
Generic policy conflict handling using a priori models

Bernhard Kempter1 and Vitalian A. Danciu2

1 Siemens Corporate Technology
bernhard.kempter@siemens.com

2 Munich Network Management Team?, University of Munich
danciu@mnm-team.org

Abstract. The promise of policy-based management is lessened by the risk of
conflicts between policies. Even with careful conception of the policies it is dif-
ficult if not impossible to avoid conflicts completely. However, it is in principle
possible to detect and resolve conflicts either statically or at runtime. Taking ad-
vantage of existing managed systems models it is even possible to detect and re-
solve policy conflicts not addressed until now. In this paper we present a generic
approach to automated policy conflict detection based on existing knowledge
about a managed system. We describe a methodology to derive conflict defini-
tions from invariants of managed systems models, and show how these can be
used to detect and resolve policy conflicts automatically.

1 Introduction

As organisations grow – be they corporations, educational facilities or governmental
agencies – the number of decision-makers within increases. Business goals formulated
by different decision-makers are divergent or conflicting in some cases. When these
goals are projected onto IT management, these conflicts will manifest as management
conflicts. In principle they will result in conflicting actions, independently of the man-
agement architecture deployed, or the associated programming paradigm. Conflicting
actions lead to unpredictable results: mild effects could be the failure of single tasks,
while more serious cases could lead to faultily configured or malfunctioning systems.
Since often business goals are implemented by scripting for management tools, the res-
olution of conflicts is a task performed after the detection of a conflict and needs to be
executed by personnel with insight into the management system, thus incurring high
cost. As management evolves in the direction of self-managed systems, automation of
conflict handling becomes indispensable.

An important approach to pursuing management goals is the derivation of policy
from these goals. Policies at an operational, technical level can be enforced by means
of a policy architecture that guides the execution of management actions on a distributed
system. Policy-based managment is the only management paradigm that allows, plau-
sibly, conflict detection and resolution. In this paper we present a solution to conflict
handling in policy-based systems that exploits a priori models of managed systems.

? The authors wish to thank the members of the Munich Network Management Team for help-
ful discussions and valuable comments on previous versions of this paper. The MNM Team
directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers of the University of Mu-
nich, the Munich University of Technology, the University of the Federal Armed Forces and
the Leibniz Supercomputing Center.

http://www.mnm-team.org

A generic approach to automated resolution of conflicts between obligation policies
is still missing, since such conflicts cannot be resolved from the information given in the
policies alone. They are dependent on the structure and setup of the managed system.
Thus, a model of the managed system is necessary for determining whether a set of
policies is in conflict or not.

Driven by the ever increasing complexity of today’s systems, organisations create
models of their systems. The advent of service-orientation entices them to model sys-
tems in detail and as a whole, in contrast to modeling isolated components. Frameworks
like the Common Information Model (CIM) [4] provide a base for such efforts. The re-
sulting models describe the nominal state of the deployed system by not only represent-
ing attributes of system components but also relations between them, e.g. functional or
structural dependencies. Hence, a finished model can be seen as a specification of the
managed system in case.

In this paper we demonstrate how such a priori (i.e. existing) models can be lever-
aged to detect and solve policy conflicts (Section 3). This allows us to address policy
conflict types that until now have been inaccessible to automated detection and resolu-
tion. The core of the approach is a methodology for deriving reusable, formal conflict
definitions from model aspects and management action sets. These definitions yield
constraints that allow automated detection of policy conflicts (Section 4). The broad ap-
plicability of the methodology is demonstrated by means of a static relationship model
for functional dependency. It can also be applied to other static models, such as con-
tainment models, as well as dynamic models, e.g. state models. We use the results of
the methodology in Section 5, where we show how automated policy conflict detection
can be performed and discuss strategies for automated conflict resolution. We present
related work regarding policy conflict resolution and selected modeling techniques and
standards in Section 6.

2 Models of managed systems

In this section we discuss aspects of object oriented models instrumental to automated
conflict detection and resolution. We bootstrap the approach to policy conflict handling
by assessing a general work process of an administrator who enforces policy by hand.
Based on that motivation we discuss characteristics of model hierarchies that are useful
to our conflict handling approach.

2.1 Manual conflict handling

policy {
 event { }

target {
action {

/terminals
shopCloses

shutdown()
}
}

}

policy {
}

action {
/terminals

shopCloses
}

}
update(secPatch)}

target {
event {

Fig. 1. Simple conflict

Consider the two obviously conflicting policies
shown in Fig. 1: one policy specifies that all terminals
be shut down after working hours, the other specifies
that security patches should be installed at that time.
A human administrator is able to solve the conflict by
allowing the patches to be installed before shutting down the terminals. He assigns an
explicit ordering to the policy set to be enforced; in consequence, both policies are
enforced and a desired result is achieved.

