
XML-based Monitoring of Services and Dependencies

Christian Ensel Alexander Keller
Munich Network Management Team, University of Munich IBM Research Division, T.J. Watson Research Center

Oettingenstr. 67, 80538 Munich, Germany P.O. Box 704, Yorktown Heights, NY 10598, USA
ensel@nm.informatik.uni-muenchen.de alexk@us.ibm.com

Abstract— We present a novel approach for describing, querying and
monitoring the dependencies among services in a distributed system. Until
now, dependency information has to be acquired either through custom-
built scripts or proprietary tools; the absence of a common description
format makes the exchange of service dependency models across multiple
platforms and their monitoring particularly difficult. We show how this
problem can be addressed by a web based architecture for retrieving and
handling dependency information from various heterogeneous managed
resources. Specifying dependencies in an XML based notation facilitates
the sharing of information among the heterogeneous systems involved in
the monitoring process.

Keywords— Web–based Service Monitoring, Dependency Analysis,
RDF, XML, XPath

I. I NTRODUCTION

The monitoring of services and their dependencies on other
components of distributed systems is becoming increasingly
important for integrated service management because applica-
tions and services rely on a variety of supporting services that
are often outsourced to a service provider. Consequently, fail-
ures occurring in one service affect other services being offered
to a customer, i.e., services havedependencieson other ser-
vices. For our discussion, we call services that depend on other
servicesdependents, while services on which other services
depend are termedantecedents. It is important to note that a
service often plays both roles (e.g., a name service is required
by many applications but is dependent on the proper function-
ing of other services, such as operating system and network
infrastructure), thus leading to adependency hierarchythat
can be modeled as a directed graph. Figure 1 depicts a sim-
plified service dependency graph for various components of an
e–business system that we have used in a testbed for designing,
implementing and testing our approach. It represents a ficti-
tious Internet storefront application involving a Web Server for
serving static content, a Web Application Server for hosting the
business logic and a back–end database system that stores the
dynamic content of the application (such as product descrip-
tions, user and manufacturer data, shopping carts).

Both service providers and customers require management
tools that allow to navigate the dependency hierarchy, in order
to analyse and track down the root cause of a service failure. In
addition, service providers are interested in tools to determine
in advancethe impact of a service outage on other services and
users for scheduling server maintenance windows.

However, the main problem today lies in the fact that de-
pendencies between services and applications are not made ex-
plicit, thus making root cause and impact analysis particularly
difficult [3]. Solving this problem requires the determination
and computation of dependencies between services and appli-
cations across different systems and domains, i.e., establishing
a ‘global’ service dependency model and enabling system ad-

Database
DB2 UDB 5.2

E-business Application
Storefront Servlets

Web Server
IBM HTTP Server 1.3.6

Web Application Server
IBM WebSphere 3.5

OS
AIX 4.3.3

OS
WinNT 4

IP
Service

wslab8.watson.ibm.com rslab2.watson.ibm.co m

Fig. 1. Simplified service dependency graph of an e–business system

ministrators to traverse the resulting directed graph from the
top to the bottom and in reverse order. What is needed is a dy-
namic model reflecting the dependency relationships between
different services; in addition, a management system should be
capable of providing various mechanisms to select parts of a
dependency model according to user–defined criteria.

While previous work (often within the scope of event corre-
lation, see e.g. [4] and [6]) has focused on identifying service
dependencies and describing them in a proprietary format, it
remains unclear how dependency information can actually be
exchanged between the different entities involved in the mana-
gement process. Since it is unlikely that different parties in-
volved in the monitoring of outsourced services use the same
toolset for tracking dependencies, it is of fundamental impor-
tance to define an open format for specifying and exchanging
dependency information. This is the topic addressed by this
paper. The proposed solution is based on XML,XML Path
Language (XPath)[9] and theResource Description Frame-
work (RDF)[7]. It provides a uniform interface to monitor and
query service dependency information across the systems of a
distributed environment and can be used by fault and topology
management applications or event correlation systems.

