
Algorithm Design and Application of
Service-Oriented Event Correlation
Andreas Hanemann

German Research Network (DFN)
Stresemannstr. 78

10963 Berlin, Germany
hanemann@dfn.de

Patricia Marcu
Munich Network Management Team

Leibniz Supercomputing Center, Boltzmannstr. 1
85748 Garching, Germany

marcu@mnm-team.org

Abstract—The timely and efficient management of faults that
affect the quality of services delivered to customers is an impor-
tant issue for service providers with respect to their business
goals. It includes the diagnosis of service faults which deals
with the localization of their root causes within subservices and
resources being part of the service realization.

In this paper our service-oriented event correlation approach,
which uses event correlation techniques to automate the diagnosis
on the service layer is detailed. Our algorithm for the hybrid
rule-based/case-based correlation methodology that alsoincludes
recently proposed active probing techniques is presented as well
as its prototypical implementation at the Leibniz Supercomputing
Center. This implementation is not limited to a small test
environment, but has been carried out for requirements of the
environment of this large service provider.

I. I NTRODUCTION

Service fault management is an important part of the overall
management tasks of an IT service provider. Its aims are
mainly twofold: on the one hand, the service quality has to
be assured by timely fault diagnosis and recovery, which is
particularly needed with respect to service level agreements
(SLAs) between service provider and customers. On the other
hand, fault management has to be cost effective so that the
effort spent on it is minimized.

Therefore, it can be seen that service fault management has
critical financial impact both with respect to revenue (customer
satisfaction and resulting continued service subscription) and
costs (fault management costs itself and SLA violation costs).
Guidelines and technical solutions to service fault management
are consequently of major interest for the business perspective.

It is important to understand the different nature of faults
on the service layer in contrast to the resource layer. While
resource faults are usually indicated by events that are prede-
fined by device vendors, service-related fault reports are more
ambiguous. They relate to how the quality of the service is
perceived by the users and are not limited to a complete failure
of a service, but can also indicate that a service is provided
with a low quality. While events are reported on the resource
layer usually with only short time gaps due to automated
reporting, there can be significant time gaps between the
witnessing of service-related symptoms by users and their
reporting to the provider. Performance is very critical for
resource-related events where events are often encountered as

event bursts, while there are usually fewer symptom messages
related to services.

As a consequence of the aims of service fault management,
the need arises to support it with the use of tools to allow fora
(partial) automation. In our previous work we have developed
a framework describing the components necessary for service
fault diagnosis, which is the first part of the overall service
fault management. It contains components for formalizing user
reports about service symptoms, provider-internal service and
resource monitoring as well as resource layer diagnosis. Its
central component performs the service fault diagnosis on the
service layer for which we have discussed the idea to extend
event correlation techniques [1]. While this idea has only been
given in a high-level manner yet, in this paper we provide a
detailed correlation algorithm and present its application at
the Leibniz Supercomputing Center (LRZ), as a large service
provider for the scientific and academic community in Munich.

The remaining sections of the paper are organized as
follows: The requirements for service fault diagnosis are given
in Section II and are compared with the features of correlation
techniques in Section III. The stepwise development of the
correlation algorithm is detailed in Section IV, while the
modeling of information to be dealt with in the context of
the algorithm is given in Section V. The algorithm implemen-
tation extending the commercial event correlatorIBM Tivoli
Enterprise Consoleis given in Section VI. Conclusion and
future work are provided in Section VII.

II. REQUIREMENTS

For the design of an automated service fault diagnosis the
following requirements have to be taken into account [2].
These have been derived from a generic scenario for service
management.

Maintainability: There are often changes in the way
services are implemented, which does not only refer to the
use of resources, but also to the use of subservices. For
example, additional servers being used by a service have to
be considered as potential source of problems. The same
holds for an application service that is making use of a
different connectivity service as before so that the causal
relationship in case of faults has changed. In order to achieve
an effort reduction using an automated diagnosis, the effort for



managing these changes (i.e. for maintaining an information
repository for the diagnosis) has to be low.

Modeling: Automated event correlation has to be based
on a modeling of the scenario where it is applied to. In this
context, it means that a modeling of services, resources, faults,
etc is required. This modeling has to be able to represent the
information accurately. This accuracy refers e.g. to time con-
ditions and redundancies where the expressiveness of existing
modeling solutions is limited. In addition, no assumption that
there is only a single root cause at a given point of time should
be made. This assumption is a frequent limitation of existing
fault management solutions.

Robustness:The correlation should support the fault
diagnosis even in situations where its knowledge base may be
partially inaccurate. This can easily happen due to the com-
plexity of real-world service implementations where depen-
dencies can be forgotten or modeled inaccurately. In addition,
an update of the knowledge base after a failed diagnosis should
be supported which can be regarded as a learning capability.

Performance:The performance of the diagnosis has to be
sufficient to deliver results in a timely manner. This means that
a diagnosis result based on the correlation should be provided
in the order of seconds.

III. R ELATED WORK

The discussion of related work is focused on a selection
of diagnosis techniques whose evaluation with respect to the
requirements is summarized in Table I. A good overview
of correlation techniques including further methods is given
in [3], while our detailed analysis for the needs of service-
orientation has been investigated in [2]. It is important tonote
that in general the approaches presented in the following do
not have to be used exclusively.

Model-based reasoning: In model-based reasoning
(MBR, [4]) each object is represented by a software agent
model with respect to its attributes, behavior, and relation to
other models. The correlation is a result of the collaboration
of models1.