In order to find this solution, the administrator uses his knowledge about the man-
aged system: he knows beforehand that patches cannot be installed after the terminals
have been shut down. By means of thisa-priori model of the systemhe can conclude
that he encountered a policy conflict. He uses this model to find an alternative execution
path, thus resolving the conflict.

2.2 Hierarchy of models

To describe systems, we usually model them at some level of abstraction. The mod-
els normally cover specific static or dynamic aspects of the system they represent, e.g.
states and transitions in that system, its structure or its attributes. Hence, models consti-
tute views from different perspectives onto the system.

D
er

iv
e

in
va

ria
nt

s
D

er
iv

e
co

nf
lic

t d
ef

in
iti

on
s

fro
m

 in
va

ria
nt

s.

Antecedent Dependent

1..

1..

...

m
od

el
In

st
an

ce
Si

ze
Le

ve
l o

f a
bs

tra
ct

io
n

C
on

fli
ct

de
te

ct
io

n

<<instantiate>> <<instantiate>>

<<instantiate>>

C
or

e
S

ch
em

a
m

od
el

C
us

to
m

iz
ed

Dependency

StateManagedObj StateManagedObj

FunctionalDependency

:

TerminalDHCPServer

BootDependency

dep1

:t1

BootDependency

TerminalDHCPServer:d1

Fig. 2. Hierarchy of models

A given managed object (MO) is embedded in
different kinds of models, e.g. it can be a node of a
containment tree and, at the same time, a partition
of an automaton describing states of the system.

Fig. 2 gives an example of the abstraction hi-
erarchy of models belonging to or derived from
CIM. Traversing the diagram from its top down-
wards, the level of abstraction decreases and the
size of models increases. In common practice, a
standard like CIM defines abstract classes and as-
sociations that are independent of any managed
system or vendors (CIM core schema). The core
schema is specialized into customized models (of-
ten including some levels of abstraction in the cus-
tomization as well) to fulfill the requirements of an organisation. The resulting cus-
tomized model is then instantiated according to the infrastructure it represents.

The diagram shows an example including an abstract dependency from the core
schema, the specialization to the abstract class of a functional dependency, and finally
to a boot dependency in the customized model. The boot dependency describes that a
terminal is dependent on a DHCP server at boot time. Instantiation of the classes of the
customized model produces the instance model which represents the managed system
at runtime.

Leveraging model derivation.The models on adjacent levels are related to each
other in that the more concrete model is derived from the more abstract, shown with
grayed lines in the diagram. Two different derivation alternatives are employed: inheri-
tance and instantiation, both imparting features to the more concrete model.

This circumstance can be exploited to minimize the effort needed in conflict de-
tection, since any aspect of an abstract model will be present in the more concrete
ones. Rightmost in Fig. 2 the activities described in the following sections of this paper
are mapped to model abstraction levels. Note that derivation of invariants and conflict
definitions (done manually) are performed on the abstract levels, where model size is
small or moderate. In contrast, automated conflict handling resides on the most concrete
model.

3 Using models to support conflict handling
Setting for policy-based management.Policies that are to be evaluated concurrently
(e.g. because they triggered on the same event) are said to compose asituation. This
situation may contain a conflict or not. The detection scheme presented in this paper
determines the existence of a conflict and identifies the conflicting policies based on a
frequently encountered situation definition. The last section hints at how to redefine the
situation in order to extend or adapt the conflict handling approach.

Informal conflict notionBefore detailing the application of models, we need to differ-
entiate actual conflicts from other misbehavior of a policy system. The following three
common conditions must be satisfied for a policy conflict to be possible ([13])

• Conflicts occur between two or more policies.
• Policies are evaluated concurrently.
• Goals of policies cannot jointly be reached.

In this paper’s perspective, these conditions can be summarised as:
• Constraints extracted froma priori models must not be violated by policies in the
samesituation. Though we rule out ´conflicts´ occurring from the execution of a single
policy, the model based approach could be used to detect such faulty policies as well.