The paper is structured as follows: Section 2 states the re-
quirements for determining service dependencies and gives an
overview of the proposed architecture and its components. Sec-
tion 3 introduces the core technologies that we have used for
designing our solution, namely XML, RDF and the XPath lan-
guage. Further, it analyses how these can be used to represent
and process dependency information and gives a concrete ex-
ample that applies our methodology to an e–business system.
The proof–of–concept prototype implementation is described
in section 4. Section 5 concludes the paper and presents issues
for further research.



II. SERVICE DEPENDENCIES

Conceptually, dependency graphs provide a straightforward
means to identify possible root causes of an observed prob-
lem: If the dependency graph for a system is known, navigating
the graph from an impaired service towards its antecedents—
being either co-located on the same host or on different
systems—will reveal which underlying entities might have
failed. Traversing the graph towards its root yields the depen-
dents of a service, i.e., the components that might fail if this
service experiences an outage.

A. Requirements for Service Dependency Models

1. The number of dependencies between many involved sys-
tems is computable, but may become very large. From an
engineering viewpoint, it is often undesirable—and some-
times impossible—to store a complete,instantiateddepen-
dency model at a single place. Traditional mechanisms used
in network management platforms such as keeping an instan-
tiated network map in the platform database therefore cannot
be applied to dependencies due to the sheer number and the
dynamics of the involved dependencies. Thus, we propose to
distribute the storage and computation of dependencies across
the systems involved. Section II-B describes our architecture
that is designed to meet these requirements.
2. Further, facilities for combining local dependency graphs,
stored on every system, into a uniform dependency model are
required. The facilities need to provide an API so that mana-
gement applications can query the dependency model. These
queries will allow the retrieval of the direct antecedents of a
specific service, or recursively determine the whole set of their
sub–nodes, etc. The list of nodes received by the management
application enables it to perform problem determination and to
check whether these services are operational. Section III de-
scribes our approach to cope with this problem.
3. Dependency models are usually directed graphs. This raises
the question which data format is able to represent dependency
graphs efficiently so that fine–grained queries can be applied to
them. Section III-C describes our solution to this issue.
4. Finally, the notion of dependencies is very coarse and needs
to be refined in order to be useful. Examples for this are the
strengthof a dependency (indicating the likelihood that a com-
ponent is affected if its antecedent fails), thecriticality (how
important this dependency is w.r.t. the business objectives), the
degree of formalization(i.e., how difficult it is to obtain the
dependency) and many more. While it is out of the scope of
this paper to establish a taxonomy for dependencies, there is a
need to add attributes to dependencies that allow their further
qualification. This is addressed by section III-C.

B. An Architecture for Service Dependencies

Our distributed three–tier architecture, depicted in figure 2,
addresses the issue of dealing with potentially very dynamic
dependency relationships among a large number of compo-
nents. We assume that the managed resources (depicted in the
right part of the figure) are able to provide XML descriptions
of their system inventory and their various dependencies. The
details of these descriptions are presented in section III.

System
Repository

Management System

Web
Server
httpd

CIMOM

Management Services Managed Resources

Web
Server
httpd

Dependency
Query

Facility

TraderName

Event
Other Services

Flat XML/RDF Files

Java/RMI

CIM
Provider

CIM
Provider

Dependency DescriptionsGenerate Dependency
Information

Issue Queries

XML/http

XML/http

XML/http

Fig. 2. Architecture of our Dependency System

In the center of the figure is the core component of our archi-
tecture: TheDependency Query Facility, triggered by queries
of the management system using JavaRemote Method Invoca-
tion (RMI), processes them and sends the results back to the
manager. Its main tasks are as follows:

� Interacting with the management system. The management
system issues queries to the API of the Dependency Query Fa-
cility. The API exposes a flexible ‘drill–down’ method that,
upon receiving the identifier of a service, returns:
– either descriptions of itsdirect antecedents, i.e., the first

level below the node representing the service, or
– thewhole subgraphbelow the service’s node,
– anarbitrary subsetof the dependency graph (levelsm to n

below a given node).
A ‘drill–up’ method with the same facilities, targeting the de-
pendents of the service, is also present. In addition, methods
for gathering and filtering information for classes and proper-
ties of managed objects are present.
� Obtaining the dependency information from the managed re-
sources (by issuing queries over http) and applying filtering
rules (as specified by the manager) to it.
� Combining the information into a data structure that is sent
back to the manager as XML document according to the format
specified in III-B and III-C.

