Generic policy conflict handling using a priori models

Bernhard Kemptérand Vitalian A. Dancit

! Siemens Corporate Technology
bernhard.kempter@siemens.com
2 Munich Network Management TedmUniversity of Munich
danciu@mnm-team.org

Abstract. The promise of policy-based management is lessened by the risk of
conflicts between policies. Even with careful conception of the policies it is dif-
ficult if not impossible to avoid conflicts completely. However, it is in principle
possible to detect and resolve conflicts either statically or at runtime. Taking ad-
vantage of existing managed systems models it is even possible to detect and re-
solve policy conflicts not addressed until now. In this paper we present a generic
approach to automated policy conflict detection based on existing knowledge
about a managed system. We describe a methodology to derive conflict defini-
tions from invariants of managed systems models, and show how these can be
used to detect and resolve policy conflicts automatically.

1 Introduction

As organisations grow — be they corporations, educational facilities or governmental
agencies — the number of decision-makers within increases. Business goals formulated
by different decision-makers are divergent or conflicting in some cases. When these
goals are projected onto IT management, these conflicts will manifest as management
conflicts. In principle they will result in conflicting actions, independently of the man-
agement architecture deployed, or the associated programming paradigm. Conflicting
actions lead to unpredictable results: mild effects could be the failure of single tasks,
while more serious cases could lead to faultily configured or malfunctioning systems.
Since often business goals are implemented by scripting for management tools, the res-
olution of conflicts is a task performed after the detection of a conflict and needs to be
executed by personnel with insight into the management system, thus incurring high
cost. As management evolves in the direction of self-managed systems, automation of
conflict handling becomes indispensable.

An important approach to pursuing management goals is the derivation of policy
from these goals. Policies at an operational, technical level can be enforced by means
of a policy architecture that guides the execution of management actions on a distributed
system. Policy-based managment is the only management paradigm that allows, plau-
sibly, conflict detection and resolution. In this paper we present a solution to conflict
handling in policy-based systems that exploits a priori models of managed systems.

* The authors wish to thank the members of the Munich Network Management Team for help-
ful discussions and valuable comments on previous versions of this paper. The MNM Team
directed by Prof. Dr. Heinz-Gerd Hegering is a group of researchers of the University of Mu-
nich, the Munich University of Technology, the University of the Federal Armed Forces and
the Leibniz Supercomputing Center.

http://www.mnm-team.org

A generic approach to automated resolution of conflicts between obligation policies
is still missing, since such conflicts cannot be resolved from the information given in the
policies alone. They are dependent on the structure and setup of the managed system.
Thus, a model of the managed system is necessary for determining whether a set of
policies is in conflict or not.

Driven by the ever increasing complexity of today’s systems, organisations create
models of their systems. The advent of service-orientation entices them to model sys-
tems in detail and as a whole, in contrast to modeling isolated components. Frameworks
like the Common Information Model (CIM)_[4] provide a base for such efforts. The re-
sulting models describe the nominal state of the deployed system by not only represent-
ing attributes of system components but also relations between them, e.g. functional or
structural dependencies. Hence, a finished model can be seen as a specification of the
managed system in case.

In this paper we demonstrate how such a priori (i.e. existing) models can be lever-
aged to detect and solve policy conflicts (Secfipn 3). This allows us to address policy
conflict types that until now have been inaccessible to automated detection and resolu-
tion. The core of the approach is a methodology for deriving reusable, formal conflict
definitions from model aspects and management action sets. These definitions yield
constraints that allow automated detection of policy conflicts (Section 4). The broad ap-
plicability of the methodology is demonstrated by means of a static relationship model
for functional dependency. It can also be applied to other static models, such as con-
tainment models, as well as dynamic models, e.g. state models. We use the results of
the methodology in Sectigr 5, where we show how automated policy conflict detection
can be performed and discuss strategies for automated conflict resolution. We present
related work regarding policy conflict resolution and selected modeling techniques and
standards in Sectidd 6.

2 Models of managed systems

In this section we discuss aspects of object oriented models instrumental to automated
conflict detection and resolution. We bootstrap the approach to policy conflict handling
by assessing a general work process of an administrator who enforces policy by hand.
Based on that motivation we discuss characteristics of model hierarchies that are useful
to our conflict handling approach.

