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Abstract. Highly available and resilient networks play a decisive role
in today’s networked world. As network faults are inevitable and net-
works are becoming constantly intricate, finding effective fault recovery
solutions in a timely manner is becoming a challenging task for adminis-
trators. Therefore, an automated mechanism to support fault resolution
is essential towards efficient fault handling process. In this paper we
propose an architecture to support automated fault recovery in terms
of traffic engineering, recovery knowledge discovery and automated re-
covery planning. We base our discussion on an application scenario for
recovery from border router failure to maintain optimized configuration
of outbound inter-domain traffic.
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Policy-Based Management, Case-Based Reasoning, Peer-to-Peer, Inter-
Domain, Traffic Engineering.

1 Introduction

Availability of networks is becoming more essential in today’s networked world.
Whereas network faults are inevitable facts, an efficient fault management pro-
cess is decisive to decrease the fault resolution time and to increase the avail-
ability of the network. In case of failure, an efficient fault recovery process is
expected to find fault resolutions quickly and recover the impacted network in
a timely manner. Hence, recognizing the importance of minimum system down-
time to maintain compliance with accepted Service Level Agreements (SLA),
we propose a dual stage fault recovery process. The first stage is a short-term
system reaction to minimize the immediate effects of a fault. In order to allow
for quick system response, this first reaction is pre-planned in sets of recovery
policies able to anticipate faults. The second stage is the long-term recovery plan
and aims to discover the recovery knowledge and plans the recovery process.

The presented architecture involves traffic engineering, policy-based manage-
ment and artificial intelligence approaches. Our research focuses on providing
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a comprehensive framework to facilitate an automated fault recovery process
in large-scale networks. The motivations of the architecture are: (1) providing
short-term recovery plans through fast recovery solutions, (2) providing long-
term recovery plans through an efficient recovery knowledge discovery approach
and (3) automating recovery planning for the long-term recovery process.

Application Scenario: To demonstrate the applicability of our approach, we
choose a scenario related to inter-domain Traffic Engineering (TE) and exam-
ine a case study of automated recovery from an egress point (EP) failure. Since
inter-domain links are the most common bottlenecks in the Internet [1], an ef-
ficient plan for fault recovery is necessary. We focus our interest on planning
the recovery from border router faults to maintain optimized configuration of
outbound inter-domain traffic. Once a border router (EP) fails, we follow a dual
stage recovery process that will be detailed in section 4.

The first stage is to switch affected traffic flows to another EP, while at the
same time optimize the EP selection (border router selection) for all outbound
inter-domain traffic of a domain. To achieve a quick reaction that would minimize
disruption, we execute in advance an outbound TE algorithm and store short-
term recovery plans in a repository. The algorithm is designed with the goal of
inter-domain link load-balancing and creates configuration sets for each case of
the EP failures. In addition, the algorithm creates the initial configuration set
for normal operation which is used until a failure is detected. Having responded
to the border router failure and minimizing short-term disruption, the second
recovery stage begins to discover a long-term solution and recover from the
failure. Once notified about the failure, the recovery system relies on proposed
policies and actions to decide an appropriate recovery plan. More specifically,
the planning subsystem receives high-level directives and actions as input, then
combines the input with received state information from the monitoring system
in order to generate the appropriate sequence of actions for remedying the failed
EP and recovering normal network operation.

This paper is organized as follows: in section 2 we present our proposed ar-
chitecture and discuss the involved subsystems and their interactions. Section 3
summarizes the methodologies applied to our approaches and in section 4 we
analyze our system based on the application scenario. Section 5 provides an
overview on the related work and the paper concludes with section 6.