Details of our implementation are given in section IV. It
should be noted that due to its fully distributed nature, the ar-
chitecture aims at keeping the load on every involved system
as low as possible. It completely decouples the management
system from the managed resources and encapsulates the time
consumingfilter and join operations in the dependency query
facility, which can be replicated on various systems. Thus, we
are able to achieve a maximum level of parallelism for query
operations, since the selection of an instance of the dependency
query facility can be done flexibly by the management system.

Another important advantage of our architecture is that the
(very large and highly dynamic) overall dependency model is
not stored at a central place but computed on demand from the
different parts located at the resources. The management sys-
tem therefore always receives the most recent information but
is still free to store it according to elaborate caching policies.



III. M APPING RESOURCEDATA TO XML / RDF

A key issue to successfully provide information about ser-
vices and their dependencies to management applications is the
introduction of a common description format. This does not
aim at the definition of an new information model for service
management, but at an underlying representation optimized for
our purposes and additionally to embrace existing management
information, e.g., from CIM (Common Information Model [1])
object managers and repositories. Furthermore, the represen-
tation must be easily understood by management applications
and be able to hide the heterogeneity of the described systems,
resp. the various ways to obtain their dependency information.

In order to meet these goals, our approach is based on XML.
It provides the basis for defining extensible structures for data
representation and comes with publicly available tool imple-
mentations for many platforms. Besides XML parsers, which
are needed to read XML documents for further processing, we
make use of XPath [9], an extensive query language to ex-
tract parts of an XML documents’ information. Each query
describes a ‘path’ through the virtual tree structure of the XML
document. The ease of use of the existing XPath tools is one
of the reasons that makes our approach powerful and easy to
apply at the same time. An example on how XPath is used in
our project is described in section IV-B.

A second basis of our solution is the Resource Description
Framework (RDF) from the W3C. The main reason for using
RDF stems from the fact that it provides a very convenient and
efficient way for representing directed graphs in an XML doc-
ument. The following sections will explain the core features of
RDF and show its advantages over an “XML only” approach—
in particular, for object oriented information representation.

A. Resource Description Framework

The goal of RDF is to provide a formal means of defining
semantics of XML tags. Originally, it focused on document
enrichment, but now allows the description of any resource
by definingRDF properties and provides an extensible type
system. According to the terminology of RDF, anything that
has (or can be represented by) aUniversal Resource Identifier
(URI) is a potentialRDF resourceand can be described by one
or moreRDF descriptions that list its properties (attributes).
The value of each RDF property can either be aLiteral (string)
or a pointer to another resource. One or more descriptions form
an RDF graph. The described resources plus theLiterals are
the nodes of the graph. Edges are formed by the RDF proper-
ties. The type of resource an RDF property can be applied on
is called its ‘domain’, the types it may point to its ‘range’.

B. Mapping Service Descriptions

Every described resource can be embedded into a type
system, thus, enabling the RDF parser to check whether
the attributes, methods, etc. are used correctly. This al-
lows a clean object description, without the need to use tags
on a meta level (e.g.,<ds:Service> instead of <ms:Class

classname="ds:Service"> ; see [8] for detailed discussions).
Furthermore—and this makes it superior to purely XML based

solutions—it does not lead to the otherwise very complex
mechanisms for manually checking the syntactical correctness
of inherited elements because this is already provided by RDF
parsers (but, in contrast, not definable in XML DTDs).

The following code fragment defines the RDF classGeneric-

Node that will be used as the superclass for nodes in our depen-
dency graph. Derived from this is the subclassService which is
the type for any service description. The last element demon-
strates the definition of attributes as RDF properties. It is a
common attribute for all sub–typed services definitions.

<rdfs:Class rdf:ID="GenericNode"/>
<rdfs:Property rdf:ID="NodeDescription">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#GenericNode"/>

</rdfs:Property>

<rdfs:Class rdf:ID="Service">
<rdfs:subClassOf rdf:resource="#GenericNode"/>

</rdfs:Class>
<rdfs:Property rdf:ID="ServiceIdentifier">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#Service"/>

</rdfs:Property>

Such meta information is called anRDF schema. It is ref-
erenced from all RDF documents describing service depen-
dencies by denoting its URL in the XML namespaces defini-
tion. For our purposes, an appropriate schema is stored at web
servers reachable by all involved systems. As the schemas do
not change frequently, simple caching mechanisms can reduce
the traffic to a minimum.