For event correlation on the service layer, the approach
will require the representation of service behavior as a model
which has to be carried out individually for each service
provider since service models can hardly be reused in contrast
to resource models. While the method is able to model the
diagnosis information accurately, it can be difficult to find
out what went wrong in a failed correlation. The performance
of the approach depends on the implementation which is not
explicitly given for MBR.

Rule-based reasoning:In rule-based reasoning (RBR,
[4], [5]), a set of rules is used to perform the correlation. Arule
has a condition related to received events and the state of the
system. The fulfillment of the condition leads to the execution

1Please note that this definition is narrower than the one in the often cited
article [5]. It has been chosen to allow for classification since a broader
definition would also subsume other methods such as RBR and the codebook
approach.

of the rule which triggers actions leading to changes of the
system or results in additional events.

The maintenance of the rules is a crucial issue because
rule sets can get very large for real world scenarios. This
leads to unforeseen interdependencies of rules. Rules are quite
flexible in the modeling of knowledge and can represent the
information as needed for the service-orientation. However,
the approach is going to fail if an unknown situation occurs.
Further, in such a case it is easily possible to trace the previous
execution of rules which is helpful to identify the modeling
inaccuracy. Algorithms like the Rete algorithm [6] exist to
perform an effective correlation even for very large rule sets.

An approach from the area of policy-based management
uses rules for QoS-related problem determination and directly
executes recovery actions [7].

Codebook approach:The codebook approach ([8], [9])
is based on a representation of relationships between events
and originating root causes as a matrix, which is the result of
a conversion and optimization of an input dependency graph.

Maintenance in this context means to keep the dependency
graph up-to-date which is also a crucial issue for this approach.
A major drawback are the limitations of the modeling with
respect to time constraints, multiple root causes and redun-
dancies which are not covered by the matrix representation
and would require extensions. The approach can sometimes
deal with unknown situations where the Hamming distance
function can be used to find a similar situation. The matching
can be done efficiently as a binary vector matching method.

Case-based reasoning:In contrast to the techniques pre-
sented before, the case-based reasoning approach (CBR, [10])
needs no prior knowledge about the service implementation.It
contains a database of cases which have occurred in the past
together with the identified root causes. While the first root
causes have to be identified by hand, an automated matching
to prior cases is performed at later stages.

The maintenance of the approach has to be judged differ-
ently from the other methods because a change in the service
implementation does not necessarily require changes in the
case database, even though some stored solutions may then not
work anymore. The approach is able to model the knowledge
as needed and has the capability to learn from previous
situations. However, the adaptation of similar solutions has
to be performed with some human interaction so that it is less
efficient.

Active probing: The methods previously presented are
using information gained mainly from the passive reception
of events. In contrast, active probing techniques ([11], [12])
use tests to check the performance of components and are
using sets of predefined or dynamically composed probes.
These techniques can also be combined with the previously
presented techniques as carried out for telecommunications
services (RBR technique) in [13].

IV. STEPWISECORRELATION ALGORITHM DEVELOPMENT

The idea of the automated service fault diagnosis is to pro-
cess formalized user symptom reports and similar information



Requirement MBR RBR codebook CBR probing

Maintenance - 0 0 + 0
Modeling + + - + 0
Robustness 0 0 + + +
Performance 0 + + 0 0

TABLE I
METHOD EVALUATION SUMMARY (+: FULFILLED ; 0: PARTIALLY

FULFILLED ; -: MARGINALLY OR NOT FULFILLED )

from the provider’s own service monitoring as so calledservice
events. For doing so, a hybrid architecture (see Fig. 1) has been
designed which combines RBR and CBR, but also integrates
active probing techniques (into the RBR module). It primarily
uses the rule-based reasoner to traverse the dependencies
which are divided into inter-service dependencies, service-
resource dependencies, and inter-resource dependencies.The
case-based reasoner acts as a backup solution and is becoming
active once the rule-based reasoner fails.

no rule
match

service
event

resource
event

similar prior
cases

root cause
candidate list

related
events
store
event

reasoner
rule−based

working set
event case−based

reasoner

event correlator

Fig. 1. Hybrid event correlation architecture

This design uses the modeling capabilities of both ap-
proaches and the performance of RBR for efficient correlation.
The robustness is improved by the application of tests and the
CBR learning capability.

In order to cope with the maintenance issue the idea is to
generate the rules in a semi-automated way using the service
modeling. Since a provider has to maintain the knowledge
about the configuration of services and resources as well as
their dependencies in any case (in particular to be able to carry
out changes in a safe manner), rules can be generated out of
this modeling. For instance if a dependency is given between
a service and a resource, a rule for matching events related to
the service to events related to the resource can be proposed
by the system to be approved by a human operator.

A. Assumptions and Basic Algorithm

The algorithm development is carried out in a stepwise
manner where several aspects shown in Tab. IV-A are in-
tegrated over time. Initially assumptions (A1-11) that these
aspects do not exist are made. The basic algorithm is then
enhanced when more and more assumptions are removed. The

a) example
situation

b) worst
case

event resulting from
triggered test

event types

monitored event

negative positive

dependency (any of 
the three kinds)

resources

services

Fig. 2. Events for services and resources in an example situation (a) and in
a worst case scenario (b)

last two aspects (O1 and O2) are circumstances that demand an
optimization of the algorithm. Please see [2] for the detailed
pseudocode representation of the algorithm (both basic and
extended versions).