2 System Architecture

Our proposed system contains three subsystems: Automated Recovery Planning
(ARP), Knowledge Discovery (KD) and Policy-based Management (PBM), see
Fig.1. The planning subsystem obtains status reports from the monitoring com-
ponent in order to carry out analyzing and executing recovery plans for the
managed system with the support of the other subsystems that provide appro-
priate actions and policies respectively. The introduction of each subsystem is
presented in the following subsections.
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Fig. 1. Overview of System Architecture

Automated Recovery Planning: This central subsystem provides fault re-
covery plans for the managed system. Its tasks involve analyzing the status
report from the monitoring component, collecting relevant information from the
other subsystems for the recovery activities, producing relevant recovery plans
and provisioning for plan executions on the managed system. In Fig. 1, the three
modules responsible for these tasks include:

Domain Analysis (DA): This central module connects to KD, PBM subsystems
and the monitoring component for aggregating the relevant information as plan
knowledge to facilitate the operation of the automated planner module. Such
plan knowledge includes the description on the current system state, e.g. which
components are impacted by the failures and which components are still oper-
ational etc. Depending on the impacted components, it contacts KD for a set
of relevant recovery measurements attached with meta-information. The meta-
information describes under which situations a particular solution step could be
applied and what consequences could be expected from it, i.e. how a particular
solution step is going to affect the current system state. DA also contacts PBM to
retrieve recovery policies.

Automated Planner (AP): This module derives recovery plans based on plan
domain descriptions provided by DA. It contains an automated planning algo-
rithm, which correlates relevant recovery knowledge and produces recovery plans
by reasoning. Note that the selected planning algorithm is domain-independent
and generic. The rationale to use domain knowledge as input is to accelerate the
planning process and to increase the efficiency of the planning algorithm.

Plan Execution (PE): This module makes provision for the recovery plan execu-
tions. Plans generated by AP are described in a specific plan description language,
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therefore, to enable the plan executions, it is necessary to convert the format of
the plan and map the recovery plan into executable actions. Since PE relies on
PBM for plan execution, it converts the generated plan into a PBM-compatible
format and sends the plan to PBM, where the mapping and execution of the plan
take place. The results will be observed by the monitoring component and sent
back to DA to see if further recovery measurements are necessary.

Knowledge Discovery: Case-Based Reasoning (CBR) [2] resolves a problem
by searching for similar problems and reasoning on their solutions found in the
past. The reasoning capability of a conventional CBR system is restricted by
a local case database. A distributed CBR system takes advantage of compu-
tation power and problem-solving knowledge at various sites, thus improving
performance and maintaining huge federated case databases better. This system
exploits the integrated framework of Peer-to-Peer (P2P) and CBR [3], which
involve retrieving problems and inferring solutions, respectively.

This subsystem acts as a distributed CBR system to provide actions for recov-
ery plans. Its tasks involve communicating with various knowledge sources (e.g.
the Internet, the operators), dealing with various requests from and responses to
other modules, inferring proper actions corresponding to the failed status of the
managed system and managing a case database (e.g. failure cases and actions).
These tasks belong to three modules, shown in Fig. 1:

Action Repository (AR): This module involves storing cases and maintaining the
case database. It regularly checks the usage of cases and the similarity of cases
in order to deactivate obsolete cases or consolidate cases. Maintaining the case
database is essential since the CBR system tends to be lumbering and inefficient
with a large number of cases.

Action Provision: This module serves as an independent CBR engine which takes
requests and the case database as input to provide actions. Its main tasks include
(i) retrieving similar cases from AR, (ii) reasoning on these cases to figure out
the most promising case, and (iii) updating the case database. To improve AR,
the module regularly updates new cases from various sources including adapting
instructions from operators to solutions, or updating cases by learning problems
from monitoring systems, or extracting cases from the response of peers.

Interaction Processing: This module is responsible for establishing and maintain-
ing a P2P network. Its main tasks are to interact with various sources including
operators, surveillance systems or other peers for information exchange, resource
search and lookup. Particularly, it deals with requests from peers forwarded to
other peers, instructions and updates from the operators processed to update AR.

Policy-Based Management: PBM simplifies the complex management tasks
of large scale systems, since high-level policies can be automatically enforced as
appropriate network management [4]. In general, policies are defined as Event-
Condition-Action (ECA) clauses, where on event(s) E, if condition(s) C is true,
then action(s) A is executed. The components of PBM are shown in Fig. 1 along
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with their interactions with ARP and the managed system. The four functional
elements, as defined by IETF, are described below:

Policy Management Tool (PMT): PMT is the interface between the operators
and PBM. It allows the introduction and editing of policies and also provides
notification about critical events requiring a manager’s attention. Using this
interface, the operators carry out the specification of operational policies by
selecting the appropriate policies from the supported policy types and selecting
the required parameters. We extend PMT’s functionality by interfacing it with
ARP. PMT provides relevant policies to ARP to assist the planning process.

