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Abstract—With rapid growth of mobile network linkage, the
information exchange between portable and lightweight systems
increases heavily. Exchanging confidential information within
groups via unsecured communication channels is a high security
threat. Consequently, the group participants need a common
group key to enable encrypted broadcast messages. Efficient key
management of secured group communication is a challenging
task, if participants rely on low performance hardware and
small bandwidth. Especially, dynamically changing group com-
positions generate large management expenditure. Considering
these requirements, a Group-Key-Management concept including
a communication protocol is proposed in this paper. It combines
key formation and key distribution functionalists of existing
concepts in order to reduce key computation and control message
overhead. The lightweight G-IKEv2 protocol in combination
with the key exchange concept of CAKE leads to an efficiently
integrated solution.
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I. INTRODUCTION

In todays interconnected world, the network linkage is gro-
wing rapidly. More and more devices are connected, especially
in mobile and resource-constrained networks. In order to cope
with the constraints (e. g. limitations on the network link) in
such environments, multicasting and group communication is
becoming more and more important [1]. Efficiency is achieved
by transmitting information only once, but simultaneously to
all group members.

Unfortunately, keeping a suitable level of security is chal-
lenging in these scenarios. The challenges arise mostly from
two aspects of group communication. Firstly, a set of commu-
nication peers (referred to as the communication group) must
be managed securely. Secondly, the communication among the
group members within the group must be secured.

Usually, security in such an environment is facilitated using
so-called Group Keys. Group keys can be used for encrypted
communication within a communication group, but also to
preserve other security attributes such as integrity or authen-
ticity. Typically, all Group Members possess a symmetric
key used to en- / decrypt data. In this paper, encryption of
group communication is considered exemplary, without loss
of generality.

This work aims at designing a highly efficient, but secure
group key management scheme to facilitate secure group com-
munication. The motivation is mainly found by the manifold
use of constrained devices in a wide range of applications such
as civil, industrial or military use cases. A prominent example

for a civil application is car-to-car communication, mainly re-
vealing highly dynamic group formations and wireless network
limitations. In contrast, in home automation scenarios (think
of smoke detectors on battery) or military applications such
as head-mounted units limitations in terms of availability of
power, main memory and storage, CPU and network datarates
prevail.

Encrypted communication among a set of more than two
group members is common to all scenarios. Thus, it seems
desirable to share one cryptographic key among the group
members in order to encrypt message transfers. Unfortunately,
the management of such a key becomes costly quickly due
to the dynamics within a group (i. e. members joining or
leaving the group rather frequently). Changing the crypto-
graphic material upon every single group management action
seems unavoidable, which motivates working towards other
than naive approaches. Among general security and usability
requirements [2], a special focus during the conceptual phase
in this paper is put on:

Forward Secrecy: Whenever a group member leaves the
group or is expelled, the member in question must not
be able to have access to a valid group key.

Backward Secrecy: Whenever a new group member joins a
group, the member in question must not be able to have
access to a formerly valid group key before joining.

Key Independence: Having access to one key must not yield
the possibility to deduce another member’s key.

Collision Free: Additionally, specific to group communicati-
on, there must not be a subset of group members that
can deduce another member’s key(s) by combining their
knowledge.

Minimal Trust: A certain trust relationship will be found
mandatory, but it shall be subject to minimize.

Low Datarates: The amount of transmitted data shall be
minimal in order to facilitate network limited applications.

No 1-to-n Effect: Limited impact of a single membership
change on all the other group members is mandatory,
meaning not suffering from the 1-affects-n phenomenon,
if a single membership change in the group affects all the
other group members.

Minimal Delay: The delay imposed by the use of both ma-
nagement actions and cryptographic operations must be
minimal.

Minimal amount of key changes and exchanges: The
amount of management actions such as exchanging (new)
keys shall be limited to a necessary minimum (not imp-
lying anything about the total amount of keys in general).



Low calculation complexity: Especially in scenarios expo-
sing CPU limitations, a low complexity of cryptographic
calculations is vital, while keeping up the maximally
possible security level at the same time.