The basic algorithm is quite simple and uses the depen-
dencies to link events related to a service/resource to events
for another service/resource if there is a dependency between
them. The first kind of elements are calleddependents, while
the second kind are calledantecedents. An example can be
seen in Fig. 2 (a) where a service is a dependent of three
(antecedent) resources. This means that a symptom related
to the service can be explained by a symptom for one of
the resources. The matching is not only done when events
for the antecedents indicate symptoms, but also when these
events indicate that there are no symptoms. In doing so,
the knowledge that these antecedents have been checked is
kept. This basic rule is executed for a whole dependency
graph so that finally symptoms related to services used by
users can be tracked down to resources by following these
linkings. These resources are put in a candidate list which
is transferred to resource management for detailed checking.
Based on the assumptions being made (status known, no
provisioning hierarchy, information correct), the algorithm is
going to return the correct list of resources.

Even though the algorithm fulfills the aim of the correlation,
it does not make use of possibilities for parallel execution
which is given by the different kinds of the dependencies.
An improved version of the algorithm can therefore corre-
late inter-service and inter-resource dependencies in parallel
at first and then link the resulting events afterwards using
the service-resource dependencies. This split-up also hasthe
advantage that organizations can continue using an existing
resource event correlation and can add service and aggregate
event correlation. Depending on the characteristics of a given
scenario, it may be required to further extend this idea to get
a correlation hierarchy (compare [14]). For instance, resources
within a computing cluster can have their own correlator



New circumstance Change of algorithm

Starting point. Basic rule-based algorithm which runs under several assumptions.

A1: There may be services from suppli-
ers so that resources are hidden.

Only the candidate list needs to be changed so that supplier subservices can be put into
the candidate list.

A2: There can be maintenance opera-
tions affecting the services.

Maintenance information is included in the correlation similar to other events and
therefore maintenance can be identified as root cause.

A3: Events may be missing for service
and resource status indication.

Active probing is used to trigger tests for services and resources. Consequently,
appropriate automatic tests have to be defined.

A4: Time is considered. The algorithm is split up into different modules which run in parallel. The time
conditions make it possible that the event correlation cannot be completed in time.
Therefore, the case-based reasoning module is introduced.

A5: There can be redundancies in the
service implementation.

It is explained why this does not affect the correlation (in contrast to impact analysis).

A6: There can be multiple events relat-
ing to one service or resource.

This information is correlated prior to the main correlation. Time conditions are
considered to solve contradictions.

A7: Quality degradations are consid-
ered.

While the correlation itself can be left unchanged, additional events have to be
introduced for modeling threshold violations. The dependencies also need to be refined
for this aspect.

A8: Events can be changed when a
mistake in the input has happened.

A procedure for providing input is given. It depends on the progress of the correlation
to what extent the correlation can be modified.

A9: Dependencies can change during
the correlation.

A validity interval is defined for the dependencies so that only those dependencies that
have been present at a certain point in time are considered.

A10: Tests may be missing or inaccu-
rate.

The backup method (CBR) has to deal with the failed rule-based correlation that will
occur in this situation.

A11: Dependencies or events may be
inaccurately modeled.

Similar to the previous situation, the CBR module will assist to deal with a failed
correlation.

O1: Event bursts may occur for service
event correlation.

Filtering heuristics may be applied to ensure the stabilityof the correlation.

O2: Candidate lists should be ordered to
give a recommendation which potential
causes to examine first.

Failure statistics from the past and deviations from thresholds may be used.

TABLE II
SUMMARY OF ASSUMPTIONS AND ALGORITHM REFINEMENT

and only correlated events from the cluster are sent to other
correlators within the organization.

B. Removal of Assumptions

Starting with the removal of the assumptions, the algorithm
needs to be changed only slightly for services subscribed from
other providers (assumption A1). It needs to be allowed that
these subservices are accepted as potential root causes since
it is not possible to get information about the subprovider’s
resources. Maintenance operations (A2) can be included into
the algorithm as a special kind of event which can then be
used as explanation for detected service or resource events.

While the algorithm has been purely rule-based yet (with
rules for executing the described algorithm steps, compare
Section V-C), it integrates active probing techniques for re-
moving A3 (missing status information). If information is
missing about underlying services or resources, appropriate
tests are triggered which then result in events for providing

the missing information. This issue is indicated in Fig. 2 (a)
where no event is given for the third resource.

The adoption of the algorithm for considering time con-
strains (arrival times of events, event validities) leads to
significant changes of the algorithm (A4). It requires a split-up
of the code for different components such as the service event
correlation (using inter-service dependencies, depictedin Fig.
3), resource event correlation (inter-resource dependencies),
aggregated correlation (service-resource dependencies)and the
event working set which is responsible for administrating the
assignment of events to the different correlators. This split-
up considers the fact that resource events in most cases are
received much earlier and can already be correlated prior tothe
linking to service events. The generation of events via probing
also has the consequence that not all events are present at the
beginning. It is now also responsible for forwarding eventsto
the case-based reasoner which may be needed to deal with
correlations that have not been possible on time.