Policy Repository (PR): PR encapsulates the management logic to be enforced
on all networked entities, as expressed in policies. It is the central point where
policies are stored by managers using PMT and can be subsequently retrieved
either by the Policy Decision Point (PDP) or by PMT.

Policy Decision Point (PDP): PDP is responsible for evaluating policy condi-
tions and deciding when and where policy actions need to be enforced. Once
relevant policies have been retrieved from PR, they are interpreted and PDP in
turn provisions any decisions or actions to the controlled Policy Enforcement
Point (PEP). PDP receives input from the monitoring component of PEP to form
a closed control loop.

Policy Enforcement Point (PEP): PEP enforces policy decisions, as instructed
by PDP. Within our framework, PEP is enhanced by the monitoring component
that reports local information to assist decision making.

The monitoring component is integrated to provide feedback to both PBM and
ARP for decision making. It is not formally part of our architecture since fault
detection and diagnosis are out of the scope of this paper. Critical events such
as failures are reported to both subsystems in order to initiate the dual stage
recovery process.

3 Methodology

In this section, we give detailed views on the methodologies the subsystems
apply. The discussion focuses not only on individual subsystems, but also tries
to provide an overview on the interactions between them.

3.1 PBM and ARP Collaboration

As networks become more and more complex, unavoidably faults occur more fre-
quently. It is evident that frameworks with automated recovery capabilities can
significantly expedite and simplify management tasks. Within our framework,
policies work in two layers to express on one hand high-level business objectives
and on the other hand, low-level configuration policies to anticipate faults. Poli-
cies can encapsulate the overall management logic at two functional layers: the
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business layer and the device layer. Using sophisticated algorithms, we translate
high-level policies defined at the business layer to low-level configuration poli-
cies at the device layer. At the same time, the PBM interacts with ARP to provide
policies and constraints to be used in the planning procedure.

By executing an outbound TE algorithm in advance, we create different policy
sets that express those high-level goals in normal operation and in addition an-
ticipate possible system failures. These low level policies, constitute short-term
plans for the EP selection aiming for the recovery of outbound inter-domain traf-
fic when an EP fails. The created recovery policy sets are stored in the Policy
Repository and the policy set for normal operation is enforced. An outbound
inter-Autonomous System (AS) TE algorithm that is able to optimize the EP
selection (border router selection) for outbound inter-domain traffic of a domain
has been developed in [5]. The algorithm is designed with the goal of inter-domain
link load balancing. The output is |L|+1 (|L| number of border routers) sets of
EP selection configurations, one set for normal operation (i.e. no failure) that can
be called PrimaryEgressPoint selection and one set for each case of EP failures
that can be called BackupEgressPoint selections. In other words, PrimaryE-
gressPoint selection determines EP selection under no inter-domain link failure
and BackupEgressPoint selection determines EP selection under Failure States.
A common implementation of EP selection is by adjusting the local-preference
value in the Border Gateway Protocol (BGP) route attribute [6]. According to
the BGP route selection process, local-preference has the highest priority and
its value indicates the preference of the route. The higher the local-preference,
the more preferred is the route. The algorithm takes inter-domain connectivity,
BGP routing information, inter-domain traffic matrix as inputs and then de-
terministically calculates the EP selection through local search heuristics. The
reader is referred to [5] for more details.

