
Architecture for an Automated Management
Instrumentation of Component Based
Applications

Rainer Hauck

Munich Network Management Team,
University of Munich, Dept. of CS, Oettingenstr. 67, D-80538 Munich, Germany
hauck@informatik.uni-muenchen.de

Due to the ongoing trend towards application service provisioning (ASP), the monitoring of user-oriented quality of
service (QoS) parameters (e.g., transaction duration) is gaining more and more momentum. However, most techniques
currently used for application management cannot provide this kind of user-oriented information. At present, only
instrumentation techniques are suited to provide the required information. On the other hand instrumentation techniques
cause considerable efforts due to the need to insert code into an application to be monitored. Therefore they are hardly
used today. The architecture proposed in this paper greatly reduces the efforts of management instrumentation by
utilizing the component based structure of future applications. Additionally, a means for automated correlation of
transactions based on control flows is introduced. Thus, the proposed architecture lays the foundation for a widespread
use of application instrumentation.

Keywords: Service Monitoring and Reporting, End-to-end QoS Management, Application Monitoring, Management
Instrumentation, Component Based Applications

1 Introduction
In recent years a trend towards service orientation can be observed especially in the area of network and
internet connectivity. Tasks outside the main focus of an enterprise have increasingly been outsourced to
external service providers instead of accomplishing them internally. However, service orientation is by
no means limited to the area of network connectivity and nowadays can also be found in different areas
like e.g., business applications. More and more enterprises refrain from running their business applications
themselves and rather prefer to outsource them to application service providers (ASP).

Along with the outsourcing of services comes the need to precisely describe not only the functionality
of the service to be provided but also the quality of service (QoS) a customer can demand from a service
provider. This is usually done in so-called service level agreements (SLAs). Obviously, simply defining
QoS parameters is in no way sufficient. Instead, means to monitor the agreed QoS are necessary as well as
means to guarantee proper fulfillment.

However, QoS monitoring for application services is still an unsolved problem. Due to the huge dif-
ferences between existing application services, not even a common understanding about the parameters to
monitor has been established yet. Furthermore, only a few tools are available to support the monitoring of
”application-level parameters” and their use is cumbersome and costly.

As application services typically provide transactions that can be triggered by the service user, we believe
that the most important requirement to prove proper SLA-fulfillment is the ability to monitor these trans-
actions. If such a user transaction fails, additional means are necessary to quickly identify the root cause
of the problem. This can be done by subdividing the user transaction into subtransactions and extending
the monitoring to these subtransactions. Of course current application instrumentation techniques like the

Rainer Hauck

Application Response Measurement API (ARM)[ARM98] (see section 2) can provide this kind of informa-
tion. However, these techniques are hardly used today, because of the huge efforts required to instrument
applications.

This paper introduces an architecture that greatly alleviates the task of instrumenting applications. This
is accomplished in two ways: On the one hand, the management instrumentation of an application is com-
pletely automated based on the component based structure of future applications. On the other hand, the
correlation of measurements is completely automated based on the control flows the application is run-
ning in. As these are the major drawbacks of current application instrumentation techniques, the proposed
architecture lays the foundation for a widespread use of application instrumentation.

In case of component based application development, two roles must be distinguished: Component
developers implement components that can be used later by application developers during assembly of
an application. It must be stressed that our approach does not simply shift the efforts from the application
developer to the component developer, but substantially reduces the overall efforts of application instrumen-
tation by automation. Thus, the requirements our solution should satisfy are to provide a means to monitor
the actual user transactions of an application service as well as their subtransactions. Furthermore, the ad-
ditional development effort caused by the solution must be reduced to a minimum for both the application
developer and the component developer.

The paper is organized as follows: Section 2 shows related work by giving an overview of techniques
currently available for application management. The ARM API, which is the technique most closely related
to the proposed architecture, is introduced in some more detail. In section 3, our architecture for the
automation of management instrumentation is described. After a detailed explanation of our approach in
section 3.1, the runtime architecture as well as the development architecture of the solution are introduced.
A prototypical implementation of the architecture is shown in section 4. Based on the experiences gained
with the prototype, a comparison of the proposed architecture with the ARM API is done in section 5. A
short summary and a description of ongoing work conclude the paper in section 6.