To clarify the settings assumed for a policy-based management scenario, Fig. 3
shows three abstraction planes relevant to the approach presented in this paper. The
management plane at the top includes the set of policies, where decisions are made and
the execution of operations is initiated.

ap
pr

oa
chou

r

policy policypolicypolicypolicy A

:dep1 BootDependency

Layer2Dependency:l1

MySwitch:s1 MyWebServer:w1

l1 :Layer2Dependency

policy Dpolicy Cpolicy B

Terminal:t1DHCPServer:d1

l1 :Layer2Dependency

M
an

ag
em

en
t

M
od

el
In

fra
st

ru
ct

ur
e ���

�

��������������������������

Fig. 3. Model and Views

In the model plane, which corresponds to the in-
stance model in Fig. 2, an implementation view is as-
sumed in addition to the model view depicted. Thus,
the MOs also imply agents, specifically policy execu-
tion points (PEP) able to enforce policies by execut-
ing actions on the underlying infrastructure. From the
model perspective, the MOs hold a representation of
an element while from the implementation perspec-
tive they constitute a middleware layer, obscuring the
heterogeneity of the infrastructure. To avoid crowding
the diagram, these two perspectives are not differen-
tiated between. Finally, the infrastructure plane at the
bottom includes all resources (hardware, applications,
services etc.) to be managed.

Required Policy ComponentsPolicies can be specified at different abstraction layers,
ranging from corporate or high-level policies at an abstract level, down to operational
policies at a technical level. Though the methodology presented in this paper may work
at a higher level of abstraction, it is targeted at the operational policy level. It is a
requirement that policies be expressed in a formal policy language, rather than in prose.

Policy languages provide different sets of language elements. While the conflict
detection methodology is applicable to any language, the latter must provide a minimum
expressiveness (see also Fig. 1):

event The concept of asituationmentioned in Section 3 implies that the language
have an event clause. (Examples are time, alarm etc.)

target Since our approach focuses on models of the target MOs, we need a target
clause stating the MOs (or management domains) which are to be manipulated.

action Finally, an action clause is necessary to determine the concrete action to be
executed on target objects.

3.1 Approaching conflict formalisation

The example in Fig. 4 shows an obvious conflict that cannot be detected or resolved
without knowledge from models. It serves as motivation for the approach proposed in
this paper while indicating in general the information needed to tackle conflicts of this
type. The two policiesA and B shown in the figure manipulate DHCP servers resp.
the terminals (more precisely: call operations on the managed object boundary of the
MOs). The notation in the target field of policies describes adomainwhich is a set of
MOs build along management aspects [11].

Using an approach that only considers the management plane from Fig. 3 (i.e. solely
the policies themselves) the conflict will not be detected, since the policies address dif-
ferent objects in different domains. Moreover, the goals to enable and disable different
MOs are not per se conflicting.

If we consider the management plane and the model planein addition (see Fig. 3),
we can determine that the terminalt1 has aboot dependency(which is a kind of a
functional dependency, see Fig. 2) on the DHCP server

policy {
 event {

target {
action {

}

id="A"

/terminals
enable()

}
}

}

8 am
policy {

}

action {
}target {

event {

update(secPatch)
disable() ;

}

id="B"
8 am

/DHCP

}

Fig. 4. Example of conflicting
policies: Is there a conflict be-
tween policiesA andB?

d1 . This circumstance is reflected in the instance
model (Fig. 2). To achieve the goal of policyA (the de-
pendent terminal can be used), the DHCP server also
has be to usable. PolicyB prohibits this goal by dis-
abling the DHCP server. With the dependency infor-
mation gathered from the model it becomes obvious
that achieving the goals of both policies at the same
time is not possible. Thus, a conflict between policies
A andB has been detected.

3.2 Invariants of managed systems

Every managed system is governed by implicit rules resulting from its design. They
range from very simple ones (e.g. a unit cannot perform its tasks while switched off)
to complex dependencies between components or services. Invariants that formally de-
scribe these rules can be extracted from the models of the managed system. Again,
different types of models will yield invariants of a different perspective.

A similar concept is found in the integrity constraints common in relational database
management systems (RDBMS). An example for their purpose is to ascertain that a data
set is not deleted as long as a dependent data set exists. Attempted violations of these
constraints are interdicted by the DBMS.

The realization of this concept is eased by the fact that the number of actions is
small (for an SQL-DBMS: insert, update, drop . . .) as is the number of different data
structures (relation, set/row etc). The concise action set found e.g. in DBMS is the result
of well-adopted standardization. In systems and service management, the number of
available management actions as well as their semantics is far from uniform.

Invariants are indicators for conflicts.A management action resulting in the violation
of an invariant suggests a management problem, since with it an intrinsic rule of the
system has been broken. A conflict between actions is indicated when the combined ex-
ecution of two or more actions in the same situation results in the breach of an invariant.