High-level policies are used to express goals of inter-domain traffic manage-
ment, e.g. ”optimize EP selection to achieve inter-domain load balancing”, or
”optimize EP selection avoiding routing traffic to destination prefix p1 using do-
main D2”. For security reasons we may wish to avoid routing the inter-domain
traffic flows towards some particular destinations through some specific domains.
The benefit of policy-based management is the ability to use different policies
to achieve different goals, e.g. minimize peering cost. Furthermore, high-level or
recovery policies could also be used by ARP in order to find the recovery plans
which are in compliance with the management goals. It is possible that the fault
recovery plan composition may result in several alternative plans to reach the
same goal. In such cases, ARP should refer to policies in order to choose the right
one which complies with the management objectives. A recovery policy can be
interpreted as constraints for plan composition. Considering the previous exam-
ple on EP optimisation, obviously a link failure recovery plan that involves the
step which uses domain D2 to reach destination prefix p1 could not be consid-
ered as valid, because there is a management policy which forbids using this
step. In this case, ARP has to search for other alternatives. Another example
of using high-level policies to recover from router failure, assuming there are
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alternative steps involved to recover the router failure: one of them involves us-
ing router B as temporal fallback router, to which the traffic could be shifted
to, while another step requires recalculating and applying the alternative links
to route the current traffic. Obviously, both steps lead to same goal, namely,
keeping the disruption on the current traffic to minimum. Nevertheless, the fall-
back solution maybe preferred in terms of shorter traffic disruption compared to
link recalculation. If we assume that there is a policy that states Router B can
only be used as temporal failover for A between time 20:00 - 23:00 and the link
failure on router A happens on 10 : 00, apparently, the first alternative cannot
be considered by the automated planner, because the constraint derived from
the high-level policy restricts the usage of router B as failover router at the time
of failure on A.

3.2 KD and ARP Collaboration

KD contains a P2P network for knowledge exchange and update. A peer shares
resources (e.g. failure cases and actions) with other peers and provides search
facilities for other peers. A peer also bears a CBR engine for choosing best
solutions. The CBR engine, upon receiving requests from ARP, works on the case
database to propose solutions for ARP. The design of KD below explains core
issues related to building P2P network, case retrieval and reasoning in CBR
regarding the focused problem domain. Some detail has been addressed in our
related studies.

Communication: KD uses a Gnutella-style backbone network of super peers as
an appropriate overlay [7]. The overlay sticks to the characteristics of Gnutella
super-peer networks. Such networks organize peers into several clusters, any
cluster contains peers connected to a super peer, and the connections among
super peers form an unstructured overlay network. Any peer communicates with
its super peer for sending queries, publishing resources or receiving answers. Any
super peer, upon joining the overlay, has to perform several non-trivial tasks such
as search and lookup, reasoning, or maintenance.

Case Retrieval : This issue involves case representation and similarity function.
A case including failures and actions is represented by field-value vectors, where
values are binary, numeric or symbolic. In particular, a case contains a vector
vf with symptoms symi for failure descriptions, a number of vectors va with an
action act and conditions cndi for action descriptions, and a goal vector vg with
symptoms symi for verification descriptions. The following example explains how
a case is represented:

– vf = < sym1: link to dest failed, sym2: no traffic flow, sym3: primary
router not running, sym4: second brouter exist, sym5: second brouter ok,
sym6: bandwidth reserv required>

– vg = < sym1: link to dest ok, sym2: traffic flow ok, sym3: bandwidth ok>
– va = < act: use alternative link, cnd1: link to dest failed>
– va = < act: failover to secondary router, cnd1: second brouter exist, cnd2:

second brouter ok>
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– va = < act: establish link>

– va = < act: reserve bandwidth, cnd1: bandwidth reserv required>

Note that a request sent to the subsystem only contains vf and vg, the sub-
system works on symptoms appeared in the request by communicating with
other peers and looking into the local case database for similar symptoms and
actions. Using this representation, evaluating case similarity is straightforward
since it depends on comparing pairs of symptom and value; values avoid using
textual fuzzy descriptions and the expert determines the weight values of symp-
toms. Similar cases are evaluated by the global similarity method sim(r, c) =∑n

i=1 wisim(ri, ci), where n is the number of matched symptoms; ri and ci are
symptoms of request r and case c, respectively; sim(ri, ci) is the distance be-
tween ri and ci, wi is a weight value of the ith feature such that

∑n
i=1 wi = 1

with wi ∈ [0, 1] ∀i.