2 Related Work
As was already shown in [HR00a] there essentially exist four basic techniques for application management.
Two of them, the monitoring of network traffic (e.g., [BMR99], [App00]) and the monitoring of system-
level parameters (e.g., [KS98]) simply cannot deliver the user-oriented information required. The third
technique, the client-side application monitoring can deliver this kind of information, but only shows
the client-view of the application and thus fails to provide detailed information required for a root cause
analysis in case of an error. Examples for client-side monitoring are use of synthetic transactionslike
done by Geyer & Weinig’s GW-TEL INFRA-XS[Wei00] or GUI-based approacheslike Candle ETEWatch
[Gro98]. Only the fourth technique, the application-wide monitoring, is suited to completely deliver the
required information. Application-wide monitoring comprises application description, like done by the
Application Management Specification(AMS) [AMS97] and the DMTF Application Model[DMT00], and
application instrumentation, like the ARM API [ARM98]. The application-wide monitoring techniques
suffer from high efforts posed on the application developer and thus are likewise not in widespread use
today.

A lot of researchers are dealing with the topic of automating application management: [BH97] describes
an approach for the automation of fault management of component based applications. However, the ap-
proach is constrained to so-called store-and-forwardarchitectures and requires great efforts of the compo-
nent developer because an instrumentation of all components is necessary. [KKC00] in contrast focuses on
automatically determining the dependencies of applications and their underlying infrastructure. While this
is a promising approach for the area of configuration and fault management, it does not cover user-oriented
performance or accounting management. To achieve this, the authors again refer to classical instrumen-
tation techniques. The approach introduced in [HMMT99] suggests generating and mapping events to
transactions instead of calling measurement agents. Thus, the transactions to be monitored can be defined
more flexible. However, manual insertion of the code generating the events into the source code of the
applications is still required.

Architecture for an Automated Management Instrumentation of Component Based Applications

API

ARMMeasurement
arm_stop

arm_start

Agent

API

ARMMeasurement
arm_stop

arm_start

Agent

Application
Management

Server−Code

...arm_stop
 Server−TA

arm_start
...

Server Process

Client−Code

...arm_stop
 Client−TA

arm_start
...

Client Process

Client

Server

Fig. 1: ARM API: Architecture

As already mentioned, application instrumentation is required to provide the information necessary for
service-based application management. The instrumentation approach most widely used today is the ARM
API. ARM defines a very simple API that can be called from the application to inform a management agent
whenever a transaction begins or ends. Figure 1 shows the usage of the API. An application developer
inserts calls to the API into the source code of the (possibly distributed) application. At runtime, a mea-
surement agent integrated in the application’s process is called, which determines the time of the call and
typically forwards the information to a management application. To achieve correlation of measurements,
ARM uses the following mechanism: Whenever an application informs the measurement agent about the
start of a transaction, a unique identifier is generated and returned to the application. This parameter has to
be passed through the application and back to the measurement agent when the transaction ends. For corre-
lation of subtransactions a second identifier (called a correlator) can be requested and is used analogously.
The basic problem of this approach is, that these identifiers must be passed through the entire application
as additional parameters for each method invocation. Practical instrumentation experience shows that this
mechanism is inconvenient for the developer and can lead to a great number of errors (especially when
instrumenting code developed by a third party). Even worse, in case of component based application devel-
opment, this approach would require an extension of all the methods of all components to allow passing of
the respective identifier to the component which cannot be expected in practice.

3 Architecture
The following section describes our proposed architecture for an automated management instrumentation
of component based applications. The introduction starts with a detailed description of our approach in
section 3.1. The architecture itself is divided in two parts along the lifecycle of an application. The first part
covers the development of an application and describes the automated insertion of management code into
the source code of the application. The second part covers the runtime of the application and describes the
measurement interface and the automated correlation of measurements gained from an instrumented appli-
cation. For presentation purposes first the runtime part is introduced in section 3.2. Then, the development
part is illustrated in section 3.3.

3.1 Approach
The approach introduced in this section overcomes the two major drawbacks of ARM API: First, the prob-
lem of placing measurement points in the source code of an application is eliminated by extending the
development environments. Thus, placement of measurement points can be completely automated. Sec-
ond, no manual passing of correlation information is needed as information about the control flows the
application is running in is utilized.