Compatibility: Clients not capable of supporting CAKE
should not be excluded from the communication. Thus, a
potential fallback to standardized mechanisms should be
supported.

In this paper, a concept is introduced to improve the
efficiency and security of group communication in constrained
environments. Group-IKEv2 (G-IKEv2) [3], which is based on
Internet Key Exchange v2 (IKEv2) RFC 7296 [4], is used as
communication protocol on the one hand and the group key
management concept Central Authorized Key Extension [5] on
the other hand. Section II introduces related work on secure
group communication and evaluates security and efficiency
regarding the given scenario with a special focus on the Logical
Key Hierarchy (LKH). On basis of this, Section III describes
the concept of this work combining the lightweight G-IKEv2
and Central Authorized Key Extension. Finally, Section IV
evaluates the findings and compares with the well-established
LKH, before Section V summarizes and concludes this paper.

II. RELATED WORK

Rafaeli et al. [6] survey a set of approaches for secure group
key distribution (GKD). According to their analysis, there are
three different types of GKDs: centralized, decentralized and
distributed GKD protocols. Most of the protocols considered
are rather Cryptographic Key Schemes (CKS) than networking
protocols, but some of them are included in Group Key Ma-
nagement Protocols. The paper at hand offers the integration
of an optimized Cryptographic Key Schemes into a centralized
management protocol. Thus, the following section is divided
in Group Key Management Protocols for communication and
Cryptographic Key Schemes to manage the group key. To
our knowledge, none of the approaches provides an efficient
and integrated solution, especially with focus on low resource
requirements. This is one of the reasons why the Internet En-
gineering Task Force (IETF) started a standardization process
for group key distribution in February 2018 [7].

A. Group Key Management Protocols

A high-level definition of Group Key Management Proto-
cols (GKMP) and their corresponding architecture is given by
the IETF standard body in RFC 2093 [8] and RFC 2094 [9].
The Internet Security Association and Key Management Pro-
tocol (ISAKMP, RFC 2408 [10]), and Group Domain of Inter-
pretation (GDOI, RFC 6407 [11]) have been the first instan-
tiations. The requirements and design of these protocols were
derived from multicast architectures of network vendors. Both,
peer-to-peer key exchange and Group Key Management were
revised for the sake of stronger security properties and better
performance, resulting in Internet Key Exchange v2 (IKEv2,
RFC 7296 [4]) and the currently proposed G-IKEv2 [3] for
groups.

B. Cryptographic Key Schemes

Centralized CKS comprise a central control authority to
manage the group key and to coordinate the cryptographic

procedures, often based on a GKMP. In contrast, decentralized
techniques share the management of the keys between several
instances [12], [13]. Thereby, the generation and distribution
of group keys is realized by cooperative instances, which
are typical hierarchically ordered. In addition, distributed key
agreement procedures delegate the key generation process to
not only an individual group member, but to a group of
members.

One example is the Group-Diffie-Hellman Key Ex-
change [14], but others exist [6]. All members of a group
are organized in a virtual topology, typically into a ring,
hierarchies on basis of trees, or just unstructured. In all
these schemes, every member of a group shares a common
Transport-Encryption-Key (TEK).

Another approach is dividing groups into subgroup with
individual TEKs. A master within every subgroup takes care
of the communication and keys, which allows avoiding 1-to-n
effects while re-keying [12]. The downside is requiring repeti-
tive conversions of encrypted messages between the subgroups.

Despite their structured nature, centralized CKS can further
be categorized into one of the three subcategories:

● Pairwise keys: Transmission of the group key by the
central instance via individual subscriber communication
● Broadcast secret: Transmission of the group key via

broadcast instead of individual secured connections
● Hierarchical structure: Coordination of participants in a

tree structure with corresponding cryptographic subkeys

The first and most widely recognized CKS ever is defined
in the GKMP, which belongs to the category of the pairwise
keys. The central server shares an individual secret key with
each group member, which is called the Key-Encryption-
Key (KEK). Subsequently, the server sends the group key
to each participant individually encrypted using the KEK.
Upon change of the group constellation, the entire group is
re-created, leading to high management and communication
overheads.