2.1 Manual conflict handling

Consider the two obviously conflicting policiespelicy (policy {
shown in Fig[1: one policy specifies that all terminalSm teame. 1 ! e)
be shut down after working hours, the other specifiggtion {shudoun(} , action { update(secPatch)}
that security patches should be installed at that time. _) _

A human administrator is able to solve the conflict by 9. 1. Simple conflict

allowing the patches to be installed before shutting down the terminals. He assigns an
explicit ordering to the policy set to be enforced; in consequence, both policies are
enforced and a desired result is achieved.

In order to find this solution, the administrator uses his knowledge about the man-
aged system: he knows beforehand that patches cannot be installed after the terminals
have been shut down. By means of thipriori model of the systerne can conclude
that he encountered a policy conflict. He uses this model to find an alternative execution
path, thus resolving the conflict.

2.2 Hierarchy of models

To describe systems, we usually model them at some level of abstraction. The mod-
els normally cover specific static or dynamic aspects of the system they represent, e.g.
states and transitions in that system, its structure or its attributes. Hence, models consti-

tute views from different perspectives onto the system.
A given managed object (MO) is embedded in
‘ Antecedem‘ ‘ Dependent ‘

=
S

different kinds of models, e.g. it can be a node ofj
containment tree and, at the same time, a partitig
of an automaton describing states of the systent;

Core Schema

)
c
8
@
>
5
[}
=
@
a

- : Al | I o] o) WEE
Fig.[2 gives an example of the abstraction hjgh : £5
erarchy of models belonging to or derived frorfi} < i
CIM. Traversing the diagram from its top down E‘ DGR Soer J &L T "§g
wards, the level of abstraction decreases and {3 i ¢
size of models increases. In common practice S

starjda_lrd like CIM de_:fines abstract classes and § (SRS o T Tami |
sociations that are independent of any managégiss 3 ;
system or vendors (CIM core schema). The cofe

schema is specialized into customized models (of- Fig. 2. Hierarchy of models
tenincluding some levels of abstraction in the cus-

tomization as well) to fulfill the requirements of an organisation. The resulting cus-
tomized model is then instantiated according to the infrastructure it represents.

The diagram shows an example including an abstract dependency from the core
schema, the specialization to the abstract class of a functional dependency, and finally
to a boot dependency in the customized model. The boot dependency describes that a
terminal is dependent on a DHCP server at boot time. Instantiation of the classes of the
customized model produces the instance model which represents the managed system
at runtime.

Leveraging model derivationflhe models on adjacent levels are related to each
other in that the more concrete model is derived from the more abstract, shown with
grayed lines in the diagram. Two different derivation alternatives are employed: inheri-
tance and instantiation, both imparting features to the more concrete model.

This circumstance can be exploited to minimize the effort needed in conflict de-
tection, since any aspect of an abstract model will be present in the more concrete
ones. Rightmost in Fif] 2 the activities described in the following sections of this paper
are mapped to model abstraction levels. Note that derivation of invariants and conflict
definitions (done manually) are performed on the abstract levels, where model size is
small or moderate. In contrast, automated conflict handling resides on the most concrete
model.

Instan

Conflict
detection

3 Using models to support conflict handling

Setting for policy-based managemeRtlicies that are to be evaluated concurrently
(e.g. because they triggered on the same event) are said to compitsatian This
situation may contain a conflict or not. The detection scheme presented in this paper
determines the existence of a conflict and identifies the conflicting policies based on a
frequently encountered situation definition. The last section hints at how to redefine the
situation in order to extend or adapt the conflict handling approach.

Informal conflict notionBefore detailing the application of models, we need to differ-
entiate actual conflicts from other misbehavior of a policy system. The following three
common conditions must be satisfied for a policy conflict to be possiblée ([13])

e Conflicts occur between two or more policies.
e Policies are evaluated concurrently.
e Goals of policies cannot jointly be reached.

In this paper’s perspective, these conditions can be summarised as:
e Constraints extracted frora priori models must not be violated by policies in the
samesituation Though we rule out “conflicts” occurring from the execution of a single
policy, the model based approach could be used to detect such faulty policies as well.

To clarify the settings assumed for a policy-based management scenarip| Fig. 3
shows three abstraction planes relevant to the approach presented in this paper. The
management plane at the top includes the set of policies, where decisions are made and
the execution of operations is initiated.