Rainer Hauck

3.1.1 Placement of measurement points
The following section describes how measurement points can be inserted into the source code of an ap-
plication without requiring manual intervention of the application developer. This is done for both the
monitoring of user transactions and the monitoring of subtransactions.

Transaction
User

ResultUI

Fig. 2: General model
of a user transaction

Monitoring of user transactions: As already mentioned, the monitoring of user
transactions is of great importance. A general model of a user transaction is depicted
in figure 2. It starts with a user interaction (UI) initiated by the user (e.g., pressing a
GUI button or the ENTER-key) followed by some kind of activity. At the end of the
user transaction, the result is presented to the user.

At development time, the application developer must identify the interactions that
start and end the user transactions to be monitored (laid down in the SLA) and must
uniquely name these user transactions. As in the case of component based appli-
cation development no source code access is available for the application developer,
this can only take place during component customization. This means, every compo-
nent providing user interactions must be (manually) instrumented by the component developer to allow this
kind of identification. As only a small number of components provide interactions and as GUI components
achieve a particular high degree of reuse, this additional effort can easily be tolerated.

Thus, every input component must provide a means to declare each of its user interactions as the begin-
ning of an arbitrary user transaction. To distinguish different user transactions, a means to uniquely name
transactions is further required. Whenever such an interaction takes place, the respective component must
inform a measurement agent about the beginning of a new instance of a user transaction. Analogously, a
way to declare the end of a user transaction is needed. The correlation of the two measurements can be
done automatically as described in section 3.1.2.

Monitoring of Subtransactions: While the monitoring of user transactions still requires manual inter-
vention by the application developer, monitoring of subtransactions can completely be automated. In case
of component based application development, a call to a single component represents the suitable level of
detail to be monitored. Thus, a measurement must take place, whenever a component is called and whenever
a call to a component returns.

Particularly in case of component architectures that use development environments to generate adapters
to wire the components (e.g., JavaBeans [Jav97]), slightly extending the development environments is suf-
ficient to achieve an automated instrumentation. When creating an adapter, the development environment
must insert calls to the measurement agent into the adapter just before calling the target component and
immediately after returning from the call. In case of exception-based error handling, catching (and re-
throwing) exceptions even allows to distinguish between successful and failed subtransactions. A detailed
description of the required extensions for the Java Beanboxis given in section 4.1.1.

3.1.2 Correlation of Measurements
As multiple user transactions, either of the same or of different types can be executed in parallel, all mea-
surements must be correlated to their corresponding transaction. Instead of manually passing some kind of
generated identifier through the monitored application, the information about the control flows the applica-
tion is running in can be used to achieve this correlation.

A single control flow can only execute one user transaction at a time. Each user transaction definitely
starts in one single control flow (the one, the GUI of the application is running in). Then – depending on the
type of the transaction – it might completely be executed in this control flow or new control flows might be
added. Typically, only short running transactions will be executed in the control flow of the GUI, because
otherwise no more user transactions can be started while the transaction is running (the GUI is ”frozen”).

If the complete user transaction is executed within a single control flow, a correlation can very easily be
achieved: The measurement agent simply determines the identifier of the current control flow at the time the
transaction starts. Every subsequent measurement taking place in the same control flow then must belong
to the same transaction until the end of the transaction. When control returns to the GUI, the measurement
agent must be informed, that the transaction is not running anymore.

Architecture for an Automated Management Instrumentation of Component Based Applications

UTA

>1 Control Flow Control Flow

Creation of new
Control Flows

Activation of existing
Control Flows

Fig. 3: Different ways of UTA execution

However, there are many reasons, why a single
control flow is not suited to realize an application ser-
vice. As already mentioned, this would allow only
one user transaction to be executed at a time. Ad-
ditionally, for performance and distribution reasons
or ease of programming new control flows might be
started. Figure 3 shows the different ways, user trans-
actions (UTAs) can be executed.

As can be seen from the figure, there are essentially two ways to add a new control flow to the execution
of a user transaction: A new control flow could be started or an existing one could be activated. The
following paragraphs explain, how a correlation of measurements can be achieved in these two cases.