An example for the broadcast secret is the Secure
Lock (SL) [15], [16] that enables the creation of a group or a re-
keying action using a single broadcast message. The SL sche-
me is based on the Chinese Remainder Theorem (CRT) [17],
[18], which uses the properties of congruence to encrypt.
However, the reduction of communication overhead is obtained
by more complex calculations compared to GKMP so that this
approach only renders feasible in special scenarios.

A compromise are schemes building on hierarchi-
cal structure. A well-known approach is Logical-Key-
Hierarchy (LKH) [19], [20], which is integrated into GDOI
and G-IKEv2. The KEK’s and the group participants are
maintained in a binary tree. Each node in the tree represents a
KEK that is known to the underlying nodes. Maintaining the
associated keys of the tree structure increases the management
effort, especially the calculation and distribution of internal
keys. This approach offers a moderate advantage only in case
of repetitive leavings of group members.

Focusing on the motivation for this paper, a centralized
scheme with common TEK renders mandatory, especially in
order to control and authorize individual members of a group.



In this paper, a combination of the advantages of GKMP, SL
and LKH as CAKE [5] with an integration into G-IKEv2 is
proposed, allowing for efficient key management.

III. CONCEPT

Targeting highly efficient and encrypted group commu-
nication, this paper proposes the combination of lightweight
G-IKEv2 ([1], [3]) for the key exchange and Central Authori-
zed Key Extension (CAKE) [5] for the group key management.
CAKE’s key management is centrally organized and requires
a trustworthy Group Controller (GC). The GC is responsible
for the generation, administration and distribution of the keys
and thus requires more computational power than any other
(lightweight) group member.

The remainder of this section is organized into subsections
inspired by group management operations and patterns:

(A) Client-Server communication based on G-IKEv2
(B) Member Registration on the GC
(C) Group and Group Key Creation
(D) Re-Key of the group
(E) Join of member(s) to a secured group
(F) Leave / Exclude of member(s) from a secured group
(G) Tree Management and Key Addressing
(H) Merging and splitting groups

A. Client-Server communication based on G-IKEv2

G-IKEv2 [3] is used to secure the transmission of crypto-
graphic material for CAKE as it has already proven suitable
for constrained devices [1]. G-IKEv2 already supports the esta-
blishment of a confidential and authenticated 1-to-1 channel
between a client and the GC. It also offers the distribution of
Group Transmission Encryption Keys (GTEK) and Group Key
Encryption Keys (GKEK) and thus only requires additional
support for CAKE. To communicate securely in a group,
every group member has to possess a GTEK used for the
communication in the group and a GKEK used to distribute the
GTEKs securely. Figure 1 gives an overview about G-IKEv2:

1) Key Exchange: A G-IKEv2 key exchange can be divided
into two phases:

a) Establishing an Initial Security Associati-
on (IKE SA INIT): The first two messages from
the client to the GC and back establish a Security
Association (SA) and thus a secure channel between
the client and the server (Phase À: Initialization).

b) Exchanging keys (GSA AUTH): Given the secured
communication path, the client identifies and authen-
ticates itself and in turn receives transport and key
encryption keys (GTEK and GKEK) from the server.
The Group Security Association (GSA) Policy inclu-
des the security parameters (algorithms, lifetime, etc.),
while the actual keys are transported within the Key
Download (KD) Payload (Phase Á: Group Lifetime).

2) Re-Keying (GSA REKEY): Whenever a GTEK or
GKEK loses validity (e. g. being outdated), a re-keying
action is triggered by the server (GSA REKEY), which
is close to equal to the GSA AUTH phase (Phase Â:
Group Key Refresh).

B. Member Registration on the GC

Each participant Pi registers with CAKE by negotia-
ting an individual key pair (Keyi) with the GC during an
IKE SA INIT exchange (À). The initial exchange is done
with a Diffie-Hellman key exchange, which by design lacks
authenticity. A second message GSA AUTH (Á) is used
to authenticate both, the client and the GC. Note, that the
GSA AUTH can be used to directly join a group as part of
the registration process (see Section III-E).

C. Group and Group Key Creation

On request, the GC randomly generates a GTEK and
GKEK. According to G-IKEv2, the GC manages cryptographic
material and algorithms for every group. They are stored in the
TEK SA and KEK SA databases (see Figure 1).