Case Reasoning: This issue involves case adaptation (or reasoning, inference)
and decision making. The conventional inference process carries out distinguish-
ing a retrieved case from the problem to clarify main differences, modifying the
retrieved case following the differences to obtain the final case. There are several
alternative inference methods depending on problem domains, such as proba-
bilistic inference using Bayesian network, classification using machine learning,
optimization technique using genetic algorithms (GA). For the focused problem
domain, the reasoning engine in KD employs optimization techniques to search
for an optimal set of actions that satisfies symptoms from the request provided
constraints from the goal vector and conditions from the action vectors.

To enable the planning process, ARP needs to aggregate the recovery knowl-
edge from KD. After receiving the fault report from the monitoring component,
the domain analysis module dispatches the knowledge search request regarding
the impacted component to the interaction processing module of KD. The search
results are returned by KD in the field-value vectors format. They include knowl-
edge such as fault symptoms and solution steps. However, the results cannot be
directly used by planner algorithm, the domain analysis module needs to convert
the received data into some specific planning language, such as Plan Domain De-
scription Language (PDDL) [8]. In the next section, we present examples on the
representation of recovery domain knowledge.

As mentioned in section 2, the core of this subsystem is the automated plan-
ner module. This module utilizes the AI-based planning algorithm to generate
plans accordingly to the domain description. A planning problem is based on
the restricted state-transition system[9]. A state-transition system Σ could be
represented as Σ = (S, A, E, γ), where S = {s0, s1, s2, . . .} is the finite set of
states; A = {a1, a2, . . .} is set of actions; E = {e1, e2, . . .} is set of events and
γ : S × A × E → 2S denotes a state transition function.

A planning problem can be defined as a triple P = (Σ, s0, g), where s0 ∈ S is
the initial state of a problem and g ⊂ S is the set of states which satisfy the goal.
Provided with problem domain descriptions, a planning algorithm operates on
the provided information and finds one or more plans accordingly. Additionally,
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a planning algorithm observes different constraints if they are provided. The use
of constraints serves two purposes: first, it reduces the plan searching space and
second, it guides the plan searching in a correct way, e.g. some of the actions
should be avoided according to constraints (policies).

4 System Analysis - Case Study

An outbound inter-domain TE scenario is chosen to investigate recovery from EP
failure using the introduced architecture. Normally, upon an EP failure, traffic is
shifted to another available EP in accordance to the BGP route selection policies.
However, if a large amount of traffic is shifted, congestion is likely to occur on
these new serving EPs. An intuitive approach to minimize this congestion is
to redirect the traffic to another EP by adjusting BGP routing policies in an
online manner until the best available EP has been found. Such online trial-and-
error approach, however, may cause router misconfiguration, unpredicted traffic
disruption and BGP route flooding, leading to route instability. It is desirable
to have an efficient fault recovery plan and an optimization algorithm in order
to proactively produce a configuration for optimal performance under normal
and failure scenarios. Therefore, we focus our interest on outbound inter-domain
TE and recovery planning in case of any EP failure. Once one of the EP fails,
our recovery plan follows the proposed dual stage recovery process. First, PBM
enforces appropriate policies (Table 2,P1-3) and a short-term solution is used
to minimize disruption. Then ARP, through its interaction with KD, attempts to
discover a long-term solution to recover from the fault. The topology for the
described scenario is shown in Fig. 2.

4.1 Automated Recovery Using Outbound TE Algorithm

Based on the proposed architecture, the first step after a failure is detected
is to react with a short-term solution to minimize disruption. This solution is
preplanned by executing an EP selection algorithm in advance and storing its
output as policies on the Policy Repository. The algorithm’s output is based
on a generated synthetic inter-domain traffic matrix. The traffic matrix consists

Fig. 2. Scenario Topology: (a) EP selection problem inputs, (b) PrimaryEgressPoint
selection, (c) BackupEgressPoint selection if j1 fails
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Table 1. Assignment of Primary and Backup Egress Point selection

Prefix Primary Backup

if J1 fails if J2 fails if J3 fails

k1 J1 J2 J1 J1
k2 J3 J3 J3 J2
k3 J2 J2 J3 J2
k4 J1 J3 J1 J1

of a set of inter-domain traffic flows that originates from each ingress point
towards each of the considered destination prefixes. Each inter-domain traffic
flow is associated with a randomly generated bandwidth demand according to
uniform distribution. We use a sample topology and traffic flow to demonstrate
the applicability of our recovery methodology. Details about the algorithm and
evaluation results can be found in [5].