The naming problem is solved by introducing a new name-
space for each class, automatically binding each of its RDF
elements (attributes, methods, etc.) to the same namespace.
This reflects common principles of object oriented languages.

While this shows that RDF is suitable for describing man-
aged objects, one should also recognize that it explicitly allows
a hybrid approach of RDF and pure XML in the same docu-
ment. An RDF parser would only look at those parts of the
document that are embraced by theRDF–tag, while the other
parts are read by an ‘ordinary’ XML parser.

C. Mapping Dependencies

Dependency representation covers two aspects: The depen-
dency structure (whether or not dependencies exist between
nodes) and information about the dependencies’ properties.

In existing approaches, e.g., in CIM models (and therefore
also in its XML-mapping [2]) the latter is addressed using as-
sociation classes, which may—just like any CIM class—define
their own attributes to reflect any kind of property. However,
this leads to disadvantages in regard to the first aspect, as espe-
cially the navigation through the dependency graphs (as stated
in section II-A) becomes too complex. This is due to the fact
that instantiated associations may be stored at different places
than the CIM objects for which the association is relevant. A
second reason why we chose not to use the CIM XML-mapping
is that CIM objects referenced from within an association are
tagged with a CIM object identifier, which cannot be used as a
simple ‘pointer’ to the XML object description.

Both aspects are handled better by RDF. However, one has to
avoid the following problem that a straightforward approach (to
directly map the service dependency graph onto an RDF graph)



Managed
Object X

Dependency
Association

Managed
Object Y

Managed
Object X

Managed
Object Y

Dependency
Graph

RDF-Graph

- Resources

- Properties

Fig. 3. Mapping a dependency to RDF

would lead to: In a direct mapping, dependencies would be
reflected by RDF properties. However, RDF does not allow to
add attributes to properties. This would therefore preclude the
presence of attributes for instantiated dependencies. Note that
although RDF allows the definition of properties for properties,
this does not solve the problem. These would be the analogy to
CIM association qualifiers, but not to the required association
attributes.

The solution is to map dependencies to a second type of RDF
resource, as shown in figure 3. The RDF properties are only
used to tie the matching managed object resources to the asso-
ciations, thus spanning a bipartite graph. This maintains the ad-
vantage of simple dependency graph traversal and permits not
only every object to have a well–defined set of attributes, but
also allows the annotation of dependencies (e.g., strength, criti-
cality, etc.). This meets the requirement of section II-A, stating
that a dependency needs to be annotated with attributes that
provide information about the dependency itself. It is therefore
possible to use values of attributes in queries, e.g., by asking
for all the services with a ‘high’ dependency strength.

The code fragment below shows the basic RDF schema for
the generic dependencies, which we calledDependencyAssoci-

ation (to stay close to CIM terminology), together with the
properties needed for the binding to and from the managed ob-
ject description, as explained above. The lower part of the code
further shows an example of an association attribute.

<rdfs:Class rdf:ID="DependencyAssociation" />
<rdfs:Property rdf:ID="dependency">

<rdfs:range rdf:resource="#DependencyAssociation"/>
<rdfs:domain rdf:resource="#GenericNode"/>

</rdfs:Property>
<rdfs:Property rdf:ID="antecedent">

<rdfs:range rdf:resource="#GenericNode"/>
<rdfs:domain rdf:resource="#DependencyAssociation"/>

</rdfs:Property>
<rdfs:Property rdf:ID="DependencyStrength">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#DependencyAssociation"/>

</rdfs:Property>

D. Example: Representation of a Service with Dependencies

We will now present by means of an example how the ap-
proach described in sections III-B and III-C can be applied to
our e–business scenario of section I. More precisely, we show
a fragment of the documents’ content specifically representing
the dependency ofStorefront Servlets on DB2.