4 Conflict detection: Step by step to conflict definition
In this section we outline the methodology for extracting conflict definitions and detec-
tion clauses from models. In the following,conflict definitionrefers to specific kinds
or classes of conflicts (as in Fig. 8), not the generic policy conflict as such. A conflict
is defined by stating model inherent requirements that are violated when a conflict oc-
curs. Below, we present the steps necessary to distill such conflict definitions based on
models at a high abstraction level. These definitions are still valid in the more concrete,
derived layers of the model hierarchy, thus reducing the effort for conflict definition.

Step 1: Select a type of model.Any one of the available models can be selected
in this step and it makes sense to perform these steps for more than one model. To

illustrate the principle by example, we will demonstrate the methodology for functional
dependencies.

Example Selecting functional dependencies as the focused type of association, the level of
abstraction to define invariants has to be chosen. To reach optimal reusability of definitions we
chose the highest level of abstraction — here it is the level of abstract classes. Fig. 5 shows a
section of a object oriented class hierarchy which might be derived from the generic CIM schema.

Dependent
Antecedent

...
EnabledLogicalElement (from CIM)
EnabledState:{Enabled, Disabled,...}

enable():void
disable():void

StateManagedObj
enable():void
disable():void

StateManagedObj

FunctionalDependency

Fig. 5. Detailed
customized model
of functional depen-
dency

An MO StateManagedObject has possible states
Disabled and Enabled and two methods to change the
state. Enabled means that the resource is ready to exe-
cute user requests whileDisabled means that usage is
prohibited. A StateManagedObject can be linked with
another StateManagedObject by an association called
FunctionalDependency . Thereby, an MO can have the role
of a (functional) dependent or an MO provides functionality (an-
tecedent). The exact definition of this association class is made
in the next step.

Step 2: Extract invariants from the model.An invariant de-
scribes a model aspect in a formal, machine processable way and
it can be evaluated to boolean values. Invariants can be classified into general invariants
and specific ones. An example for a general invariant of a containment relationship is:
the enclosing managed object (MO) must exist at least as long as the contained MOs.
Such an invariant is inherent to a model; it is not related to the policies specified for the
system. In order to specify invariants, an appropriate language has to be chosen.

Object Constraint Language (OCL)The Unified Modeling Language (UML) de-
fines a formal language to describe constraints for any (UML) model. OCL [12] can
be used to define invariants, pre- and postconditions as necessary for our methodology.
For our purpose, all invariants are defined for classes and must hold for all instances of
that class. Though any equivalent formalisms can be used instead, UML does provide
a common language for graphical presentation of object models and OCL offers the
opportunity of using an OCL compiler to translate invariants (and consequently conflict
definitions) to executable code, thus enabling their direct use.

FunctionalDependency
funcdep:
self.Dependent (mo | mo.status=’Enabled’)

self.Antecedent.status=’Enabled’

context
inv

exists
implies

Fig. 6. Invariant 1

Example An invariant consists of two parts:
the context part which describes the start-
ing point of the invariant (here it is the class
FunctionalDependency from Fig. 5) and the
inv part which contains the constraint. To specify
an invariant for functional dependencies, we have to reflect which condition has to hold (is always
evaluated to ´true´) for the whole life time of that association: the invariant in Fig. 6 states that
if an instance exists in thedependent role and its status isEnabled then the antecedent has
also to be in itsEnabled state to ensure proper execution of the dependent. (The authors are
aware that this is only one possible definition out of a huge set. As the paper focus on conflicts
we leave a discussion of optimal dependency definition.)

The keywordself refers to an instance of the classFunctionalDependency .
With help of a dot you can navigate through the model:self.Dependent is the set
of instances of the classStateManagedObject which hold the dependent role in
this concrete instance (self) of FunctionalDependency .

Step 3: Derive relationships of invariants to policies.In this step, invariants are
mapped to policy actions. For this purpose, the general invariants mentioned in the
previous step are considered along with the policies.

StateManagedObject :: disable () : void
self.status = ’Disabled’

context
post:

Postcondition 1

context
post:

StateManagedObject :: enable () : void
self.status = ’Enabled’

Postcondition 2

Fig. 7. Postconditions

While policies contain actions to be executed,
invariants do not. Therefore, the effect of the ac-
tions on the model needs to be specified. As
shown in the example in step 2, all actions chang-
ing the state of the associated MOs are described
there by describing the effect of an MO´s method
as postconditions.

Example The abstract classStateManagedObject consists of two methods
disable() andenable() which are described in OCL (Fig. 7). Postcondition 1 states, that
after termination of the method the attribute of the classStateManagedObject has the value
Disabled . Postcondition 2 is defined in the same way.