In the model plane, which corresponds to the i N
stance model in Fig.] 2, an implementation view is a m \

depi :BootDependency

d1:DHCPServer . 1 Terminal

sumed in addition to the model view depicted. Thu
the MOs also imply agents, specifically policy exec
tion points (PEP) able to enforce policies by exec
ing actions on the underlying infrastructure. From the
model perspective, the MOs hold a representation &
an element while from the implementation perspe
tive they constitute a middleware layer, obscuring t
heterogeneity of the infrastructure. To avoid crowdi
the diagram, these two perspectives are not differg
tiated between. Finally, the infrastructure plane at t
bottom includes all resources (hardware, applications,
services etc.) to be managed. Fig. 3. Model and Views

our

Mavageirent
approach _ -

S

Inz-asusicioe

Required Policy ComponentRBolicies can be specified at different abstraction layers,
ranging from corporate or high-level policies at an abstract level, down to operational
policies at a technical level. Though the methodology presented in this paper may work
at a higher level of abstraction, it is targeted at the operational policy level. It is a
requirement that policies be expressed in a formal policy language, rather than in prose.
Policy languages provide different sets of language elements. While the conflict

detection methodology is applicable to any language, the latter must provide a minimum
expressiveness (see also Fig. 1):

event The concept of aituationmentioned in Sectiopn|3 implies that the language
have an event clause. (Examples are time, alarm etc.)

target Since our approach focuses on models of the target MOs, we need a target
clause stating the MOs (or management domains) which are to be manipulated.

action Finally, an action clause is necessary to determine the concrete action to be
executed on target objects.

3.1 Approaching conflict formalisation

The example in Fid.]4 shows an obvious conflict that cannot be detected or resolved
without knowledge from models. It serves as motivation for the approach proposed in
this paper while indicating in general the information needed to tackle conflicts of this
type. The two policieA and B shown in the figure manipulate DHCP servers resp.
the terminals (more precisely: call operations on the managed object boundary of the
MOs). The notation in the target field of policies describemainwhich is a set of

MOs build along management aspects [11].

Using an approach that only considers the management plane frgm Fig. 3 (i.e. solely
the policies themselves) the conflict will not be detected, since the policies address dif-
ferent objects in different domains. Moreover, the goals to enable and disable different
MOs are not per se conflicting.

If we consider the management plane and the model ptaaddition (see Fig[B),
we can determine that the termirtdl has aboot dependencgwhich is a kind of a
functional dependencgee Fig[) on the DHCP server

d1. This circumstance is reflected in the instangeicy{ id="A" policy { id="8"
model (Fig[2). To achieve the goal of poliéythe de- emé Son 3 ovemt Pt
pendent terminal can be used), the DHCP server alS@ion{enable() } action { disable();
has be to usable. Polidy prohibits this goal by dis- } YRR
abling the DHCP server. With the dependency info
mation gathered from the model it becomes obvio
that achieving the goals of both policies at the sa
time is not possible. Thus, a conflict between policies
A andB has been detected.

Fig. 4. Example of conflicting
glicies: Is there a conflict be-
een policieA andB?

3.2 Invariants of managed systems

Every managed system is governed by implicit rules resulting from its design. They
range from very simple ones (e.g. a unit cannot perform its tasks while switched off)
to complex dependencies between components or services. Invariants that formally de-
scribe these rules can be extracted from the models of the managed system. Again,
different types of models will yield invariants of a different perspective.

A similar concept is found in the integrity constraints common in relational database
management systems (RDBMS). An example for their purpose is to ascertain that a data
set is not deleted as long as a dependent data set exists. Attempted violations of these
constraints are interdicted by the DBMS.

The realization of this concept is eased by the fact that the number of actions is
small (for an SQL-DBMS: insert, update, drop ...) as is the number of different data
structures (relation, set/row etc). The concise action set found e.g. in DBMS is the result
of well-adopted standardization. In systems and service management, the number of
available management actions as well as their semantics is far from uniform.

Invariants are indicators for conflictsA management action resulting in the violation

of an invariant suggests a management problem, since with it an intrinsic rule of the
system has been broken. A conflict between actions is indicated when the combined ex-
ecution of two or more actions in the same situation results in the breach of an invariant.

4 Conflict detection: Step by step to conflict definition

In this section we outline the methodology for extracting conflict definitions and detec-

tion clauses from models. In the followingonflict definitionrefers to specific kinds

or classes of conflicts (as in F[g. 8), not the generic policy conflict as such. A conflict

is defined by stating model inherent requirements that are violated when a conflict oc-

curs. Below, we present the steps necessary to distill such conflict definitions based on

models at a high abstraction level. These definitions are still valid in the more concrete,

derived layers of the model hierarchy, thus reducing the effort for conflict definition.
Step 1: Select a type of modelAny one of the available models can be selected

in this step and it makes sense to perform these steps for more than one model. To

illustrate the principle by example, we will demonstrate the methodology for functional
dependencies.