The GC may decide to create a new group with the new
group key and members already registered and authenticated
by building a GSA REKEY payload as follows:

1) The GC constructs a CRT congruency in analogy to
the SL scheme, so-called Lock MX. Therefore, it uses
the individual mi and Keyi from all participants of the
specified group to calculate the Lock MX to encrypt the
GKEK (see CRT calculation [17], [18]).

2) The GTEK is encrypted with the GKEK. For the sake of
efficiency and security [21], XOR-operations are used for
bitwise encryption of the new key tuple with a hashed
GKEK. However, any encryption method specified by G-
IKEv2 is supported.

3) The keys are embedded into a CAKE_PRIME GSA Poli-
cy (including the new KEK_MANAGEMENT_ALGORITHM
called CAKE) and a CAKE_PRIME KD payload. They
are distributed using a single GSA REKEY broadcast
message.

A participant Pi can only “open” the Lock MX, if she
possesses a value mi that was included during the creation of
the lock. In consequence, only intended recipients (i. e. group
members) care able to read the GKEK and GTEK by solving
the CRT.

D. Re-Key of the group

In case the GT EK needs to be renewed, a re-keying action
is carried out. The GC generates the keys GKEKnew and
GT EKnew, which will be encrypted using the GKEKcurrent ,
embedded into the KD and broadcasted with a GSA REKEY
message. In order to grant forward and backward secrecy, a
re-keying action is also carried out every time a member joins
or leaves the group.

E. Join of new member(s) to a secured group

If a new participant Pi+1 wishes to join the group, she
sends a GSA AUTH request including the group ID Idg she
wishes to join. The GC authenticates Pi+1 and generates an
inhomogeneous prime number mi+1 for a CRT congruency for
Pi+1. Additionally, a new GSA policy and KD payload called
CAKE_PRIME is added, holding mi+1. The use of CAKE is
communicated with a new KEK_MANAGEMENT_ALGORITHM
called CAKE within the GSA Policy (see Section 4.5.1.1 in [3]).
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Figure 1: G-IKEv2 exchange with CAKE features

The GC also generates GKEKnew and GT EKnew and embeds
the information and keys into an GSA AUTH sent to the new
group member via unicast.

Additionally, a re-key is triggered for any of the
former group members. The re-key includes the KD
(GKEKnew,GT EKnew) encrypted with the GKEKCurrent . Swit-
ching from GT EKold to GT EKnew enables the enlarged group
(former group plus joined members) to communicate securely.

A mass entry of more than one new participant is equivalent
to the process as described before, whereas the GT EKnew
is send to every new member individually. Alternatively, the
new participants can be combined together via a CRT to
transmit the GKEKnew so that only one message is necessary
instead of multiple individual ones. Unfortunately, the latter is
only possible if the joining clients are already authenticated.
In both cases, two GSA REKEY messages are broadcasted,
one holding the Lock MX for the new clients and one with
(GKEKnew,GT EKnew) encrypted with the GKEKCurrent for
the former group members. Thus, an arbitrary number of
new members joining a group requires a constant number of
messages and thus scales efficiently with the amount of new
members.

F. Leave / Exclude of a member from a secured group

Withdrawal of a member from a group can be initiated
by the participant herself or be determined by the GC as
exclusion. In any case, the presently known GT EKCurrent and
GKEKCurrent cannot be used, as the expelled participant is in
possession of them. To reduce the effort, CAKE uses a reduced
CRT system and a ternary tree structure, which is managed by
the GC.

Figure 2 illustrates CAKE’s tree structure with level A
(the root) representing the GKEK and GTEK. Every node
represents a pair of keys (mt and keyt ) known by the underlying
participants. The actual group members with their personal
secrets mi and keyi are mapped to the leaf nodes of the tree.

The designation mX of a node defines a specific mi for the
CRT system.

All pair of keys on the path from the root to the parti-
cipant must be known by the participant. The tree structure
enables efficiency, but its creation can be deferred and only be
initialized if necessary. This allows the tree being set up and
distributed during a period of low network load. Considering
the state of the art, nearly any tree-based scheme ignores this
issue and excludes the costs for the tree setup in the evaluation.