1: procedure SERVICE EVENT CORRELATION
2: serviceEventSet← null
3: while true do
4: add newservice events to serviceEventSet (received

from event working set)
5: for eachservice event in serviceEventSet do
6: get antecedents(service of the service event)
7: if number(antecedent) = 0 then
8: send to subprovider CSM, remove from

serviceEventSet
9: else

10: for eachantecedent in antecedents do
11: if antecedent is a servicethen
12: if no event(antecedent) exists in

serviceEventSet then
13: if no test(antecedent) has been trig-

gered yetthen
14: trigger test(antecedent)
15: end if
16: else
17: correlate to previous event
18: end if
19: else ⊲ antecedent is a resource
20: sendservice event to event working set
21: end if
22: end for
23: end if
24: end for
25: for eachservice event in serviceEventSet do
26: if correlation to all antecedents that are services

performedthen
27: if one or more status(antecedent) = false then
28: remove service event from

serviceEventSet
29: else
30: reportservice event to event working set
31: remove service event from

serviceEventSet
32: end if
33: end if
34: if correlation time slot forservice event exceeded

then
35: sendservice event to event working set
36: end if
37: end for
38: end while
39: return
40: end procedure

Fig. 3. Procedure for service event correlation

The pseudocode representations for the three correlation
modules have structural similarities so that the details are
only explained for the service event correlation. The event
correlation is running in a loop which is indicated via the
while(true)statement. In the beginning of each iteration, new
service events are received from the event working set which
can either be reported from users or the service monitoring as
well as be the results of tests. Only negative events are given
as input.

A treatment for each event is started in the following:
For service events without antecedents (neither resourcesnor
services) the correlation cannot be continued. This situation

only exists for events related to services from other providers
since internal resources would be existing otherwise. If there
are antecedents for the service, a new loop is started (line
10). For subservices it is checked whether events are already
existing for the services and if not and no test has been
triggered already, a test is requested. If an event exists, the
correlation is performed. This means that a link between the
current and the antecedent event is denoted. A correlation is
performed even if the antecedent event is a positive event
in order to save the data that this potential explanation has
been excluded. For antecedents that are resources, the service
events are sent to the event working set since the correlation
to resources is performed in the aggregated correlation.

A second loop for each event is started in line 25 to remove
events from the current list of service events. Events for which
all antecedents have been checked are no longer relevant for
the correlation. Either there are one or more services for which
negative events exist (so that the correlation is continuedfor
these events) or there are no symptoms for subservices. In the
latter case the event is sent to the event working set where it
may be forwarded to the case-based reasoner if the correlation
to resources also fails.

The removal of assumption A5 does not require a change
in the algorithm because no single root cause assumption has
been made. This means that once a match to an event for
an antecedent is found the remaining antecedents have still
to be checked. The situation is different for impact analysis
where the dependencies are traversed in the other direction
and require a combined view on the dependencies to decide
whether problems of antecedents propagate to dependents.

The removal of the assumption of one representative event
per service or resource (A6) makes it necessary to introduce
a precorrelation where events related to the same service or
resource are matched. For example, a previous event indicating
that a service is working should be removed when a service
symptom is indicated (more precisely linked to this event to
store why it has been regarded to be no longer valid).

The modeling of dependencies has been limited to the
binary availability yet, i.e. if services or resources are available
or not. For removing A7, this modeling is generalized to allow
for dependencies between quality of service (QoS) parameters.
Similarly, for resources, the termquality of resource (QoR)is
introduced to denote a quality feature of a resource. It is then
possible to denote, for example, that the delay in the delivery
of e-mails is dependent on the mail queue lengths at the mail
server.

Some special conditions need to be considered when events
or dependencies should be changed during the correlation (A8
and A9). For dependencies additional validity attributes are
introduced to check whether a dependency has been relevant at
a certain point of time. For dealing with inaccurate information
concerning tests, dependencies, and events that causes therule-
based correlation to fail the case-based reasoner is activated as
a backup (A10 and A11). Conditions for this are only positive
events for antecedents which do not explain a negative event
for a dependent as well as event time outs.



Finally, several methods can be applied to improve the
resource candidate list (O2). For performance parameters the
method by Agrawal et al. [15] can be used to rank the
resources according to the deviation from the expected value.

C. Runtime Considerations

The algorithm has a worst case performance ofO(d + e)
whered is the number of edges in the dependency tree and
e is the number of events. This situation is depicted in Fig. 2
(b) where all services and resources may turn out be affected
by symptoms. Therefore, all dependencies are traversed and
the events are concentrated on a single service so that a
precorrelation involving all events is necessary at first. This
consideration is related to the rule-based part only assuming
that no additional events apart from the active probing results
are received during correlation.

D. Case-based Reasoner

The design of the case-based reasoner is performed ac-
cording to retrieve, adapt, execute and organize steps from
the literature [16]. The retrieval of related cases is realized
with a key-term matching methodology making use of several
attributes (service, service functionality, QoS parameter, ser-
vice access point, etc). Other retrieval methods such as ones
based on sentence structures or geometric distances are not
appropriate since special conditions for the attributes donot
apply. For the adaptation step, some methods beyond manual
adaptation are possible, in particular parameterized adaptation
(e.g. if two systems back up each other and in the past one of
the systems has failed and now the other one is broken) and
procedural adaptation. However, for the procedural adaptation,
it need to be considered that the knowledge related to this
adaptation possibility should rather be used to improve the
modeling and therefore indirectly the rules. For the execution
of the adaptation a semi-automated method is used in order to
allow for a save way to restore the services. This means that
single recovery steps are automatically executed, but not the
adaptation as a whole. The cases are organized with a meshed
memory, i.e. they are categorized from top-down according
to services, service functionalities, and QoS parameters,but
the cases for a specific QoS parameter can be linked to other
services and service functionalities if appropriate.

E. Comparison to Existing RBR/CBR Combinations

Hybrid RBR/CBR combinations are used in a variety of
domains as shown in the categorization article [17]. Apart
from our approach, it only refers to one other approach from
a related domain (situation management) [18]. This approach
uses a combination where the case-based reasoner has a set
of situation templates and permanently interacts with the rule-
based reasoner to execute rules which then leads to changes
of the situation. Due to a commercial background of the
approach, its description in the literature is not very detailed
yet.