Example Selecting functional dependencies as the focused type of association, the level of
abstraction to define invariants has to be chosen. To reach optimal reusability of definitions we
chose the highest level of abstraction — here it is the level of abstract classds. Fig. 5 shows a
section of a object oriented class hierarchy which might be derived from the generic CIM schema.

An MO StateManagedObject has possible states [enaedogatement fromcm
Disabled and Enabled and two methods to change the|FErebiesite{Enabied Disables..)
state. Enabled means that the resource is ready to exe- Z} Z}
cute user requests whil®isabled means that usage is]

enable():void enable():void

prohibited. A StateManagedObiject can be linked with |dsabklvois < dsabiegvos
another StateManagedObiject by an association called LFuncnona/uependench
FunctionalDependency . Thereby, an MO can have the role
of a (functional) dependent or an MO provides functionality (an-
tecedent). The exact definition of this association class is mé#@ 5.~ Detailed
in the next step. customized model

Step 2: Extract invariants from the model. An invariant de- Of fU”Ct'O”a' depen-
scribes a model aspect in a formal, machine processable way
it can be evaluated to boolean values. Invariants can be classified into general invariants
and specific ones. An example for a general invariant of a containment relationship is:
the enclosing managed object (MO) must exist at least as long as the contained MOs.
Such an invariant is inherent to a model; it is not related to the policies specified for the
system. In order to specify invariants, an appropriate language has to be chosen.

Object Constraint Language (OC)he Unified Modeling Language (UML) de-
fines a formal language to describe constraints for any (UML) model. OCL [12] can
be used to define invariants, pre- and postconditions as necessary for our methodology.
For our purpose, all invariants are defined for classes and must hold for all instances of
that class. Though any equivalent formalisms can be used instead, UML does provide
a common language for graphical presentation of object models and OCL offers the
opportunity of using an OCL compiler to translate invariants (and consequently conflict
definitions) to executable code, thus enabling their direct use.

Example An invariant consists of two parts: context FunctionalDependency
the context part which describes the start-inv ~ funcdep: , , ,
. K K . . self.Dependent — exists (mo | mo.status="Enabled’)
ing point of the invariant (here it is the class implies self. Antecedent.status="Enabled’
FunctionalDependency from Fig[3) and the
inv part which contains the constraint. To specify
an invariant for functional dependencies, we have to reflect which condition has to hold (is always
evaluated to “true’) for the whole life time of that association: the invariant i Fig. 6 states that
if an instance exists in theependent role and its status iEnabled then the antecedent has
also to be in itsEnabled state to ensure proper execution of the dependent. (The authors are
aware that this is only one possible definition out of a huge set. As the paper focus on conflicts
we leave a discussion of optimal dependency definition.)

The keywordself refers to an instance of the classnctionalDependency
With help of a dot you can navigate through the modelf.Dependent is the set
of instances of the clasStateManagedObject which hold the dependent role in
this concrete instance€lf) of FunctionalDependency

Step 3: Derive relationships of invariants to policiesin this step, invariants are
mapped to policy actions. For this purpose, the general invariants mentioned in the
previous step are considered along with the policies.

Fig. 6. Invariant 1

While policies contain actions to be executed, Postcondition 1
invariants do not. Therefore, the effect of the aceontext StateManagedObject :: disable () : void
tions on the model needs to be specified. As Post: self.status ='Disabled "

. . . Postcondition 2
_ShOWI‘l in the example in s_tep 2, all actions Cha_”ga text StateManagedObject :: enable () : void
ing the state of the associated MOs are described,ost: self status = 'Enabled
there by describing the effect of an MO’s method
as postconditions.

Example The abstract classStateManagedObject consists of two methods
disable() andenable() which are described in OCL (Fif] 7). Postcondition 1 states, that
after termination of the method the attribute of the clatsgteManagedObject has the value
Disabled . Postcondition 2 is defined in the same way.

Step 4: Create conflict definition. The conflict definition "parts” determined in
the preceding steps are combined in this step. A conflict definition describes the cir-
cumstances in which conflict occurence is certain. Having defined an invariant (step 2)
and post conditions for the methods (step 3) this step analyzes if the invariant can be
evaluated to “false” and if so, a conflict definition is generated.