Creation of new control flows: For the creation of new control flows, some kind of system mechanism is
used. Usually there exists a library that shields the details from the developers. By instrumenting this library
to inform the measurement agent whenever a new control flow is started, the correlation can be achieved.
As the call to the library is executed within the initiating control flow, the library has knowledge about both
the initiating and the created control flow. If it provides this information to a measurement agent, it can
correlate the new control flow to the transaction the already existing control flow was executing.

Activation of existing control flows: The situation is slightly different in case of activating existing
control flows. Essentially, there are two ways to achieve this: Either, a system mechanism can be used to
activate the control flow (e.g., in case of remote communications) or a job is placed in some kind of queue
that is regularly checked by a component executing in a different control flow.

When using a system mechanism for communication, an automated correlation can be achieved as fol-
lows: The communication mechanism must be instrumented to inform a measurement agent about the
newly added control flow. In case of remote communications, a unique identifier for the invocation must be
created and transmitted to both the local and the remote measurement agent thus again allowing correlation.
This should be done transparently to both the application developer and the component developer.

When using a queue for communication, a correlation can only be assured if the component imple-
menting the queue has been instrumented by the component developer to analogously provide the required
correlation information.

3.2 Runtime architecture
This section introduces the runtime architecture of the proposed solution. After a brief overview of the
components, the measurement interface is described.

The runtime architecture is depicted in figure 4. Essentially it consists of a – possibly distributed –
instrumented application, a measurement agent per process (called a measurement correlator), instrumented
libraries of the execution environment as well as management agents and management applications.

Instrumented application: The instrumented application calls the corresponding measurement correla-
tor whenever a transaction (either user transaction or subtransaction) starts or stops. For this purpose, the
measurement interface described in the next section is used. The automated development of an instrumented
application is explained in section 3.3.

Instrumented libraries: To allow monitoring of user transactions executed in more than one control
flow, an instrumentation of the appropriate libraries is necessary. This means, the libraries responsible for
starting and stopping control flows as well as the libraries for the activation of existing control flows must
be instrumented to provide the required information to the measurement correlator.

Measurement correlator: The measurement correlator is responsible for correlating measurement to
user transactions. It is called from both the instrumented application and the instrumented libraries via the
measurement interface. To avoid large amounts of interprocess communication, the measurement correlator
is executed in the same process the application to be monitored is running in. The gathered information is
regularly forwarded to the system’s management agent.

Rainer Hauck

instrumented
Application

Measmt.
Correlator

instrumented
Libraries

Process 1

instrumented
Application

Measmt.
Correlator

instrumented
Libraries

Process n

Management Agent

Operating System

...

instrumented
Application

instrumented
Libraries

Measmt.
Correlator

Process

Management Agent

Operating System

Management Application

...

System 1 System n

Fig. 4: Runtime architecture

Management agent and management applications: The information gathered by the measurement cor-
relator is regularly forwarded to a management agent running on the same system. The management agent
runs outside the process of the measurement correlator (and thus of the application to be monitored). The
management agent forwards the information to all registered management applications.

The management applications collect the information of the various management agents, correlate infor-
mation in case of distributed applications and can do any kind of further processing.

3.2.1 Measurement interface
The measurement interface is the interface provided by the measurement correlator which is called by
both the instrumented application and the instrumented libraries. Figure 5 shows the specification of this
interface (where UTA and STA mean user transaction and subtransaction resp.). As can be seen from the
figure, no explicit correlator (like necessary when using ARM API) must be passed as parameter. Instead,
correlation of measurements is completely automated based on the approach described in section 3.1.2. The
following paragraphs briefly explain, how the measurement interface is expected to be used:

In any case, measurement of a user transaction starts with a call to startUTA. If the complete user
transaction is executed within a single control flow, any number of startSTA/stopSTA-pairs might
follow (to measure individual subtransactions). At an arbitrary point during execution, a call to stopUTA
informs the measurement correlator that the result of the transaction has been presented to the user.

If additional control flows are started during execution, the measurement correlator is informed via
addControlFlow. Analogously, a control flow leaving execution of a transaction causes a call to
removeControlFlow.