V. I NFORMATION MODELING OF OBJECTS, EVENTS,
RULES AND CASES

The implementation of the presented algorithm requires
an information modeling as basis which is described in this
section. For further details refer to [2].

A. Class Model

Due to identified deficits in the existing modeling of service-
related information in the literature (CIM [19], NGOSS SID
[20], SNMP MIBs), a modeling of services as an extension
to CIM has been performed. Its particular focus is on the
modeling of dependencies which are crucial for the traversal
of the dependency hierarchy in the algorithm.

The basic class model (i.e. without attributes and operations)
is shown in Fig. 4. A Service is mainly characterized by the
Service Functionalities and the QoS Parameters.

Service
Functionality

QoS
Parameter

<< role >>
Provider

<<event>>
ServiceEvent

QoR
parameter

<<event>>
ResourceEvent

<< role >>
User

<<dependency>>
InterService
Dependency

<< role >>
Customer

ServiceAccess
Point

ServiceLevel
Agreement

Service

*1..*

depends_on

*

concludes

*

*

1

1
*

substantiates

1..* *

*

Resource

*

*

*

*

depends_on

depends_on

1
*

refers_to

refers_to

<<dependency>>
ServiceResource

Dependency

<<dependency>>
InterResource
Dependency

accesses
*

*
*

1..* 1supplies

*
concludes

Fig. 4. Basic class model for service fault diagnosis

The idea of the modeling at this point is to allow for
different granularities with respect to the Dependencies.Either
a Dependency can be tied to the Service as a whole or to a spe-
cific Service Functionality. Every Dependency always relates
to a QoS Parameter (compare assumption A7). The Service
class further requires information about Service Access Points
and Service Level Agreements.

For the resources the QoR Parameter class is modeled
similar to the QoS Parameter class and the three kinds of
dependencies as mentioned for the algorithm are represented
accordingly. The details of Events are explained in the next
section.

B. Event Modeling

While resource events are usually defined by device ven-
dors, additional considerations are necessary with respect to



service events. The idea is to specify them in relation to the
SLA term conditions since these are the conditions that a
service provider strives to fulfill. The abstract modeling of
the events is depicted in Fig. 5 where common attributes for
Service and Resource Events are grouped in a Generic Event
class.

linkedImpact

*
*

− resource: Resource
− resourceQoR: QoRParameter

*
*

linkedImpact

<<event>>
ServiceFuncEvent

<<event>>
GenericEvent

ServiceEvent
<<event>>

− source: String
− status: StatusEnum
− severity: SeverityEnum
− receptionDate: DateTime
− validDate: DateTime

− identifier: long

linkedCause
* *

* *linkedImpact

− serviceFunc: ServiceFunc

− SAP: ServiceAccessPoint[]
− credibility: CredEnum
− keywords: String[]
− description: String[]

ResourceEvent
<<event>>

− referringDate: DateTime

− service: Service
− serviceQoS: QoSParameter

*

linkedCause

*

linkedCause

*
*

Fig. 5. Event hierarchy classes (abstract classes)

The attributes for Service Events are as follows: Each
Service Event is tied to a Service and a QoS Parameter as
explained previously so that these pieces of information are
recorded. The potential linking to a Service Functionalityleads
to the derived class Service Functionality Event. The attributes
inherited from the generic events comprise an identifier, source
(here either users or the service monitoring), status, severity,
receptionDate and validDate. For services, specific attributes
are required for the Service Access Point, credibility, key-
words, description, and referringDate. The credibility attribute
is introduced to ensure the accuracy of information since
service events directly relate to what has been reported from
users (if they are not originated from the service monitoring).
The reception of events should therefore try to reproduce the
reported symptoms both for gaining additional informationand
for ensuring the credibility. The keywords field contains a set
of keywords which have been acquired in the service event
reception. These are usually predefined attributes to allowfor
case retrieval, but additional user-defined keywords are also
recorded. The description is a free text field to enable the
manual treatment in the case-based reasoner. The referring-
Date attribute is used to consider the time gap between the
witnessing of a symptom and its reporting as a service event.
Such a gap does usually not exist for resource events. The
storing of the gap is useful to consider the dependencies that
existed at the referringDate.

C. Rules and Cases

The implementation of the algorithm using RBR requires an
expression of algorithm statements via rules. For this purpose,

rules are denoted in a generic manner with event, condition
and action statements.

For example, the precorrelation of events into a representa-
tive event has to be expressed by rules (compare assumption
A6) for which one of the rules is given in Fig. 6.

event event1, event2

condition event1.class equalseventclassA (here service class)
andevent2.class equalseventclassB (here service class)
andevent1.status equals OPEN
andevent2.status equals OPEN
andevent1.referringDate less thanevent2.referringDate

andevent1.SAP equalsevent2.SAP

action event1.status set CORRELATED
andevent1.linkedCause addevent2

Fig. 6. Example rule representation

Here two currently valid events (status open) are matched
if they correspond to two related classes of events (e.g. up
and down events for a service) and relate to the same SAP.
Event1 is older thanevent2 so that the information contained
in event2 is considered to be more accurate then the previous
information. Event1 is therefore set to be correlated and
linked with event2. Therefore, it can be tracked why the event
has been set to be correlated.