Example As the functional dependence has two different ends (dependent and antecedent)
and the objects associated have two different methdidalgle() andenable()) there are
4 pairs of methods call to examine (Fig. 8).

Fig. 7. Postconditions

For the first pair, the invariant Conflict 1 Conflict 3
cannot be evaluated to “false” in anyconflict FuncDepDisable conflict FuncDep
execution order, hence this pair is context FunctionalDependency context FunctionalDependency
a|WayS conflict free. The next two conflic! MO[mo1] :: d!sable() conflic’f MO[mo1] :: disable()
ace: MO[mo2)] :: disable() space: MO[mo2] :: enable()

pairs are in conflict depending on
the execution order (and are there- pre: self.Antecedent = mo1 pre: self.Antecedent = mo1

f diti Conflict defi and self.Dependent = mo2 and self.Dependent = mo2
c_)r_e race con _|t|ons). onflict e_" refers to: inv FunctionalDependency refers to: inv FunctionalDependency
nition 1 and 2 in Fig[B reflects this

situation. The last pair is in con-
flict disregarding the execution or- context FunctionalDependency

der (see Conﬂ.ICt 3). . . conflict MO[mo1] :: enable()

To describe a conflict defi- space: MO[mo2] :: enable()
nition OCL is extended by the pre: self.Antecedent = mo1
following keywords:COnfct 0 i, 1o 1o
denote the name of the conflict,
conflict spaceto identify the ac- Fig. 8. Conflict definitions and method pairs
tions/operations relevant to the conflict amders to to identify the invariant that the
conflict references.

As the execution of operations always is the cause conflicts, naming the involved
operations is an important part of the definition. The optional precondition narrows the
context of the operations when a conflict occurs.

Conflict 2 Method pairing
conflict FuncDepEnable

Antecedent.enable()

D Antecedent.disable()
‘ Dependent.enable

©)

2
Dependent.disable()

Step 5: Provide con- — Pr:conditiom — E:‘econditionz
flict detection clause.For a con ex. :: disable() : voi con exl ;- enable() : voi
i L. pre: self. Antecedent pre: self Antecedent
conflict definition, a detec- implies implies
tion clause is sought that ac- self. Antecedent.Dependent.forall(self. Antecedent.Dependent.forall(
counts for the characteristics mo | mo.status = 'Disabled’) mo | mo.status = 'Enabled’)

specific to the conflict defini- Fig. 9. Preconditions
tion. In our example, if &tateManagedObject is in the role of the antecedent ,
and wants talisable() then it must be ensured that all dependents are already in the
state ‘Disabled” (see Precondition 1 in fig. 9).

With respect to this precondition, a sequential execution of policies could resolve a
conflict.

5 Conflict handling

In this section we show how the concepts developed in Se¢flons[3 and 4 can be applied
to detect and handle policy conflicts. During operation of the managed system, policies
are triggered by events generated in the system. Before their actions are executed, the set
of policies in a situation (see Sectiph 3) are analysed with respect to possible conflicts.

If a conflict is detected, the strategies presented in Sectipn 5.2 can be applied to attempt
its resolution.

5.1 Application of conflict detection

Fig.[13 shows an activity diagram of the algorithm for conflict detection and resolution.
Since the algorithm works on sets of policies, it depicts such sets (instead of objects) as
input and output of the activities.

To illustrate the conflict handling algorithm, we use the situation shown irf Fjg. 10
as an example. In addition to the two policiesgnd B) from Fig.[4, two other policies
are triggered by the same event: one that specifies that the webserver should reread its
configuration files), and one that enables the printing servi€y.(

In an example using as few as four policiespolicy { id="A" policy { id="B"
some of the steps described in the following mayevent{ 8am } event{ 8am }
seem redundant. When considering a large numget {/feminais} target{ /DHCP }

.. K action { enable() } action { disable() ;

ber of policies operating on large models, these : update{secPatch)}

steps ensure that all situations are handled cor-
rectly. policy { id="C" policy { id="D"
event{ 8am } event{ 8am }
target { /printer } target { /webserver}
Prerequisites Three information sets are neededaction { enable() } } action { rereadConfig() }

for conflict handling: policies in a situation, e.g.
those shown in Fid. 10; conflict definitions, e.g. Fig. 10. Examplesituation
those described in Sectipf 4; models of the sys-
tem, as shown in the model plane of Hif. 3. These sets are related, as showi in Fig. 11:
The

policies contain actions and references to MOs (tar-
gets). Actions relevant to policy conflicts are found in thegg
conflict definitions, as are MOs and associations of MOs.
In addition, the conflict definition specifies patterns of as-_. _
sociation between MOs in the models. To perform conflicE9- 11.Information sets
handling, we leverage the relation between these information sets.