Due to their flat structure, trees with more than two
subnodes are better suited for larger groups than binary trees.
In most scenarios (rarely more than 60 participants and hard
to imagine more than 300 [22]), the ternary tree structure is
ideal with regard to the size of the tree.

G. Tree Management and Key Addressing

In order to take full advantage of the tree structure, an
efficient addressing scheme of nodes or leafs in the tree allows
reducing network load. The ID of every key pair is currently
an 8x2 bits address, resulting in a maximum tree depth of 8
and thus 2,187 group members in the group with 3,280 key
pairs in the tree. The root key pair has the Id 00, every parent
has the children 01, 10 and 11 and unused bits are padded
with 00. This allows unique identification of the position of
every key within the tree. Additionally, keys required for re-
keying actions can be derived easily. Nodes having key pairs
not yet included in the tree receive an ID not starting with 00,
but e. g. with 11. After being authenticated with the GC, every
participant has his own secret mi and keyi (see Section III-E),
distributed with an address within or outside the tree. This can
be implemented by the GC, which may decide to construct
and re-balance the tree only if necessary.

Due to the addressing scheme, the protocol for the distri-
bution of keys and performing re-keying requires the imple-
mentation of the following actions: I.) Downloading key pairs
on the path to the root from the GC, II.) Re-Addressing of
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Figure 2: Ternary tree structure to manage the keys and to reduce the calculation effort by withdrawal.
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(b) CAKE Leave Array

Figure 3: Exemplary CAKE Structures for G-IKEv2

Keys, III.) Receiving updates of key pairs and IV.) Re-Keying
upon removal of group members.

Similar to the payloads already defined for LKH Download
Type (see Section 4.8.3 in [3]), four CAKE Download Types
and three substructures holding the array elements are defined.
As shown above, any message can be distributed securely as
broadcast and thus all download types are designed as arrays.
The elements of the arrays are indexed with the identity of the
key pair in the tree. Using the unique tree IDs, the nodes can
detect if they are affected by the action or not by comparing
address prefixes.

CAKE DOWNLOAD ARRAY can be embedded in
GSA AUTH or GSA REKEY message and holds a list of
keys, transported within a CAKE Keys Substructure (see
Figure 3a). A CRT for mi and keyi is built using the key
pairs of the children. The substructure holds the address of
the key pair, the lengths of the resulting CRTs and the CRTs
themselves. The tree has to be distributed bottom up. A client
is able to solve the Lock MX if he is in possession of one
children key pair.

CAKE UPDATE ARRAY has the same content as CA-
KE DOWNLOAD ARRAY, but defines that the distributed
keys were distributed before and, thus, need to be updated
in the client’s CAKE SA.

CAKE READRESS ARRAY gives a key pair a new address
in the tree and can be used to include nodes to the tree or to
re-arrange subtrees (e.g. when the tree is re-balanced). The
array holds a list of CAKE Readdress Substructures holding a

tuple (Idold ,Idnew). If a node receives re-addressing of one of
the keys on his path to the root, it needs to update all keys on
its path down the tree.

CAKE LEAVE ARRAY - When excluding a node, a new
root key pair is created and used to encrypt the GKEK which
is embedded in a KD Payload (see Section III-D). The leaving
node is in possession of all key pairs on the path to the root
(see Figure 2: node mD32, dark, binary address: 00-01-11-
10), all of which need to be excluded from the Lock MX
generation. Instead, the mX located next to a marked node on
the same level are used (see hatched nodes in Figure 2). The
same is done for the path to all key pairs, the leaving client is
in possession of. The new key pairs are embedded in a CAKE
Keys Substructure (see Figure 3a) which in turn is embedded
in the CAKE LEAVE ARRAY (see Figure 3b). Besides the Key
Array, it also holds an array of leaving nodes which size is at
least one. This mechanism allows excluding multiple nodes
with only one message.

Please note that the GC may choose I.) to distribute all new
key pairs in one CAKE LEAVE ARRAY, or II.) to distribute
only the root key pair and update the keys on the path later
with CAKE UPDATE ARRAY.