<<interface>>
Measurement Interface

logInfo(info: String)

startSTA(componentName: String, componentID: OID, parentTA: UUID=0)

startUTA(utaName: String, userName: String, componentName: String, componentID: OID)

stopUTA(status: String, info: String)

stopSTA(status: String, info: String)

addControlFlow(newControlFlow: ThreadID, target: OID)

removeControlFlow(status: String, reason: String)

initiatedTA(isAsynchronous: Boolean):UUID

Fig. 5: Specification of Measurement Interface

Architecture for an Automated Management Instrumentation of Component Based Applications

The most complicated case is activation of existing control flows. As an example, figure 6 shows a se-
quence diagram of a remote procedure call (RPC). The local application uses a communications mechanism
to transparently call the remote server. The communications mechanism issues an initiatedTA-call to
receive a unique identifier for the current invocation from the local measurement correlator. This identifier
is then transparently transmitted to the remote system and given to the remote measurement correlator as
a parameter in a startSTA-call. Then the remote server is activated. While executing, the remote server
again uses startSTA/stopSTA-calls (to the remote measurement correlator) in order to provide detailed
information about its further subtransactions. Before returning to the calling system, the communications
mechanism issues a stopSTA-call to the remote measurement correlator to inform it about the end of
the subtransaction. Using the exchanged identifier, management applications later can easily correlate the
remotely executed subtransactions to the appropriate user transaction.

local

application

local

correlator

communications

mechanism

remote

correlator

remote

server

start/stopSTA*

stopSTA

RPC

startSTA(ID)

ID=initiatedTA

RPC

Fig. 6: Example: Sequence Diagram of a remote procedure call

3.3 Development architecture

The instrumented applications mentioned in the previously described architecture can easily be generated
by using the development architecture described in the following. It essentially consists of components
and an extended development environment which cares for the automated instrumentation. The following
paragraphs briefly explain the elements of the architecture.

Components: Most of the components can be used without any change. However, two classes of compo-
nents, GUI-components and so-called active components, require special instrumentation.

For every user interaction provided by a GUI component, an instrumentation is required (by the compo-
nent developer) that allows the application developer to specify whether this user interaction serves as the
start or stop of a user transaction of the developed application. In addition, the application developer needs
a means to uniquely (within the application) name the user transaction to be started. In our approach this
is done during component customization, which essentially means configuring a component’s parameters
(e.g., via the GUI of the development environment) during application development.

Similarly, so-called active componentsrequire special treatment. By active componentswe mean compo-
nents which have a queue and a control flow of their own. These components require an initiatedTA-
call whenever a task is placed into the queue as well as startSTA- and stopSTA-calls respectively
surrounding the processing of the task.

Extended development environment: The most important part of the development architecture is the
extended development environment. It is used to build applications from prefabricated components. Our
architecture builds on component architectures wiring components by generating adapters. By slightly

Rainer Hauck

public class ___Hookup_16e8ce750f implements java.awt.event.
ActionListener, java.io.Serializable f

...
public void actionPerformed(java.awt.event.ActionEvent arg0) f

Measure.startSTA(target.getClass().getName(),String.valueOf(
System.identityHashCode(target)),"startSort");

try f
target.startSort();

g
catch (Error e)f

Measure.stopSTA("Failed",e.getMessage());
throw e;

g
catch (RuntimeException e)f

Measure.stopSTA("Failed",e.getMessage());
throw e;

g
Measure.stopSTA("Success",null);

g
...

Fig. 7: Adapter generated by extended BeanBox

extending the development environment, calls to the measurement correlator can be inserted automatically
into these adapters just before the target component is called and immediately after the call to the target
component returns. By catching exceptions possibly thrown by the target component, even an automated
distinction between successful and failed calls can be done.

4 Implementation of the architecture
To allow a thorough evaluation of the proposed architecture, a prototypical implementation has been done.
The implementation is based on JavaBeans[Jav97] and uses the Java BeanBox[Sun99] as a development
environment. Again the description is divided in two parts, one focusing on the implementation of the
development architecture and the other one focusing on the implementation of the runtime architecture.
The following sections give an overview of both parts of the prototype.

4.1 Implementation of development architecture
The implementation of the development architecture essentially consists of an extension of the Java Bean-
Box, a simple and freely available development environment for JavaBeans-based applications. Addition-
ally, a number of components have been instrumented.