Match conflict definitionsThe policies in a situation are tested against the conflict def-
initions acquired by means of the procedure described in Sedtion 4. Specifically, the
actions of the policies are compared to tmnflict space fields of conflict def-
initions. Matching policies constituteraatching setvithin the potentially conflicting

set.

In our example situatiorthe actions of the policied - D are matched to the actions of the
conflict definitions 1-3 (Fid.]8). It is obvious that the policies containing metterdble()
anddisable() will match. Thus, the matching set contains policiesB and D. These are
used as input to the next activity.

Sort by conflict definitionFrom the matching set, a number of sed$i) are created,
each corresponding to exactly one conflict definitiofhe sets may overlap, since a
single policy may match several conflict definitions.

In our example the conflict space of all con-f [suaton | ¥ Conflict
flict definitions contain the methodznable() and < LG LS W W
disable() . Hence, all the policies in the match et
ing set match all conflict definitions, so that three sef){mfmﬂ}
cd(1), ed(2) andcd(3) result, each one of them con- S Determine Yereds
taining policies A, B, D. Thus: cd(1) = cd(2) = | reiated MO
Cd(g) = {A B D} Test invariant)

? ?
w Select strateg COanIct
. . .. fli
Determine related MOS he previous activity has| == '°"”g = \ oo
Execute stra1egy

correlated the policy actions and the conflict def-

initions, thus identifying potentially conflicting Fig- 12.Conflict handling algorithm

policy sets. To violate an invariant, actions must

be executed on objects that are related according to the invariant. To test this condi-
tion, we compare the targets of every policy in everycgit) with MOs referenced in

the conflict definitions and determine whether the roles they carry in the model (e.g.
a dependency) corresponds. Again, the policies in a&e} can be related to several
model partitions, and several rolgsnay have to be tested. All possible combinations

of policies from a setd(i) result in setsd(i, j). As in the previous step, the resulting
cd(i, j) may overlap.

To clarify this step, consider the following procedure:

1. Select a set to begin with, e@i(1)
2. Find all instanceg of the class from the invariant af results in all instances of

FunctionalDependency

3. Determine targets of policies in the sel(1) selected: result igerminal

DHCPserv andprinter

4. For ally, find instances containing the targets above: results incdéts;), where
j is the current instance @% invariant’s class.
5. Repeat the steps for all remainiegy:).

The example modebnly has one association that is relevant for conflict detection,
thus the only set yielded by this procedure d¢d(3,1): it matches the pattern An-
tecedent.disable/Dependent.enable. Since there is no dependency betwpentéhe MO
and the other two MOs, only policie$ and B are left in the set.

At this point, both actions and targets have been accounted for. Further analysis of
a seted(i, j) can be performed disregarding the other sets.

Potentiglty
Conflicting set

Test invariant The previous activity has created sets that correspond to single conflict
definitions and contain only policies with a high potential of conflict. This activity cor-
responds to a simulation of the execution of the policy actions. It divides the sets yielded
by the previous step into eonfirmed conflicting seaif policies and conflict-free poli-
cies. For each policy seti(i, j), the invariant referenced in the conflict definitibis
tested and evaluated under the assumption that the actions of the policies in the set are
executed. Since policies are executed in parallel, the invariant must be tested for all per-
mutations of the serialization of the set. If the set passes all tests, the policies in the set
are released from the potentially conflicting set into the conflict-free set. If the invariant
evaluates tdalsefor at least one permutation, the set is conflicting.

In our examplethe terminal is dependent on the DHCP server in that that service must be
available for the terminal to boot. The invariant of conflict definition 3 is violated, since the object
in the dependent role (terminal) is enabled, while the object in the antecedent role (DHCP server)
is disabled. In consequence, the @&3, 1) is transferred to the confirmed conflicting set.