For a better understanding of our EP selection algorithm, we provide an exam-
ple in Fig. 2. Figure2(a) illustrates the inputs for the EP selection problem, com-
prising ingress routers i1 and i2, EP j1, j2 and j3, inter-domain traffic demands
t1 = t(i1, k1), t2 = t(i1, k2), t3 = t(i2, k3) and t4 = t(i2, k4). The destination
prefixes k1, k2, k3 and k4 that can each be reached through all the three EP are
also shown. Recall that the task of the EP selection problem is to determine, for
each destination prefix, both a PrimaryEgressPoint to be used under no failure
and a BackupEgressPoint to be used when its PrimaryEgressPoint has failed.
Figure2(b) shows a potential solution of PrimaryEgressPoint selection, where t1
and t4 reach their destination prefix k1 and k4 respectively through EP j1, t2
reaches its destination prefix k2 through EP j3 and t3 reaches its destination
prefix k3 through EP j2. This assignment corresponds to Table 1 column 2. In
addition, Figure2(c) illustrates a potential solution of BackupEgressPoint selec-
tion when EP j1 has failed. As shown, t1 has been re-assigned to EP j2 to reach
k1 and t4 has been re-assigned to EP j3 to reach k4 as their BackupEgressPoint.
This assignment corresponds to Table 1 column 3 and according to the high-level
goal, this solution achieves inter-domain link load balancing. To implement this
solution, e.g. for prefix k1 the largest value of BGP local-preference, e.g. 100,
should be assigned to its selected PrimaryEgressPoint (i.e. EP j1), the second
largest value, e.g. 80, should be assigned to its selected BackupEgressPoint (i.e.
EP j2) and any BGP local-preference value less than 80, e.g. 50, can be assigned
to the remained EP (i.e. EP j3).Also for prefix k4 the largest value of BGP
local-preference, e.g. 100, should be assigned to its selected PrimaryEgressPoint
(i.e. EP j1), the second largest value, e.g. 80, should be assigned to its selected
BackupEgressPoint (i.e. EP j3) and any BGP local-preference value less than
80, e.g. 50, can be assigned to the remained EP (i.e. EP j2).Moreover since the
other two prefixes reachable through j1 (i.e. k2 and k3) are assigned to j1 for
neither Primary nor Backup, their BGP local preference should be any value less
than 80 e.g. 50. Table 2 shows the assignment of BGP local-preference setting
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Table 2. Local-pref setting and policies for prefixes on Egress Points

Egress Point Prefix BGP local Policies
preference (Event==setupEP()

J1 if (EP==j1)
k1 100 then[(set-local-pref(k1)=Prim-val)
k2 50 (set-local-pref(k2)=Low-val)
k3 50 (set-local-pref(k3)=Low-val)
k4 100 (set-local-pref(k4)=Prim-val)][P1]

J2 if (EP==j2)
k1 80 then[(set-local-pref(k1)=Back-val)
k2 80 (set-local-pref(k2)=Back-val)
k3 100 (set-local-pref(k3)=Prim-val)
k4 50 (set-local-pref(k4)=Low-val)][P2]

J3 if (EP==j3)
k1 50 then[(set-local-pref(k1)=Low-val)
k2 100 (set-local-pref(k2)=Prim-val)
k3 80 (set-local-pref(k3)=Back-val)
k4 80 (set-local-pref(k4)=Back-val)][P2]

Initial configuration policy

Event==BGP-conf
if (-)
then [(set-local-prefs([Prim-val,Back-val,Low-val],[100,80,50]))
,gen-event-setupEP(j1,j2,j3)] [P0]

for prefixes k1 to k4 on all EPs. These configuration settings are enforced on the
EPs by their PEP based on policies (P1,P2,P3). An initial configuration policy
(P0) is used by the network administrator, to configure the proper values for
BGP local-preference. The benefit of combining a TE algorithm with a PBM
approach is the creation of a flexible management environment able to quickly
react to failures. In parallel, our framework automatically works to recover from
the failure and recovery policies are used as input to the ARP subsystem. With
the cooperation of KD, ARP outputs a new recovery plan that PBM can enforce to
the network and reinstate normal operation.