Step 4: Create conflict definition.The conflict definition ”parts” determined in
the preceding steps are combined in this step. A conflict definition describes the cir-
cumstances in which conflict occurence is certain. Having defined an invariant (step 2)
and post conditions for the methods (step 3) this step analyzes if the invariant can be
evaluated to ´false´ and if so, a conflict definition is generated.

Example As the functional dependence has two different ends (dependent and antecedent)
and the objects associated have two different methods (disable() andenable()) there are
4 pairs of methods call to examine (Fig. 8).

FuncDepDisable
FunctionalDependency
MO[mo1] :: disable()

self.Antecedent = mo1

conflict
context
conflict

pre:

space: MO[mo2] :: disable()

and self.Dependent = mo2
refers to: inv FunctionalDependency

Conflict 1

FunctionalDependency

self.Antecedent = mo1

conflict
context
conflict

pre:

space:

and self.Dependent = mo2
refers to: inv FunctionalDependency

MO[mo2] :: enable()

FuncDep

MO[mo1] :: disable()

Conflict 3

FunctionalDependency

self.Antecedent = mo1

conflict
context
conflict

pre:

space:

and self.Dependent = mo2
refers to: inv FunctionalDependency

Conflict 2
FuncDepEnable

MO[mo1] :: enable()
MO[mo2] :: enable()

Method pairing

4

1

2

3Antecedent.disable()

Antecedent.enable()

Dependent.enable()

Dependent.disable()

Fig. 8. Conflict definitions and method pairs

For the first pair, the invariant
cannot be evaluated to ´false´ in any
execution order, hence this pair is
always conflict free. The next two
pairs are in conflict depending on
the execution order (and are there-
fore race conditions). Conflict defi-
nition 1 and 2 in Fig. 8 reflects this
situation. The last pair is in con-
flict disregarding the execution or-
der (see Conflict 3).

To describe a conflict defi-
nition OCL is extended by the
following keywords:conflict to
denote the name of the conflict,
conflict spaceto identify the ac-
tions/operations relevant to the conflict andrefers to to identify the invariant that the
conflict references.

As the execution of operations always is the cause conflicts, naming the involved
operations is an important part of the definition. The optional precondition narrows the
context of the operations when a conflict occurs.

Precondition 1 Precondition 2
MO :: disable() : void
self.Antecedent

context
pre:

self.Antecedent.Dependent.forall(
implies

mo | mo.status = ’Disabled’)

self.Antecedent
context

pre:

self.Antecedent.Dependent.forall(
implies

MO :: enable() : void

mo | mo.status = ’Enabled’)

Fig. 9. Preconditions

Step 5: Provide con-
flict detection clause.For a
conflict definition, a detec-
tion clause is sought that ac-
counts for the characteristics
specific to the conflict defini-
tion. In our example, if aStateManagedObject is in the role of the antecedent ,
and wants todisable() then it must be ensured that all dependents are already in the
state ´Disabled´ (see Precondition 1 in Fig. 9).

With respect to this precondition, a sequential execution of policies could resolve a
conflict.

5 Conflict handling

In this section we show how the concepts developed in Sections 3 and 4 can be applied
to detect and handle policy conflicts. During operation of the managed system, policies
are triggered by events generated in the system. Before their actions are executed, the set
of policies in a situation (see Section 3) are analysed with respect to possible conflicts.
If a conflict is detected, the strategies presented in Section 5.2 can be applied to attempt
its resolution.

5.1 Application of conflict detection
Fig. 12 shows an activity diagram of the algorithm for conflict detection and resolution.
Since the algorithm works on sets of policies, it depicts such sets (instead of objects) as
input and output of the activities.

To illustrate the conflict handling algorithm, we use the situation shown in Fig. 10
as an example. In addition to the two policies (A andB) from Fig. 4, two other policies
are triggered by the same event: one that specifies that the webserver should reread its
configuration files (C), and one that enables the printing service (D).

policy {
 event {

target {
action {

}

id="A"

/terminals
enable()

}
}

}

8 am
policy {

}

action {
}target {

event {

update(secPatch)
disable() ;

}

id="B"
8 am

/DHCP

}

policy {
 event {

target {
action {

}

}
}

}

8 am
policy {

action {
target {
event { 8 am

id="C"

/webserver
rereadConfig()}

/printer

id="D"

}

}
}

enable()

Fig. 10.Examplesituation

In an example using as few as four policies,
some of the steps described in the following may
seem redundant. When considering a large num-
ber of policies operating on large models, these
steps ensure that all situations are handled cor-
rectly.