For the modeling of cases, a generic case template is
provided to show which kind of information has to be recorded
and processed. The information that is needed is mainly
contained in the service event data enriched with partial results
from the correlation, e.g. if the correlation has been partially
successful. Furthermore, case processing information needs to
be recorded, in particular which related cases can be retrieved,
when has the processing been started, what has been the real
root cause and the solution steps.

VI. PROTOTYPICAL IMPLEMENTATION AT THE LRZ

The algorithm has been implemented at the LRZ to intro-
duce an event correlation for its Web Hosting Service and E-
Mail Service. These are large scale services which host web
sites for more than 350 customer institutions and provide e-
mail access for more than 85,000 users, respectively.

A. Implementation Options and Choice of TEC

For the implementation of the rule-based reasoner several
tools have been evaluated. General purpose RBR systems such
as JBoss Rules[21] or Boeing’s NodeBrain[22] have the
advantage that their code is open source so that its details
are not hidden and can potentially be modified. However,
these systems are not designed for the network and systems
management domain per se so that additional interfaces need
to be developed. The open source toolSimple Event Correlator
[23], which has also been integrated intoHP Event Correlation
Services[24], has too few possibilities and is relatively hard
to extend. It has then been decided to use theIBM Tivoli
Enterprise Console (TEC)[25] because it can be adapted for
the needs of service-orientation and has already modules to



integrate it to the given environment at the LRZ (i.e.HP
OpenView NetworkNodeManagerfor network management
andBMC Remedy ARSas trouble ticket solution).

Nevertheless, the implementation had to overcome some
limitations of the TEC standard rule sets. Similar to other
tools, the predefined rules are based on a single root cause
assumption. Consequently, after the correlation of an event
for an antecedent to an event for a dependent the latter event
is regarded as fully correlated and closed. The predefined rules
are also too limited concerning the modeling of dependencies
for which only two rules related to IBM WebSphere exist.

B. Rule Set

The implemented rule set is depicted in Fig. 7. Its first three
rules serve administrative purposes for starting and closing
the correlation. The ruleduplicate servicesis responsible for
precorrelating events related to the same service (compare
assumption A6).

The correlate rule is the central rule in the rule set and
is split into a set of actions. It implements the top-down
correlation using the linking and active probing helper rules.
The rule is executed for a quality degradation with respect to
a service or service functionality. In thecorrelate resources
action, the service-resource dependencies are specified and
it can, therefore, determine which antecedent resource QoR
parameters are given, for the input QoS parameter. It is
then checked whether events are present for the antecedent
resources according to these dependencies. For dependencies
where events for the antecedents are given the linking is ini-
tiated. In the actioncheck resourcerestlist active probes are
triggered for the remaining dependencies. A similar handling
for inter-service dependencies is done in thecorrelate services
andcheck service restlist actions where the list of dependen-
cies is used to identify the antecedent services and to search for
given events. For missing events, active probing is requested.

The actions in the correlation rule have been based on
the assumption that events for antecedents are already given
which may not be the case. Therefore, it is examined in the
service handlerandresourcehandlerrules whether a current
service or resource event is the result of active probing. The
service event that triggered active probing is then reactivated
and is again input for the correlation rule. The correlationrule
is reexecuted for this service event so that a linking between
the current event and the previous higher level event can be
constructed.

The linking rule is a helper rule to perform the linking of
events. Another helper rule is theactive probing rule which
splits an active pro bing request related to a set of servicesor
resources into single probing events.

For service events that have reached the end of their validity,
the rule timer expiration is in place to forward them to the
case-based reasoner.

C. Correlation Example

In order to illustrate the service-oriented event correlation,
an example for the Web Hosting Service is provided in Fig. 8.

helper rule for the generation of active probing events for
resources and services

rule: linking
helper rule for linking cause and effect events

rule: active_probing

rule: timer_expiration
close and forward uncorrelated service events

logging
action: exit_rule

searches for active probing event related to service event and
reactivates previous service event

searches for active probing event related to resource event and
reactivates previous service event

set global variables, initialize logfile
rule: startup

rule: shutdown

rule: close_all

close logfile

helper rule for closing all events

rule set: lrz_correlation

rule: duplicate_services

rule: correlate

correlate older service events to currently valid event

initialize variables and logging of entry
action: setup_correlation

action: correlate_resources
specification of cause−effect relationships between services and resources,
search for causes, execute correlation

trigger active probing for resources
reception_action: check_resource_restlist

logging
action: exit_resources

specification of cause−effect relationships among services, search for causes,
execute correlation

action: correlate_services

trigger active probing for services
reception_action: check_service_restlist

logging
action: exit_services

rule: service_handler

rule: resource_handler

Fig. 7. Implemented correlation rule set [2]

On the left side events received from the service monitoring
are shown (same semantics as in Fig. 2), while helper events
are depicted on the right side.

The Web Hosting Service is an offer to smaller research
institutions to run their web sites at the LRZ. The service is
split into several functionalities such as the retrieval ofstatic
web pages and is based on subservices (e.g. Firewall Service)
and resources (e.g. web servers). The example relates to the
QoS parameter availability (i.e. whether the service is available
for users at a certain point in time) for which also similar QoD
parameters for the resources exist.