Select/execute strategyor each conflictingd(s, j), a resolution strategy must be se-
lected and executed. As shown in Hig] 12, more than one of the strategies discussed
in Section[5. may be tested, resorting to Strategy A if all others failed. An optimal
selection of strategy depends on the number of policies in a set, how time-critical their
execution might be and possibly other factors not taken into consideration yet. The ef-
fectiveness of the resolution strategy can be tested by applying the same steps as for
conflict detection to a modified set of policies.

For our examplea sequential execution of the conflicting policies in appropriate order re-
solves the conflict (let the terminal boot before disabling the DHCP server).

5.2 Strategies for conflict resolution

As discussed in Sectign 5.1, conflict detection determines a policy set where two or
more policies are in conflict with each other. Once this set is known, attempts can be
made to resolve the conflicts in an automated fashion, or at least minimize their impact.
This section presents strategies to that end.

Existing strategiesxhibit an all-out approach to conflict resolution, as the following
two alternatives show:

A The most drastic measure is for the policy service to abstain from enfaaoyngf
the policies. This could prove to be a viable approach in applications that are not
time critical, but it still requires manual intervention.

B Another approach found in the literature]([5,8]) is to enforce only the policy with
the highest priority in the set — assuming policies have been assigned priorities.
This scheme is often mentioned in the context of quality of service policy, and its
usefulness may be constrained to that niche.

Strategies using the automated conflict detection presented in this pperfor

a differentiated resolution. Since conflicts can be detected in an automated manner in

any set of policies, combinations of the policies in the set can be tried. This yields the

following strategies:

C Try to enforce as many policies as possible, excluding the minimal number of poli-
cies for the set to be conflict free. We can determine the set to be enforced by
iteratively applying conflict detection to parts of the conflict set.

D Serialising parts of the policy set and finding an appropriate synchronous enforce-
ment order can resolve the conflict in some cases. This solution appears to be the
least invasive, though it will slow down the enforcement of the policies. Again, the
enforcement order is found by applying the conflict detection algorithm to permu-
tations of the conflict set.

E Create conflict free subsets and serialise the enforcement of subsets. This is an
optimisation of the above strategy. While the policy subsets are enforced syn-
chronously, the enforcement of the policies in one subset can be parallelised. Nor-
mally, i.e. in cases where the number of sets is small compared to the mean number
of policies per set, this strategy should execute faster.

These alternatives are orthogonal: any combination of serialisation and reduction of
the policy set is possible. Unfortunately, seeking the optimal solution implies testing a
large number of policy sets, which may not be practical to do at runtime.

6 Related work

Policy conflict handlingWe imposed the requirement that the conflict handling scheme
presented in this paper be independent of a specific policy language, the type of policy

and overlap of policy domains as a necessary prerequisite. In the following, we present
work related to the approach presented here.

At Imperial College much valuable work in the area of policy conflicts has been
published. The result of [10] is a conflict classification. Conflicts are classified along
the number of overlaps (at least one) of domains (given in subject, target or action)
between two or more policies.

Another conflict detection approach exploiting domain overlapping is fourid in [8].

It focuses on modality conflicts, where policies are typed (positive and negative autho-
risation and obligation policy). A triple overlap (subject and target and action) indicates
a conflict. This approach is effective in detecting conflicts between authorisation and
obligation policies, but limited regarding conflicts between obligation policies.

Damianoul[5] uses so called meta policies, which are part of the Ponder specifica-
tion, to formalize policy conflicts. A meta policy specifies constraints regarding a set of
policies. As this approach is language specific and not all policy languages support the
concept of constraint-based meta policies, the general applicability is limited. Also, to
apply the general-purpose tool of meta policies to conflict handling, a methodology for
the specification of appropriate meta policies would have to be created.

The scope ofi[1] is to support policy refinement. A formal language (event calcu-
lus) is used to represent the state of a system allow reasoning about possible future
states. Policy language, policy execution and the managed system are formalised using
event calculus. Based on the resulting model, conflicts can be defined in event calculus,
overlap of domains being a prerequisite for conflict definition.

This approach takes into account the managed system allowing calculus represen-
tation of static and dynamic aspects of a whole managed system. However, since since
special models must be created, the effort introduced seems to be quite high, especially
when considering large scale, complex systems.

In [2/3] a policy conflict resolution approach is shown for the Policy Description
LanguagePDL, a rule-based language which omits the policy element subject and tar-
get. Conflicts are defined by monitors which evaluate action constraints. An action con-
straint has the forrmever Actionl A... A ActionN A condition . A method-
ology to derive action constraints is not given, also the application of the approach to
other policy languages and architectures is not discussed.