PrerequisitesThree information sets are needed
for conflict handling: policies in a situation, e.g.
those shown in Fig. 10; conflict definitions, e.g.
those described in Section 4; models of the sys-
tem, as shown in the model plane of Fig. 3. These sets are related, as shown in Fig. 11:
The

Action

MO

Association

Model

definition
Conflict

Policy

Fig. 11. Information sets

policies contain actions and references to MOs (tar-
gets). Actions relevant to policy conflicts are found in the
conflict definitions, as are MOs and associations of MOs.
In addition, the conflict definition specifies patterns of as-
sociation between MOs in the models. To perform conflict
handling, we leverage the relation between these information sets.

Match conflict definitionsThe policies in a situation are tested against the conflict def-
initions acquired by means of the procedure described in Section 4. Specifically, the
actions of the policies are compared to theconflict space fields of conflict def-
initions. Matching policies constitute amatching setwithin the potentially conflicting
set.

In our example situation, the actions of the policiesA - D are matched to the actions of the
conflict definitions 1-3 (Fig. 8). It is obvious that the policies containing methodsenable()
anddisable() will match. Thus, the matching set contains policiesA, B andD. These are
used as input to the next activity.

Sort by conflict definitionFrom the matching set, a number of setscd(i) are created,
each corresponding to exactly one conflict definitioni. The sets may overlap, since a
single policy may match several conflict definitions.

[success]

Match
conflict definitions

Sort by
conflict definition

Matching set

cd(i)

cd(i,j)

Determine
related MOs

Test invariant

Select strategy

"Situation"

conflicting set
Confirmed

Execute strategy

C
on

fli
ct

in
g

se
t

P
ot

en
tia

lly

Conflict
free set

models
A−priori

\

Conflict
resolution

detection
Conflict

Fig. 12.Conflict handling algorithm

In our example, the conflict space of all con-
flict definitions contain the methodsenable() and
disable() . Hence, all the policies in the match-
ing set match all conflict definitions, so that three sets
cd(1), cd(2) andcd(3) result, each one of them con-
taining policiesA, B, D. Thus: cd(1) = cd(2) =

cd(3) = {A, B, D}

Determine related MOsThe previous activity has
correlated the policy actions and the conflict def-
initions, thus identifying potentially conflicting
policy sets. To violate an invariant, actions must
be executed on objects that are related according to the invariant. To test this condi-
tion, we compare the targets of every policy in every setcd(i) with MOs referenced in
the conflict definitions and determine whether the roles they carry in the model (e.g.
a dependency) corresponds. Again, the policies in a setcd(i) can be related to several
model partitions, and several rolesj may have to be tested. All possible combinations
of policies from a setcd(i) result in setscd(i, j). As in the previous step, the resulting
cd(i, j) may overlap.

To clarify this step, consider the following procedure:
1. Select a set to begin with, e.g.cd(1)
2. Find all instancesj of the class from the invariant ofi: results in all instances of

FunctionalDependency .
3. Determine targets of policies in the setcd(1) selected: result isterminal ,

DHCPserv andprinter
4. For allj, find instances containing the targets above: results in setscd(1, j), where

j is the current instance ofi’s invariant’s class.
5. Repeat the steps for all remainingcd(i).

The example modelonly has one association that is relevant for conflict detection,
thus the only set yielded by this procedure iscd(3, 1): it matches the pattern An-
tecedent.disable/Dependent.enable. Since there is no dependency between theprinter MO
and the other two MOs, only policiesA andB are left in the set.

At this point, both actions and targets have been accounted for. Further analysis of
a setcd(i, j) can be performed disregarding the other sets.

Test invariant The previous activity has created sets that correspond to single conflict
definitions and contain only policies with a high potential of conflict. This activity cor-
responds to a simulation of the execution of the policy actions. It divides the sets yielded
by the previous step into aconfirmed conflicting setof policies and conflict-free poli-
cies. For each policy setcd(i, j), the invariant referenced in the conflict definitioni is
tested and evaluated under the assumption that the actions of the policies in the set are
executed. Since policies are executed in parallel, the invariant must be tested for all per-
mutations of the serialization of the set. If the set passes all tests, the policies in the set
are released from the potentially conflicting set into the conflict-free set. If the invariant
evaluates tofalsefor at least one permutation, the set is conflicting.

In our example, the terminal is dependent on the DHCP server in that that service must be
available for the terminal to boot. The invariant of conflict definition 3 is violated, since the object
in the dependent role (terminal) is enabled, while the object in the antecedent role (DHCP server)
is disabled. In consequence, the setcd(3, 1) is transferred to the confirmed conflicting set.