4.1.1 Extension of the Java BeanBox
The instrumentation of two classes of components does not require any extensions of the BeanBox. The
configuration of these components can transparently take place during component customization. Only for
the insertion of startSTA- and stopSTA-calls into the generated adapters some minor extensions are
necessary.

The BeanBoxgenerates adapters by writing into a file using calls to the print-method. Thus, the exten-
sion could easily be achieved by adding further calls. An example for an instrumented adapter automatically
generated by the extended BeanBox can be found in figure 7. To distinguish the additionally generated code,
the ”normal” code is depicted in grey. Details about the performed extensions can be found in [Hau01].

As can be seen from the figure, a call to startSTA has been inserted just before the methodstartSort
of the target component is called. The call to the target component is now done within a try/catch-
environment to catch possible exceptions thrown by the target. Depending on the success of the call, a
stopSTA-call is done with the appropriate status parameter.

Architecture for an Automated Management Instrumentation of Component Based Applications

public void mouseReleased(MouseEvent evt) f
if (!isEnabled()) f

return;
g
if (down) f

Measure.startUTA(utaName, System.getProperties().getProperty(
"user.name"), "StartButton", String.valueOf(
System.identityHashCode(this)));

tryf
fireAction();

g
catch (Exception e)f

Measure.removeControlFlow("Failure", "Thread returned to GUI");
throw e;

g
Measure.removeControlFlow("Success", "Thread returned to GUI");
down = false;

g

Fig. 8: Instrumentation of a GUI-Button

4.1.2 Instrumentation of components
As an example, the instrumentation of a simple GUI-button is shown in figure 8 (again showing the original
code of the button in grey). This button can be used to trigger arbitrary user transactions. When the user
releases the button, the method fireAction is called which essentially calls all registered event listeners.

Immediately before fireAction is called, a startUTA-call to the measurement correlator is inserted.
As a parameter, this call provides the name of the user transaction (configured by the application developer
during customization). When fireAction returns, removeControlFlow is called to inform the mea-
surement correlator that the current control flow no longer executes this instance of a user transaction (This
must not be confused with a call to stopUTA which indicates that the result of the user transaction has
been presented to the user).

4.2 Implementation of runtime architecture
In order to prototypically implement the runtime architecture, an implementation of the measurement cor-
relator, an instrumentation of some Java Virtual Machine (JVM)libraries as well as an implementation of
a management agent and management application has been done. The following sections briefly introduce
these components of the architecture.

4.2.1 Measurement correlator
A measurement correlator that provides the measurement interface described in section 3.2.1 was imple-
mented in Java. To allow easy access to the measurement correlator from both the instrumented application
and the instrumented libraries without having to pass a reference, an additional class was implemented,
providing the measurement interface using static methods.

The measurement correlator uses a hash table to map Javathreads to instances of user transactions. Every
time the measurement correlator is called, the appropriate user transaction can be determined from the hash
table using the thread of the caller. Current system time is determined and stored in combination with
further information in a vector. Regularly, a low priority thread is activated, sending the information to the
management agent.

4.2.2 Instrumentation of JVM Libraries
The proposed architecture requires the identification of every start and stop of a thread. To allow correlation
of distributed transactions, the communication mechanisms must be instrumented as well. However, in our

Rainer Hauck

protoype, no instrumentation of inter-process communication has been done yet (it is planned to do so in
future releases).

For identification of start and stop of threads, an instrumentation of the class java.lang.Threadwas
done. We used the freely available source code edition [Sun01] of the JVM for this purpose. Essentially,
the method start of java.lang.Thread was instrumented to call addControlFlow whenever a
new thread is started. As start is executed in the initiating thread, a correlation can easily be achieved.

Similarly, the method exit from java.lang.Thread, which is executed by the system whenever a
thread ends, was instrumented to inform the measurement correlator via a call to removeControlFlow.

4.2.3 Implementation of management agent and application
A management agent was built, which receives the information from the measurement correlator. It stores
the information and forwards it to arbitrary management applications. To achieve independence from the
underlying platform and programming language, the information is coded in XML.