The example starts with an unavailability event for a re-



TEC_LRZ_LINKED_EVENT

TEC_LRZ_LINKED_EVENT

TEC_LRZ_LINKED_EVENT

timeline helper events from rule executionevent reception

’Storage_any_Avail’,
’DNS_any_Avail’]

TEC_LRZ_LINKED_EVENT

TEC_LRZ_LINKED_EVENT

TEC_LRZ_LINKED_EVENT

WebHosting_any_AvailInt
TEC_LRZ_SERVICE_QOS_NOK

TEC_LRZ_RESOURCE_QOR_NOK
webserver1_Avail

switch2_Avail
TEC_LRZ_RESOURCE_QOR_OK

TEC_LRZ_ACTIVE_PROBING_EVENT
services=[’WebHosting_any_AvailInt’,

TEC_LRZ_ACTIVE_PROBING_EVENT
resources=[’switch1_Avail’,

’webserver2_Avail’]

TEC_LRZ_LINKED_EVENT

TEC_LRZ_LINKED_EVENT

TEC_LRZ_SERVICE_QOS_OK
Storage_any_AvailInt

TEC_LRZ_SERVICE_QOS_OK
DNS_any_AvailInt

TEC_LRZ_SERVICE_QOS_OK
Firewall_any_Avail

TEC_LRZ_SERVICE_QOS_OK
Connectivity_any_Avail

TEC_LRZ_SERVICEFUNC_QOS_NOK
WebHosting_StaticWebPageRetrieval_Avail

TEC_LRZ_RESOURCE_QOR_OK
switch1_Avail

TEC_LRZ_RESOURCE_QOR_OK
webserver2_Avail

TEC_LRZ_LINKED_EVENT

Fig. 8. Example correlation for the Web Hosting Service (abstracted from [2])

source (webserver1) which does not lead to further correlation
actions, but can be a root cause candidate already. Please note
that due to the pure top-down approach affected services,
etc. are not determined proactively. The usual monitoring
of services and resources does also result in positive events
such as for the availability of switch2, Firewall Service, and
Connectivity Service.

Then, a service event is received that the retrieval of static
web pages for the Web Hosting Service is not available. In the
correlation routine, it is at first checked whether valid events
for subservices or resources of this service functionalityare
available which applies to the two service events previously
witnessed (Firewall Service and Connectivity Service). An
active probing event is therefore issued for the remaining
subservices, which results in the reporting of results for the
performed tests.

The first result shows that the internal availability (service-
internal QoS parameter summarizing the performance of the
resources) of the service is violated which is linked to the
reported unavailability of the static web page retrieval func-
tionality (highlighted with thicker lines in the figure). This
failure has to be further investigated again using the correlation
rule so that the two resource events witnessed at the start of
the example can now be linked to this internal unavailability
including the negative event for webserver1 (linking also
highlighted). Furthermore, the correlation results in an active
probing event for the remaining resources. At the end, further

test results for the first and second active probing are reported
and are matched to the originating negative events.

In summary, the unavailability of the static web page
retrieval functionality of the Web Hosting Service can be
explained by the unavailability of webserver1.

D. Case-based Reasoner Implementation

Similar to the RBR module, the possibilities for tool support
of the case-based reasoner have been examined. Only few
open source and commercial CBR tools related to network
and systems management exist so that often solutions based
on trouble ticket systems are used. A general open source
CBR system isjColibri [26], while Empolis Orenge[27] is
a mighty commercial tool. The toolWeka[28] is suitable for
the retrieval step, but similar to the others it has to be adapted
for the network and service management domain.

For the LRZ the way to implement the CBR module is to
extent its BMC Remedy ARS [29] installation. The function of
BMC Remedy ARS to retrieve related trouble tickets manually
with a search function is going to be enhanced with a key-term
matching function.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper the idea of the hybrid architecture for per-
forming service-oriented event correlation has been motivated
by analyzing the features of event correlation methods. The
development of the correlation algorithm has been explained
by detailing the steps for its refinement. The implementation of



the rule-based reasoning part extending TEC has been outlined
containing a simplified correlation example.

Concerning future work, two main directions can be fol-
lowed, i.e. improving the event correlation and service-related
developments. For the event correlation, a more active role
for the case-based reasoner can be examined, in particular by
specifying cases that represent the overall situation in contrast
to representing a single event. Since faults and security-related
incidents (e.g. denial of service attacks) can have similar
consequences for users, it should be examined how to integrate
security-related events into the correlation. For the service
domain a refinement for Web services and Grid services seems
to be promising.

In addition, there is currently some uncertainty in organi-
zations (compare [30]) concerning the ways event correlation
in larger enterprises where the correlation efforts have tobe
distributed. It is, for instance, not obvious how to specifythe
tasks of a local correlation (e.g. for a computing cluster) and
how to define and generate aggregated events that represent the
state of a set of resources. Therefore, best practice guidelines
should be provided to figure out how to analyze and improve
the situation in a given organization.

Acknowledgments

The authors wish to thank the members of the MNM Team
for helpful discussions and valuable comments on previous
versions of the paper. The MNM Team, directed by Prof.
Dr. Heinz-Gerd Hegering, is a group of researchers of the
Munich Universities, the University of Federal Armed Forces
in Munich and the Leibniz Supercomputing Center of the
Bavarian Academy of Sciences. Its webserver is located at
http://www.mnm-team.org.

REFERENCES

[1] A. Hanemann, “A Hybrid Rule-Based/Case-Based Reasoning Approach
for Service Fault Diagnosis,” inProceedings of 20th International
Conference on Advanced Information Networking and Application
(AINA2006); includes proceedings of International Symposium on Fron-
tiers in Networking with Applications (FINA 2006). Vienna, Austria:
IEEE press, April 2006, pp. 734–738.

[2] A. Hanemann, “Automated IT Service Fault Management Based on
Event Correlation Techniques,” PhD thesis, University of Munich,
Department of Computer Science, Munich, Germany, July 2007.