Select/execute strategyFor each conflictingcd(i, j), a resolution strategy must be se-
lected and executed. As shown in Fig. 12, more than one of the strategies discussed
in Section 5.2 may be tested, resorting to Strategy A if all others failed. An optimal
selection of strategy depends on the number of policies in a set, how time-critical their
execution might be and possibly other factors not taken into consideration yet. The ef-
fectiveness of the resolution strategy can be tested by applying the same steps as for
conflict detection to a modified set of policies.

For our example, a sequential execution of the conflicting policies in appropriate order re-
solves the conflict (let the terminal boot before disabling the DHCP server).

5.2 Strategies for conflict resolution
As discussed in Section 5.1, conflict detection determines a policy set where two or
more policies are in conflict with each other. Once this set is known, attempts can be
made to resolve the conflicts in an automated fashion, or at least minimize their impact.
This section presents strategies to that end.

Existing strategiesexhibit an all-out approach to conflict resolution, as the following
two alternatives show:
A The most drastic measure is for the policy service to abstain from enforcinganyof

the policies. This could prove to be a viable approach in applications that are not
time critical, but it still requires manual intervention.

B Another approach found in the literature ([5,8]) is to enforce only the policy with
the highest priority in the set – assuming policies have been assigned priorities.
This scheme is often mentioned in the context of quality of service policy, and its
usefulness may be constrained to that niche.
Strategies using the automated conflict detection presented in this paperallow for

a differentiated resolution. Since conflicts can be detected in an automated manner in
any set of policies, combinations of the policies in the set can be tried. This yields the
following strategies:
C Try to enforce as many policies as possible, excluding the minimal number of poli-

cies for the set to be conflict free. We can determine the set to be enforced by
iteratively applying conflict detection to parts of the conflict set.

D Serialising parts of the policy set and finding an appropriate synchronous enforce-
ment order can resolve the conflict in some cases. This solution appears to be the
least invasive, though it will slow down the enforcement of the policies. Again, the
enforcement order is found by applying the conflict detection algorithm to permu-
tations of the conflict set.

E Create conflict free subsets and serialise the enforcement of subsets. This is an
optimisation of the above strategy. While the policy subsets are enforced syn-
chronously, the enforcement of the policies in one subset can be parallelised. Nor-
mally, i.e. in cases where the number of sets is small compared to the mean number
of policies per set, this strategy should execute faster.
These alternatives are orthogonal: any combination of serialisation and reduction of

the policy set is possible. Unfortunately, seeking the optimal solution implies testing a
large number of policy sets, which may not be practical to do at runtime.

6 Related work
Policy conflict handlingWe imposed the requirement that the conflict handling scheme
presented in this paper be independent of a specific policy language, the type of policy

and overlap of policy domains as a necessary prerequisite. In the following, we present
work related to the approach presented here.

At Imperial College much valuable work in the area of policy conflicts has been
published. The result of [10] is a conflict classification. Conflicts are classified along
the number of overlaps (at least one) of domains (given in subject, target or action)
between two or more policies.

Another conflict detection approach exploiting domain overlapping is found in [8].
It focuses on modality conflicts, where policies are typed (positive and negative autho-
risation and obligation policy). A triple overlap (subject and target and action) indicates
a conflict. This approach is effective in detecting conflicts between authorisation and
obligation policies, but limited regarding conflicts between obligation policies.

Damianou [5] uses so called meta policies, which are part of the Ponder specifica-
tion, to formalize policy conflicts. A meta policy specifies constraints regarding a set of
policies. As this approach is language specific and not all policy languages support the
concept of constraint-based meta policies, the general applicability is limited. Also, to
apply the general-purpose tool of meta policies to conflict handling, a methodology for
the specification of appropriate meta policies would have to be created.

The scope of [1] is to support policy refinement. A formal language (event calcu-
lus) is used to represent the state of a system allow reasoning about possible future
states. Policy language, policy execution and the managed system are formalised using
event calculus. Based on the resulting model, conflicts can be defined in event calculus,
overlap of domains being a prerequisite for conflict definition.

This approach takes into account the managed system allowing calculus represen-
tation of static and dynamic aspects of a whole managed system. However, since since
special models must be created, the effort introduced seems to be quite high, especially
when considering large scale, complex systems.