Our management application gets the information from the management agent and visualizes it. Figure 9
shows a screenshot. It illustrates an instance of an exemplary user transaction (called QuickSortUTA)
that simply does a delay of six seconds and then starts sorting an array.

Fig. 9: Prototypical management application for the visualization of transaction instances

Using the fields ”Transaction(s) by Name” and ”Transaction(s) by Instance”, an instance of a user trans-
action to be visualized can be chosen. The right side of the window shows the transaction instance as well
as all of its subtransactions. As can be seen from the figure, the QuickSortUTA starts with a user interac-
tion in the start button, followed by sequential calls (visualized by the two vertical lines) to a DelayBean
and a bean called SortItem. The SortItem forks a new thread (visualized by the horizontal line) that
actually does the sort. By different colors, the status of each of the transactions is illustrated.

The lower left part of the windows shows detailed information about subtransactions that can be re-
quested by clicking on the appropriate rectangle. In the example, information about the DelayAction
executed by the DelayBean is shown. Both the start time and the duration of the execution can be seen.
Further information concerning the component, the name of the transaction or the status of the transaction
is likewise available.

5 Evaluation
Based on the experiences gathered with the prototype and on experiences gathered with the ARM API in
former projects (see e.g., [HR00b]), the following paragraphs give a comparison of our approach in contrast
to ARM:

Architecture for an Automated Management Instrumentation of Component Based Applications

Available information: Our experiences show that both approaches can provide similar information. In
contrast to the ARM API, our approach provides a platform- and implementation-independent representa-
tion of the information available to arbitrary management systems, while ARM offers no standard mecha-
nism for management systems to retrieve the management information from the measurement agent.

Instrumentation effort: The ARM API does not provide any kind of tool support to provide automa-
tion. It simply offers an API and leaves it up to the application developer to do the entire instrumentation
manually. Not even a methodology is given to aid the application developer in finding the places suitable
for instrumentation. Thus the development effort is high and impedes widespread use of this promising
technique.

Our approach in contrast delivers a high degree of automation. The management instrumentation of
an application is done almost automatically. Only the user interactions that start and end user transactions
have to be declared by the application developer. This is done during customization and does not require the
application developer to insert any kind of code into the application. The instrumentation of subtransactions
is automated entirely.

The additional effort posed on component developers can easily be tolerated, as only two classes of com-
ponents require special instrumentation and a high degree of reuse can be expected for these components
(especially for GUI components).

Correlation of measurements: ARM uses a costly and cumbersome technique to achieve correlation of
measurements. The application developer must care for passing identifiers of transaction instances through-
out the application. Thus, correlation of subtransactions is hardly ever used today and instrumentation of
component based applications is almost impossible.

Our approach completely automates correlation of measurements. By using the information about the
control flows the application is executing in, no care at all must be taken by the developers about how the
measurements correlate with each other. As the correlation of subtransactions thus requires no additional
effort, by far more detailed measurements can be expected.

6 Conclusion and future work
The paper proposed an architecture for automation of management instrumentation of component based
applications. Based on the experience that traditional techniques for application monitoring cannot de-
liver the information needed for service-oriented application management and that current instrumentation
techniques require too much effort by far, a new approach was introduced.

This architecture greatly reduces the instrumentation effort for both the application developer and the
component developer by automatically placing calls to the measurement correlator into the application.
Therefore an extension of the development environment was necessary. A second major drawback of current
instrumentation techniques, the cumbersome correlation of measurements, was overcome by utilizing the
information about the control flows the application is executing in.

Our current work focuses on extending the solution to component architectures that do not use adapters
for the wiring of the components. Especially Enterprise Java Beans[EJB00] and Corba Component Model
[OMG99] will be taken into account. As in these architectures every call is intercepted by the container, an
instrumentation of the container provides the information required. Also, the control flow based correlation
of measurements will be examined for use in non-component environments. A further focus of our current
work is to develop management applications that allow a user-based mapping from component failures to
the probability of service outages based on statistical information about past component usage.

Acknowledgment
The author wishes to thank the members of the Munich Network Management (MNM) Team for helpful
discussions and valuable comments on previous versions of the paper. The MNM Team directed by Prof.
Dr. Heinz-Gerd Hegering is a group of researchers of the University of Munich, the Munich University of

Rainer Hauck

Technology, and the Leibniz Supercomputing Center of the Bavarian Academy of Sciences. Its webserver
is located at http://wwwmnmteam.informatik.uni-muenchen.de.