[3] M. Steinder and A. Sethi, “A Survey of Fault LocalizationTechniques
in Computer Networks,”Science of Computer Programming, Elsevier,
vol. 53, no. 1, pp. 165–194, 2004.

[4] L. Lewis, Service Level Management for Enterprise Networks. Artech
House, Inc., 1999.

[5] G. Jakobson and M. Weissman, “Alarm Correlation,”IEEE Network,
vol. 7, no. 6, November 1993.

[6] C. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem,”Artifical Intelligence Journal, vol. 19, no. 1,
pp. 17–37, 1982.

[7] G. Molenkamp, H. Lutfiyya, M. Katchabaw, and M. Bauer, “Diagnosing
Quality of Service Faults in Distributed Applications,” inProceedings
of the 20th IEEE International Performance, Computing, andCommuni-
cations Conference, Phoenix, Arizona, USA, April 2002, pp. 375–382.

[8] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “A Coding
Approach to Event Correlation,” inProceedings of the Fourth IFIP/IEEE
International Symposium on Integrated Network Management, Santa
Barbara, California, USA, May 1995, pp. 266–277.

[9] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High Speed
and Robust Event Correlation,”IEEE Communiations Magazine, vol. 34,
no. 5, May 1996.

[10] L. Lewis, Managing Computer Networks - A Case-Based Reasoning
Approach. Artech House, Inc., 1995.

[11] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik, “Real-time
Problem Determination in Distributed Systems Using ActiveProbing,”
in Proceedings of the 9th IFIP/IEEE International Network Management
and Operations Symposium (NOMS 2004), Seoul, Korea, April 2004, pp.
133–146.

[12] N. Odintsova, I. Rish, and S. Ma, “Multi-fault Diagnosis in Dynamic
Systems,” inProceedings of the 9th IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM 2005, Poster-CD), Nice,
France, May 2005.

[13] S. Shankar and O. Satyanarayanan, “An Automated Systemfo Analyzing
Impact of Faults in IP Telephony Networks,” inProceedings of the
10th IFIP/IEEE International Network Management and Operations
Symposium (NOMS 2006), Vancouver, British Columbia, Canada, April
2006.

[14] J. Martin-Flatin, “Distributed Event Correlation andSelf-Managed Sys-
tems,” in Proceedings of the 1st International Workshop on Self-*
Properties in Complex Information Systems (Self-Star 2004), Bertinoro,
Italy, May 2004, pp. 61–64.

[15] M. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, and A.Sailer,
“Problem Determination Using Dependency Graphs and Run-Time Be-
havior Models,” inProceedings of the 15th IFIP International Workshop
on Distributed Systems: Operations and Management (DSOM 2004),
Davis, California, USA, November 2004, pp. 171–182.

[16] G. Jakobson, L. Lewis, and J. Buford, “An Approach to Integrated Cog-
nitive Fusion,” inProceedings of the 7th ISIF International Conference
on Information Fusion (FUSION2004), Stockholm, Sweden, June 2004,
pp. 1210–1217.

[17] I. Hatzilygeroudis and J. Prentzas, “Categorizing Approaches Combining
Rule-Based and Case-Based Reasoning,”Journal of Expert Systems,
Blackwell Publishing, vol. 24, no. 2, pp. 97–122, May 2007.

[18] G. Jakobson, J. Buford, and L. Lewis, “Towards an Architecture for
Reasoning about Complex Event-Based Dynamic Situations,”in Pro-
ceedings of the Third International Workshop on Distributed Event
Based Systems (DEBS 2004), Edinburgh, Scotland, May 2004.

[19] “CIM Standards, Version 2.13, Distributed ManagementTask Force,”
http://www.dmtf.org/standards/cim, Sep. 2006.

[20] “Shared Information/Data (SID) Model, Addendum 4S0 - Ser-
vice Overview Business Entity Definitions,” TeleManagement Forum,
NGOSS Release 4.0, Aug. 2004.

[21] “JBoss Rules, JBoss - a division of RedHat Linux,” http://-
labs.jboss.com/portal/jbossrules/.

[22] “NodeBrain - An Open Source Agent for Event Monitoring Applica-
tions, The Boeing Company,” http://www.nodebrain.org.

[23] R. Vaarandi, “Platform Independent Event CorrelationTool for Network
Management,” inProceedings of the 8th IFIP/IEEE International Net-
work and Operations Management Symposium (NOMS 2002), Florence,
Italy, April 2002, pp. 907–909.

[24] “HP OpenView Event Correlation Services, Hewlett Packard Corpora-
tion,” http://www.managementsoftware.hp.com/products/ecs/.

[25] “IBM Tivoli Enterprise Console, International Business Machines Cor-
poration,” http://www-306.ibm.com/software/tivoli/products/enterprise-
console/.

[26] “jColibri - Case Based Reasoning framework,” http://gaia.fdi.ucm.es/-
projects/jcolibri/.

[27] “Empolis Orenge,” http://www.empolis.de.
[28] “Weka 3 - Data Mining with Open Source Machine Learning Software

in Java, University of Waitako,” http://www.cs.waikato.ac.nz/˜ml/weka/.
[29] “BMC Remedy Action Request System, BMC Remedy Corporation,”

http://www.bmc.com/remedy/.
[30] J. Martin-Flatin, G. Jakobson, and L. Lewis, “Event Correlation in

Integrated Management: Lessons Learned and Outlook,”Journal of
Network and Systems Management, vol. 17, no. 4, December 2007.