H. Merging and splitting groups

Merging existing groups requires re-keying based on the
currently used GKEKs of the groups, announcing a new and
common GT EKnew. One message per group to be merged (2
at a minimum) has to be issued.

Splitting groups is done by re-addressing within the key
tree and building two Lock MX including the new keys, one
for each group. The number of messages can be as low as one,
but is heavily dependent on the previous tree structure.

Both merging and splitting require deletion of the old group
keys, which can be done using a Delete Payload specified
in [3]. Please note that this is not resistant against malicious
group members. In the cryptographic community, this problem
is referred to as Post Compromise Security, which is a yet
unsolved problem and will be subject of further studies.



Table I: Comparison of CAKE with LKH and traditional GKMP (represented by G-IKEv2), with special regards on cryptographic
overhead. The keys are defined for AES with 16 Byte keys.

Register/Join Mass Join2 Key Download/Update2 Tree Operation Leave2

Networking (in Bytes) KD Payload1: 12 Byte

GKMP
KEK: 16
TEK: 16
Key: 16

p Messages with:
KEK: 16
TEK: 16

n Messages with:
KEK: 16
TEK: 16

undefined
n−1 Messages with:
KEK: 16
TEK: 16

LKH
KEK: 16
TEK: 16
Key: 16

p Messages with:
KEK: 16
TEK: 16

1 Message with3:
Hdr: (4+(n−1)∗12)
Keys: (n−1)∗16

same as Key
Download

1 Message with3:
Hdr: 4+ log2(n)∗8+∑log2(n)−1

i=1 i∗8
Keys: ∑log2(n)−1

i=1 i∗16

CAKE

KEK: 16
TEK: 16
Prime: 17
Key: 16

1 Message with:
Hdr: 16
TEK: 16
KEK5:∣CRT(p)∣

1 Message with3:
Hdr: 4+n∗12
Keys5: (log3(n)−1)∗ ∣CRT(3)∣
Primes: (log3(n)−1)∗3∗17

1 Message with3:
Hdr: (4+8)
Key5: ∣CRT(3)∣
Primes: 3∗17

1 Message with:
Hdr: 12+ log3(n2)∗8
TEK: 16
KEK5: ∣CRT(log3(n2))∣

Computation

GKMP4,7 GC: OK(1)
Cl: OK(1)

GC: OK(p)
Cl: OK(1)

GC: OK(n)
Cl: OK(1) undefined GC: OK(n−1)

Cl: OK(1)

LKH4,7 see GKMP GC: OK(p)
Cl: OK(1)

GC: OK(2log2(n)+1)
Cl: OK(log2(n)+1)

same as Key
Download

GC: OK((log2(n)+ log2(n−1)))
Cl: OK(log2(n))

CAKE6,7 see GKMP

GC: OL(p)
GC: OK(1)
Cl: OL(p)
Cl: OK(1)

GC: OL(3∗ n−1
2 )

GC: OK(1)
Cl: OL(3∗ log3(n))
Cl: OK(1)

GC: OL(3)
GC: OK(1)
Cl: OL(3)
Cl: OK(1)

GC: OL(log3(n2))
GC: OK(1)
Cl: OL(log3(n2))
Cl: OK(1)

1 Required for every Key distributed with G-IKEv2 2 n being Group Members, p number of members joining or leaving 3 KEK and TEK is carried as in GKMP
4 GC performs encrypt and Client performs decrypt 5 ∣CRT(i)∣: size of CRT with i elements in Bytes 6 OL: Complexity of creating/solving Lock MX.
7 OK : Complexity of encryption/decryption of keys.

IV. EVALUATION

Having a sound concept at hand, this section evaluates
CAKE under the following three aspects: Firstly, a (theoretical)
comparison of the computational complexity as well as networ-
king load of CAKE, LKH and traditional GKMPs is carried
out. Secondly, an implementation of CAKE for RIOT OS
proofs both its lightweight nature and its applicability in
constrained scenarios. Given the result, the section will close
by evaluating CAKE against the requirements as stated in
Section I.