Management object modelintp be able to derive conflict definitions we need the con-
cept of object orientation especially the concept of classes and methods. Management
classes provide abstraction of resources for management purposes.

The instances of a management class and their embedding in a management in-
formation base (MIB) is standardised. Well known object oriented MIBs are DMTF’s
Common Information Model (CIM)[4] and I1SO’s Structure of Management Informa-
tion (SMI) [6/7]. For these standards our approach can be applied directly.

For IETF's SNMP-SMI [9] (also known as Internet MIB), which is not object ori-
ented, a wrapper needs to be designed in order to allow our approach to be applied to
MIB attributes.

7 Conclusions

In this paper we have discussed an approach to conflict handling relying on a priori
models. Different types of models represent static and dynamic aspects of managed

systems. They can be leveraged to derive invariants that, in turn, yield conflict defini-
tions. Aided by these conflict definitions, policy sets can be checked for conflicts either
statically or at runtime. In the following we summarize the key concepts of the paper
and point to further topics of study.

We presented a methodology to derive conflict definitions from object oriented man-
agement models. In addition, we have shown how to perform automated conflict detec-
tion based on these conflict definitions. Also, we presented conflict resolution strategies
for the policy sets found to be in conflict. The approach presented is generic in that it
has no dependency regarding type of policy, the policy language used or management
model type. Merely three policy elements are prerequisite to using the approach.

Yet, several important topics of study in the area of conflict handling remain. Anim-
portant issue would be the integration of conflict handling methods for different types of
policies, e.g. approaches targeting authorisation policies using a model based scheme.

We assumed that situation consists of policies that have been triggered by one
event. Keeping in mind that a situation is merely a set of policies, the same concepts can
be extended to support policy sets created in other ways, e.g. by observing a sequence of
events. For that purpose, the only thing that needs to be changed is the definition of the
situation itself. As a related issue, using invariants to identify faulty policy specification
seems to be a rewarding topic.

References

1. Arosha K. Bandara, Emil C. Lupu, and Alessandra Russo. Using event calculus to formalise
policy specification and analysis. Rroceedings of HPOVUA 2002003.

2. J. Chomicki, J. Lobo, and S. Naqvi. A logic programming approach to conflict resolution in
policy management. Iith International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR'2000pages 121-132, Breckenridge, Colorado, Morgan Kauf-
man, 2000.

3. J. Chomicki, J. Lobo, and S. Naqvi. Conflict resolution using logic programniirapsac-
tion on Knowledge and Data Engineerinth(1):244—249, 2003.

4. Common Information Model (CIM) Specification Version 2.8. Specification, January 2004.

5. N. C. DamianouA Policy Framework for Management of Distributed SysteRfsD thesis,
Imperial College of Science, Technology and Medicine, University of London, Department
of Computing, February 2002.

6. Information Technology — Open Systems Interconnection — Structure of Management Infor-
mation — Part 4: Guidelines for the Definition of Managed Objects. IS 10165-4, International
Organization for Standardization and International Electrotechnical Committee, 1992.

7. Information Technology — Open Systems Interconnection — Structure of Management Infor-
mation — Part 7: General Relationship Model. 1S 10165-7, International Organization for
Standardization and International Electrotechnical Committee, 1997.

8. Emil C. Lupu and Morris Sloman. Conflicts in policy-based distributed systems manage-
ment. IEEE Transactions on Software Engineer;i2§(6):852—-869, November 1999.

9. K. McCloghrie and M.T. Rose. RFC 1065: Structure and identification of management in-
formation fo r tcp/ip-based internets. RFC, Internet Engineering Task Force (IETF), August

1988.

10. Jonathan D. Moffett and Morris S. Sloman. Policy conflict analysis in distributed system
managementlournal of Organizational Computind 993.

11. Morris S. Sloman and Kevin Twidlddomains: A Framework for Structuring Management
Policy, chapter 16. 1994.

12. OMG Unified Modeling Language Specification, Version 1.5. Technical Report
formal/03-03-01, Object Management Group, March 2003. http://www.omg.org/cgi-

bin/doc?formal/03-03-01. .))
13. A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A. Huynh,

M. Carlson, J. Perry, and S. Waldbusser. RFC 3198: Terminology for policy-based manage-
ment. RFC, Internet Engineering Task Force (IETF), November 2001.

	Generic policy conflict handling using a priori models
	Bernhard Kempter and Vitalian A. Danciu
	Literatur

