the 12th Annual
Workshop of HP OpenView University Association, number 972–9171–
48–3, pages 393–396, Porto, Portugal, July 2005. HP.

1Parts of this work have been funded by the German D-Grid Initiative under
contract 01 AK 800 B.

[5] Markus Debusmann and Alexander Keller. SLA-driven Management
of Distributed Systems using the Common Information Model. InInte-
grated Network Management VII, Managing It All, IFIP/IEEE Eighth In-
ternational Symposium on Integrated Network Management (IM 2003),
volume 246, Colorado Springs, USA, March 2003. IFIP/IEEE, Kluwer
Academic Publishers.

[6] Distributed Management Task Force (DMTF). Common Information
Model (CIM) Version 2.9. Specification, June 2005.

[7] G. Dreo Rodosek. A Generic Model for IT Services and Service
Management. InIntegrated Network Management VII, Managing It
All, IFIP/IEEE Eighth International Symposium on Integrated Network
Management (IM 2003), volume 246, pages 171–184, Colorado Springs,
USA, March 2003. IFIP/IEEE, Kluwer Academic Publishers.

[8] M. Garschhammer, R. Hauck, B. Kempter, I. Radisic, H. Roelle, and
H. Schmidt. The MNM Service Model — Refined Views on Generic
Service Management. Journal of Communications and Networks,
3(4):297–306, December 2001.

[9] Rajeev Gopal. Unifying Network Configuration and Service Assurance
with a Service Modeling Language. In R. Stadler and Ulema M., editors,
Proceedings of the 8th International IFIP/IEEE Network Operati ons
and Management Symposium (NOMS 2002), pages 711–725, Florence,
Italy, April 2002. IFIP/IEEE, IEEE Publishing.

[10] H. Hazewinkel, C. Kalbfleisch, and J. Schoenwaelder. RFC 2594:
Definitions of managed objects for www services. RFC, IETF, May
1999.

[11] H.-G. Hegering, S. Abeck, and B. Neumair.Integrated Management
of Networked Systems – Concepts, Architectures and their Operational
Application. Morgan Kaufmann Publishers, ISBN 1-55860-571-1, 1999.

[12] R. Kavasseri. RFC 2981: Event mib. RFC, IETF, October 2000.
[13] A. Keller, O. Benke, M. Debusmann, A. Köppel, H.M. Kreger, A. Maier,

and K. Schopmeyer. The CIM Metrics Model: Introducing Flexible
Data Collection and Aggregation for Performance Management in CIM.
IEEE eTransactions on Network and Service Management (eTNSM),
1(2), December 2004.

[14] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specify-
ing and Monitoring Service Level Agreements for Web Services.Journal
of Network and Systems Management, Special Issue on ”E-Business
Management”, 11(1), 2003.

[15] Pankay K.Garg, Martin Griss, and Vijay Machiraju. Auto-Discovering
Configurations for Service Management.Journal of Network and
Systems Management, 11(2):217–239, 2003.

[16] K. McCloghrie, D. Perkins, and J. Schoenwaelder. RFC 2578: Structure
of management information version 2 (smiv2). RFC, IETF, April 1999.

[17] R. Kavasseri (Ed. of this version). RFC 2982: Distributed management
expression mib. RFC, IETF, October 2000.

[18] Office of Government Commerce (OGC), editor.Service Support. IT
Infrastructure Library (ITIL). The Stationary Office, Norwich, UK, 2000.

[19] OWL-S Coalition. OWL-S 1.1 release.http://www.daml.org/
services/daml-s/0.9/ .

[20] M. Sailer. Towards a Service Management Information Base. In
IBM PhD Student Symposium at ICSOC05, Amsterdam, Netherlands,
December 2005.

[21] TeleManagementForum. Shared Information/Data (SID) Model Con-
cepts, Principles, and Domains. Technical report, July 2006. GB 922.

[22] World Wide Web Consortium W3C. Resource Description Framework
(RDF), February 2004.http://www.w3.org/RDF/ .

http://www.mnm-team.org
http://www.daml.org/services/daml-s/0.9/
http://www.daml.org/services/daml-s/0.9/
http://www.w3.org/RDF/

	I Introduction
	II Scenario and Requirements
	II-A A broader view
	II-B Scenario details
	II-C Management Challenges and Requirements
	II-D Scope

	III Synthesising service attributes
	III-A Attribute-based service definition
	III-A.1 Example
	III-A.2 Characteristics of a service attribute

	III-B Methodology for service attribute synthesis
	III-B.1 Derive
	III-B.2 Define
	III-B.3 Monitor
	III-B.4 Use

	IV SISL: A language for service information synthesis
	IV-A Basic expressions
	IV-B Resource and data related expressions
	IV-C Processing instructions
	IV-D Notifications and conditions
	IV-E Example

	V Tool support for service information synthesis
	V-A Architecture overview
	V-B Synthesis of service attribute values

	VI Related work
	VII Discussion
	VII-.1 Language extensions
	VII-.2 Derivation of generic service attributes
	VII-.3 Assessing the impact of device failure
	VII-.4 Inter-domain and Grid management
	VII-.5 Service templates
	VII-.6 Application in distributed security scenarios
	VII-.7 Implementation

	Literatur
	References