A. Comparison with LKH and GKMP

Table I compares the networking and computation overhead
of CAKE with a traditional GKMP system (in that case
G-IKEv2) and LKH. As long as there are no clients leaving
the group, the simple GKMP mechanism performs optimal for
both networking and computation. However, GKMP performs
badly in terms of number of messages and computations as
soon as Forward Secrecy is required on client exclusion, which
is the major benefit of LKH and CAKE.

Although CAKE requires a pair of keys (mi and keyi) to
be sent when distributing the tree, it can outperform the LKH
mechanism introduced in G-IKEv2. The amount of key headers
is equal in both systems. Unfortunately, LKH tree entries
need to be transported multiple times decreasing its efficiency
(for better insights to LKH in G-IKEv2, we recommend
Appendix A of [3]). Using a CRT system, CAKE offers the
distribution of keys using a single message. Although, the size
of the resulting Lock MX increases linearly (see Table II), it
still decreases the necessary protocol information heavily.

CAKE also reduces the demand for computational power
on the client-side. Instead of carrying out multiple decryption
operations (as for example LKH would do), the client has
to perform one single modulo and one decrypt operation
only. Nonetheless, this comes at the price of storing more

cryptographic material (mi,keyi) compared to LKH where only
keyi has to be stored for every node in the tree.

B. Performance on constrained hardware

CAKE is implemented on basis of RIOT OS [23]. RIOT OS
is lightweight by nature with a minimal requirement of 1.5 KB
of main memory. Additionally, RIOT is open source and
supports a wide variety of hardware. Finally, important cryp-
tographic libraries targeting embedded systems are available
for RIOT.

In order to grant realistic conditions, the IOT-LAB [24]
is used for the evaluation. The GC and any of the clients is
executed using an IOT-LAB M3 board, which is equipped with
a 72 Mhz CPU and 64 kB SRAM.

The focus of this evaluation is group management and
the corresponding key distribution processes. Please note, the
initial key exchange using G-IKEv2 is already published in [1].

1) Memory requirements: On basis of the highly cons-
trained resources of the IOT-LAB M3 nodes, a GC and a
group comprising 14 clients can be successfully created and
managed. The server has to reserve memory for at least all keys
in the tree including the nodes, while the clients have to reserve
memory for the keys on their path to the root (not more than
7 key pairs, limited by the address space as seen above). The
GC requires 2,900 Bytes of data being stored per participant,
including keys, IP addresses, memory for CRT calculations and
tree operations. Participants require 2,900 Byte per connection
to a GC. According to the design principles of RIOT OS
memory – including network buffers – needs to be statically
reserved.

2) Computational Costs for CRT: Most of the CAKE-
actions require a single GSA REKEY message carrying G-
IKEv2 payloads (see [3]). The most expensive operation ac-
cording to [1] is the IKE SA INIT message triggering the



Table II: Required time for Lock MX operations with i
elements. For comparison, the time to encrypt and decrypt the
key hierarchy of LKH with tree depth i is shown. The number
of clients is 3i for CAKE and 2i for LKH.

i Create
Lock MX

Solve
Lock MX

Size
Lock MX LKH Enc LKH Dec

1 280,082 µs 88 µs 41 Byte 125 µs 201 µs
2 572,785 µs 189 µs 84 Byte 188 µs 302 µs
3 822,851 µs 275 µs 124 Byte 250 µs 404 µs
4 1,130,065 µs 374 µs 165 Byte 312 µs 505 µs
5 1,377,708 µs 484 µs 206 Byte 374 µs 607 µs
6 1,539,600 µs 604 µs 247 Byte 437 µs 708 µs
7 1,909,062 µs 750 µs 288 Byte 499 µs 809 µs
8 2,231,764 µs 904 µs 328 Byte 562 µs 911 µs
9 2,544,507 µs 1,072 µs 369 Byte 624 µs 1,013 µs

10 2,751,188 µs 1,243 µs 410 Byte 686 µs 1,114 µs
11 3,134,233 µs 1,433 µs 451 Byte 749 µs 1,215 µs
12 3,387,458 µs 1,632 µs 492 Byte 811 µs 1,316 µs
13 3,705,136 µs 1,858 µs 533 Byte 874 µs 1,418 µs
14 3,974,770 µs 2,081 µs 573 Byte 935 µs 1,520 µs

Diffie-Hellman key exchange. Runtime measurements on IOT-
LAB M3 nodes showed comparable computation times as the
times given for the Arduino Due in [1].