References
[AMS97] Application Management Specification. Version 2.0, Tivoli Systems, 1997.

[App00] Apptitude. MeterFlow Network Decision Data Engine. Technical White Paper, January 2000.
http://www.apptitude.com/pdfs/mfwhitepaper.pdf.

[ARM98] Application Response Measurement (ARM) API . Technical Standard C807, The Open Group, July 1998.

[BH97] V. Biaggiolini and J. Harms. Toward Automatic, Run-Time Fault Management for Component-Based Appli-
cations. In W. Weck, J. Bosch, and C. Szyperski, editors, Proceedings of the Second International Workshop
on Component-Oriented Programming (WCOP ’97), number 5 in TUCS General Publication, pages 5–12,
Jyväskylä, Finland, September 1997. Turku Centre for Computer Science.

[BMR99] N. Brownlee, C. Mills, and G. Ruth. RFC 2722: Traffic flow measurement: Architecture. RFC, IETF,
October 1999.

[DMT00] DMTF Application Working Group. Application MOF Specification 2.5. CIM Schema
CIM Application25.mof, Distributed Management Task Force, December 2000.

[EJB00] Enterprise JavaBeans Specification Version, Version 2.0 – Proposed Final Draft. Specification, Sun Mi-
crosystems, October 2000.

[Gro98] Hurwitz Group. Candle captures the ”user experience”. Technical White Paper, September 1998.

[HAN99] H.-G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked Systems – Concepts, Ar-
chitectures and their Operational Application. Morgan Kaufmann Publishers, ISBN 1-55860-571-1, 1999.
651 p.

[Hau01] R. Hauck. Architektur für die Automation der Managementinstrumentierung bausteinbasierter Anwendun-
gen. Dissertation, Ludwig-Maximilians-Universität München, 2001. To be published.

[HMMT99] J.L. Hellerstein, M.M. Maccabee, W.N. Mills III, and J. Turek. ETE: A Customizable Approach to Mea-
suring End-to-End Response Times and Their Components in Distributed Systems. In Proceedings of the
19th International Conference on Distributed Computing Systems, pages 152–162, Austin, TX, USA, June
1999. IEEE Computer Society.

[HR00a] R. Hauck and I. Radisic. Monitoring Application Service Performance – Classification and Analysis of
Existing Approaches. In Workshop of the OpenView University Association (OVUA 2000), Santorini, Greece,
June 2000.

[HR00b] R. Hauck and H. Reiser. Monitoring Quality of Service across Organizational Boundaries. In C. Linnhoff-
Popien and H.-G. Hegering, editors, Trends in Distributed Systems: Torwards a Universal Service Market.
Proceedings of the third International IFIP/GI Working Conference, USM 2000, number 1890 in Lecture
Notes in Computer Science (LNCS), Munich, Germany, September 2000. Springer.

[Jav97] Javabeans. Specification, Sun Microsystems, July 1997.

[KKC00] G. Kar, A. Keller, and S. Calo. Managing Application Services over Service Provider Networks: Architec-
ture and Dependency Analysis. In J. W. Hong and R. Weihmayer, editors, NOMS 2000 IEEE/IFIP Network
Operations and Managment Symposium — The Networked Planet: Management Beyond 2000, pages 61–74,
Honolulu, Hawaii, USA, April 2000. IEEE.

[KS98] C. Krupczak and J. Saperia. RFC 2287: Definitions of system-level managed objects for applications. RFC,
IETF, February 1998.

[OMG99] Component Spec - Volume I. TC Document orbos/99-07-01, Object Management Group, July 1999.

[Sun99] Sun Microsystems, Inc. Java Beans – Downloading the BDK 1.1, April 1999.
http://java.sun.com/products/javabeans/software/bdk download.html.

[Sun01] Sun Microsystems, Inc. Welcome to the Java Community Source Developers’ Area, 2001.
http://developer.java.sun.com/developer/products/java2cs/index.html.

[Wei00] Geyer & Weinig. Portofolio – INFRA-XS, 2000. http://www.gwtel.de/.