By definition, the header of every document starts with the
XML tag, followed by links into the dependency schema and
RDF syntax resp. schema definitions (lines 1 and 2). The body
of the document contains the service definition start and end

tags (line 3, resp. 20), its attributes (lines 4 to 11) and one de-
pendency (lines 12 to 19). Note that all pointers to descriptions
of antecedents are URIs, thus making their location (local or re-
mote) transparent to the dependency query facility. The string
ds: in the expression is the namespace–prefix we use for the
dependency schema.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:ds="http://wslab4.watson.ibm.com/

DependencySchema#" xmlns:rdf="http://www.w3.org
/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://
www.w3.org/2000/01/rdf-schema#">

3 <ds:Service>
4 <ds:name>E-business Application</ds:name>
5 <ds:caption>Storefront Servlets</ds:caption>
6 <ds:identifier>my.catalogServlets</ds:identifier>
7 <ds:description>business logic of catalog app.
8 </ds:description>
9 <ds:version>3</ds:version>
10 <ds:release>1</ds:release>
11 <ds:processName></ds:processName>
12 <ds:dependency>
13 <ds:ServiceDependency>
14 <ds:antecedent rdf:resource="http://rslab2.

watson.ibm.com/xmlrepository/db2.xml"/>
15 <ds:generated>automatic</ds:generated>
16 <ds:label>ebusinessApp DependsOn database
17 </ds:label>
18 </ds:ServiceDependency>
19 </ds:dependency>
20 </ds:Service>

It is fair to say that RDF is ideally suited for representing in-
formation about managed objectsand their dependencies. For
a management tool developer, RDF allows a significantly sim-
pler way to perform document validation, while keeping all the
benefits of a hierarchical type system, like in object oriented
languages. There remain only very few issues that cannot be
checked by an RDF parser: E.g., one can not specify in an RDF
schema (but neither in an XML–DTD) if further constraints are
imposed on ranges of attributes (RDF properties).

An additional aspect that has to be mentioned is the abil-
ity to easily query required information from RDF documents.
While XPath is the means of choice for a purely XML based
approach, no special query mechanism (beyond parsing) exists
that is fully ‘aware’ of RDF concepts. The obstacle that RDF
puts up against a straightforward use of XPath—although its
representation is nothing but an XML document—is that it al-
lows various (full and abbreviated) syntaxes for the same RDF
concepts. Our solution is to restrict the use of RDF to a single
(abbreviated) syntax only. This brings no disadvantages when
the documents are processed by RDF parsers, but allows the
straightforward use of XPath.

IV. PROOF-OF-CONCEPTIMPLEMENTATION

A. Components of the Prototype

The main part of the prototype implements the middle tier
of the architecture described in II-B.DepInformationProvider

provides the interface to the manager tier by answering queries
for dependency and service descriptions. It constructs the result
document by collecting and combining the appropriate docu-
ment parts viaResourceProxies , which access the RDF/XML
descriptions at the managed resources’ web servers (lower part
of figure 4) and implement caches to enable a high overall per-
formance. Special attribute tags help to distinguish ‘static’ at-
tributes from those with a high change frequency. The prox-



ies are also able to resolve XPath expressions, in cases where
queried web servers are not capable of doing so by themselves.
Once the right element descriptions are found, it is easy to com-
bine them into a complete document by appending them under
one RDF/XML document header.

RDF
/ XML

DepInformationProvider

DepQueryResolver

httpd
http-queries

queries
Management Application

ResourceProxy

Dependenc y
Query

Facilit y

HashMap of Proxies

ElementURI
Resolver

RDF-
Schema
RDFSubClass

Resolver

RDF
/ XML

Fig. 4. Components and information flows

B. Implementation of XPath Queries

A key part of the implementation is the extraction of infor-
mation from various RDF documents. This data extraction is
based on the aforementioned XPath query language. It will be
demonstrated by means of a drill-down query issued, e.g., by
root cause analysis tools (for details on XPath, the reader is
referred to [9]).
The procedure consists of two phases:
1. getting the dependency information of Service X
2. getting the descriptions of all antecedents.