In terms of computational cost, creating and solving the
Lock MX on both the server and the client are the most
interesting new features of CAKE. This includes the creation of
the Lock MX with various tree depths and the time to resolve
it on client side. The results are shown in Table II.

Further, mass joins (see Section III-E), where the numbers
of elements within in the CRT is the number of participants
joining simultaneously, yield interesting results, too. It is
evident that the computation of the new keys increases with
the number of elements in the CRT, which is mainly caused
by the larger size of the Lock MX. The measurements show
that especially the GM can benefit. It simply calculates one
modulo operation, enabling very low computation time, even
when the number of elements within the Lock MX is high.

For comparison, the costs for encrypting and decrypting
keys within an LKH tree are shown in Table II. It can be
seen that even though the AES implementation is highly
optimized, solving the Lock MX scales similar to decrypting
the keys within the LKH tree. However, lowering network load
with CAKE comes at the price of computational overhead
for creating the Lock MX, which scales worse than LKH.
Optimizing the Lock MX implementations will be part of
further studies.

C. Fulfillment of requirements

Besides the practical applicability and its pros and cons
in comparison to especially LKH, reviewing the initial design
goals and requirements shows completeness. A detailed design
explanation and security assessment can be found in [5].

Forward & Backward Secrecy: Re-keying upon every
group management action (i. e. a member joining or
leaving the group) grants both forward and backward
secrecy.

Key Independence & Collision Free: Using the CRT, these
requirements are fulfilled by design.

Low Datarates & No 1-to-n Effect: The ternary tree struc-
ture reduces the number of keys stored and sent, allowing

CAKE to re-key with one single message and thus a
reduction to the per-packet overhead.

Minimal amount of key changes and exchanges: The
combination of the ternary tree structure and the
addressing scheme guarantees a minimal amount of key
changes and exchanges.

Minimal Delay & Low calculation complexity: As shown
before, CAKE requires a minimum number of messages
to be sent upon group changes. Using the CRT for group
leave actions, the demand for compute power on the
client-side can be reduced to only one modulo operation,

Compatibility: This requirement is met by using the G-IKEv2
protocol. Any client not capable of the CAKE features can
still participate in the group on basis of standard re-keying
mechanisms, while the optimizations can still be applied
to any other group member. Additionally, the use of
G-IKEv2 helps meeting common security requirements,
as they are well studied and discussed by standardization
bodies. CAKE simply optimizes the transportation and
calculation of keys, leaving the security parameters of
G-IKEv2 untouched.

Minimal Trust: With a variety of authentication mechanisms
supported by G-IKEv2, the need for minimal trust can be
achieved on a per-scenario-basis.

V. CONCLUSION

The proposal of a CRT-based key hierarchy for efficient key
management in dynamic groups is based on the combination of
the lightweight G-IKEv2 protocol in combination with CAKE
for the key exchange. The main goal to reduce the network
load to a minimum is achieved at the cost of storage space for
additional cryptographic key material. Additionally, computa-
tionally demanding (cryptographic) operations are delegated
to the group controller, relieving the potentially less powerful
group members. The CRT-based key hierarchy together with
a ternary key tree structure and the well-formed addressing
scheme has particularly shown advantageous in the area of
secure group communication among highly constrained group
members.

As per now, the networking overhead of the LKH extension
in G-IKEv2 is highly inefficient. Thus, the optimization of
LKH in special scenarios is subject of future work, which will
allow for a more comprehensive and technical comparison of
LKH and CAKE. Besides further improvements of the CAKE
prototype, especially its memory consumption, the evaluation
has proven the CAKE-implementation for building and sol-
ving the Lock MX worth investigating and subject of future
improvements. Lastly, a more detailed analysis of solving
the problem of Post Compromise Security when merging and
splitting groups is of major interest.
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