In [2,3] a policy conflict resolution approach is shown for the Policy Description
LanguagePDL, a rule-based language which omits the policy element subject and tar-
get. Conflicts are defined by monitors which evaluate action constraints. An action con-
straint has the form:never Action1 ∧... ∧ ActionN ∧ condition . A method-
ology to derive action constraints is not given, also the application of the approach to
other policy languages and architectures is not discussed.

Management object modelingTo be able to derive conflict definitions we need the con-
cept of object orientation especially the concept of classes and methods. Management
classes provide abstraction of resources for management purposes.

The instances of a management class and their embedding in a management in-
formation base (MIB) is standardised. Well known object oriented MIBs are DMTF’s
Common Information Model (CIM)[4] and ISO’s Structure of Management Informa-
tion (SMI) [6,7]. For these standards our approach can be applied directly.

For IETF’s SNMP-SMI [9] (also known as Internet MIB), which is not object ori-
ented, a wrapper needs to be designed in order to allow our approach to be applied to
MIB attributes.

7 Conclusions

In this paper we have discussed an approach to conflict handling relying on a priori
models. Different types of models represent static and dynamic aspects of managed

systems. They can be leveraged to derive invariants that, in turn, yield conflict defini-
tions. Aided by these conflict definitions, policy sets can be checked for conflicts either
statically or at runtime. In the following we summarize the key concepts of the paper
and point to further topics of study.

We presented a methodology to derive conflict definitions from object oriented man-
agement models. In addition, we have shown how to perform automated conflict detec-
tion based on these conflict definitions. Also, we presented conflict resolution strategies
for the policy sets found to be in conflict. The approach presented is generic in that it
has no dependency regarding type of policy, the policy language used or management
model type. Merely three policy elements are prerequisite to using the approach.

Yet, several important topics of study in the area of conflict handling remain. An im-
portant issue would be the integration of conflict handling methods for different types of
policies, e.g. approaches targeting authorisation policies using a model based scheme.

We assumed that asituationconsists of policies that have been triggered by one
event. Keeping in mind that a situation is merely a set of policies, the same concepts can
be extended to support policy sets created in other ways, e.g. by observing a sequence of
events. For that purpose, the only thing that needs to be changed is the definition of the
situation itself. As a related issue, using invariants to identify faulty policy specification
seems to be a rewarding topic.

References

1. Arosha K. Bandara, Emil C. Lupu, and Alessandra Russo. Using event calculus to formalise
policy specification and analysis. InProceedings of HPOVUA 2003, 2003.

2. J. Chomicki, J. Lobo, and S. Naqvi. A logic programming approach to conflict resolution in
policy management. In7th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’2000), pages 121–132, Breckenridge, Colorado, Morgan Kauf-
man, 2000.

3. J. Chomicki, J. Lobo, and S. Naqvi. Conflict resolution using logic programming.Transac-
tion on Knowledge and Data Engineering, 15(1):244–249, 2003.

4. Common Information Model (CIM) Specification Version 2.8. Specification, January 2004.
5. N. C. Damianou.A Policy Framework for Management of Distributed Systems. PhD thesis,

Imperial College of Science, Technology and Medicine, University of London, Department
of Computing, February 2002.

6. Information Technology – Open Systems Interconnection – Structure of Management Infor-
mation – Part 4: Guidelines for the Definition of Managed Objects. IS 10165-4, International
Organization for Standardization and International Electrotechnical Committee, 1992.

7. Information Technology – Open Systems Interconnection – Structure of Management Infor-
mation – Part 7: General Relationship Model. IS 10165-7, International Organization for
Standardization and International Electrotechnical Committee, 1997.

8. Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed systems manage-
ment. IEEE Transactions on Software Engineering, 25(6):852–869, November 1999.

9. K. McCloghrie and M.T. Rose. RFC 1065: Structure and identification of management in-
formation fo r tcp/ip-based internets. RFC, Internet Engineering Task Force (IETF), August
1988.

10. Jonathan D. Moffett and Morris S. Sloman. Policy conflict analysis in distributed system
management.Journal of Organizational Computing, 1993.

11. Morris S. Sloman and Kevin Twidle.Domains: A Framework for Structuring Management
Policy, chapter 16. 1994.

12. OMG Unified Modeling Language Specification, Version 1.5. Technical Report
formal/03-03-01, Object Management Group, March 2003. http://www.omg.org/cgi-
bin/doc?formal/03-03-01.

13. A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,
M. Carlson, J. Perry, and S. Waldbusser. RFC 3198: Terminology for policy-based manage-
ment. RFC, Internet Engineering Task Force (IETF), November 2001.

	Generic policy conflict handling using a priori models
	Bernhard Kempter and Vitalian A. Danciu
	Literatur