The first phase reads the description of Service X from its
web server (which is determined by theElementURIResolver

from X’s ID) and applies the following XPath expression to
extract the IDs of its antecedents:
/descendant::[(self::ds: NodeType)]/child::ds:dependen-
cy/*[(self::ds: DependencyType)]/child::ds:antecedent/
@rdf:resource

The example also shows that XPath is not aware of certain
RDF features: The above query assumes that both the exact
type of the resource (the node) as well as the type of the depen-
dency (the association) have to be known before the query is
executed. Otherwise, it would not return a required antecedent
where the type of the association or service is replaced by its
supertype (e.g.,DependencyAssociation instead ofServiceDe-

pendency ). We solve this issue by allowing slightly extended
XPath expressions in the upper parts of the prototype architec-
ture, that allow to specify any supertype. The expressions get
translated into a standard XPath in theResourceProxy , which
(with help from theRDFSubClassResolver ) replaces each su-
pertype by an or’ed list of all known subclasses, thus enhancing
the XPath expression to match any of them.

In the second phase, the descriptions of all antecedent ser-
vices are obtained from their web servers by the simple XPath

expression/descendant::ds:Service . It allows to store ad-
ditional non–RDF descriptions in the same XML document,
without risking any interference.

Usually, XPath expressions do not become much more com-
plex than the one above. In drill–up operations (used by impact
analysis tools to recursively navigate the dependency hierarchy
towards the root node), e.g., one has to search for all nodes with
a certain antecedent. This is mapped to an XPath expression
matching all nodes that fulfill the predicate ”has the antecedent
ID”, which is expressible by a simple (nested) XPath.

V. CONCLUSIONS ANDOUTLOOK

We have presented a novel approach for managing service
dependencies with XML, XPath and RDF. The need for apply-
ing these general–purpose technologies to the area of service
management stems from the fact that, despite related work in
the area of event correlation, no previous work has dealt with
describing dependency information in a uniform way so that it
does not only meet all the requirements stated in this paper, but
enables management systems in general to make use of it.

We have combined several XML related base technologies
and are therefore able to represent dependency graphs in a way
that they can not only be parsed by common off the shelf XML
parsers, but be also queried with the powerful XPath facility.
This allows us to implement an efficient mechanism for query-
ing a potentially very high number of managed objects in par-
allel for their attributes and dependencies. Our prototype im-
plementation has shown that queries for (recursive) drill–up or
drill–down operations are surprisingly compact and relatively
easy to write. The problems we experienced during our work
are mainly related to XML and, especially, RDF parsers, which
are still in early stages of development.

In our current work, we are investigating the integration of
our approach with a CIM Object Manager that generates the
dependency instances and qualifies them with attributes.

REFERENCES

[1] Common Information Model (CIM) Version 2.2. Specification, Dis-
tributed Management Task Force, June 1999.

[2] Specification for the Representation of CIM in XML Version 2.0.
Technical report, Distributed Management Task Force, July 1999.
http://www.dmtf.org/download/spec/xmls/CIMXML Mapping20.php.

[3] R. Gopal. Layered Model for Supporting Fault Isolation and Recovery. In
Proceedings of the 7th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2000), pages 729–742, April 2000.

[4] B. Gruschke. Integrated Event Management: Event Correlation Using De-
pendency Graphs. InProceedings of 9th IFIP/IEEE International Work-
shop on Distributed Systems Operation & Management (DSOM ’98), Oc-
tober 1998.

[5] H.-G. Hegering, S. Abeck, and B. Neumair.Integrated Management of
Networked Systems — Concepts, Architectures and their Operational Ap-
plication. Morgan Kaufmann, 1999.

[6] S. Kätker and M. Paterok. Fault Isolation and Event Correlation for Inte-
grated Fault Management. InProceedings of the Fifth IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 97), pages
583–596, May 1997.

[7] Resource Description Framework (RDF) Schema Specification 1.0. W3C
Candidate Recommendation, W3 Consortium, March 2000.

[8] XML As a Representation for Management Information - A White Pa-
per Version 1.0. Technical report, Distributed Management Task Force,
September 1998. http://www.dmtf.org/standards/xmlw.php.

[9] XML Path Language (XPath) Version 1.0. W3C Recommendation, W3
Consortium, November 1999.