4.2 Automated Recovery Using Planning Algorithm

To show how the planning and knowledge discovery subsystems collaborate,
we present here an example based on the aforementioned border router (EP)
failure scenario. The objective of collaboration between the two subsystems is
to produce long-term fault recovery solutions.

After the router failure is recognized, the first stage recovery procedure is
activated in order to sustain the current traffic and minimize the disruption of
the failure. Whereas such a solution can be regarded as a short-term measure, a
long-term recovery measure is still needed to completely recover from the failure
and reinstate normal operation.
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Algo. 1: Automated Planning
Input: O: set of actions
s0, g: initial state, goal state
Output: π sequence of actions

1 s← s0
2 π ← ∅
3 while True do
4 if s satisfies g then
5 return π
6 A ← {a|a ∈ O & precond(a) true in s}
7 applicable ← A
8 if applicable= ∅ then
9 return failure
10 choose a ∈ applicable
11 s← γ(s, a)
12 π ← π.a

Algo. 2: Action Optimization
Input: C: set of retrieved cases ci;
R, τ : request with symptoms rj , threshold
Output: σ optimal set of actions

1 Σ ← ∅
2 Σ∗ ← ∅
3 for each ci ∈ C & rj ∈ R do
4 σ ← {a|a ∈ ci & a satisfies any rj ∈ R}
5 Σ ← Σ ∪ σ
6 while True do
7 for each σ ∈ Σ do
8 evaluate f(σ)
9 if σ is optimal then

10 return σ
11 Σ∗ ← {σ|σ ∈ Σ & f(σ) > τ }
12 Σ ← {σ|σ generalized by σ∗ & σ∗ ∈ Σ∗}

The long-term recovery process is activated by the reports from then moni-
toring component. The domain analysis module analyzes the monitoring report
and extract the current global state. The current global state includes the infor-
mation on the impacted component and other relevant information. Note that
the granularity of monitoring information will affect the later planning process.
For example, a report states The primary router is impacted by failure and it has
OS version 2.3 will be more useful for planner to compose a better plan than
just states The primary router is impacted. The global states are represented by
the set of predicates.

After the failure source is known, the domain analysis module dispatches a
search request to KD in order to find possible resolution steps to recover the
component. KD collects solutions from various sources, then runs the reasoning
engine on the retrieved solutions before returning the proposed actions to the
analysis module. The reasoning engine uses the optimization technique based on
the GA algorithm to provide an optimal set of actions, see Algo. 2. The discovered
recovery actions have to be translated into a planning-specific language. For
example, if a recovery action involves upgrading the router OS, this action could
be described in PDDL [8] as:

(:action fetch_update

:parameters(?r - router ?p - patch ?cv - currentversion

?nv - latest version )

:precondition( and ( (failed ?r) (patch_at ?r ?p ?cv)

( < (?cv ?nv) ) ) )

:effect( and ( (updated ?r ?nv ?p) (= (?cv ?nv) ) ) ) )

The parameter field denotes which parameters are needed for this action. The
field precondition describes the conditions, under which the fetch update ac-
tion could be applied. The effect field denotes the consequence of this action,
i.e. how this action is going to effect the global state. The question mark denotes
the variables. The initial state, goal state and recovery options formulate a plan-
ning domain. The automated planner operates on the planning domain for one
or more feasible plans. The planning algorithm[9] is described by Algo. 1. Note
that only those actions (a ∈ O) which cause state changes and the current state
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s are considered as parameters of γ function in this algorithm, events are left
out for the sake of simplicity.

Recovery actions are selected based on their preconditions and current global
state. Each action leads the current global state into a new state, this iteration
finishes when the new state equals goal state. The generated plan is a sequence
of actions which transit the initial state into the goal state.

5 Related Work

The study of Mark et al. [10] has proposed an automatic system for finding
known software problems. The system matches the symptoms of the current
problems with the symptom database to find the closest matches. The matching
algorithm is designed to work with structured symptoms that contain program
call stack, not arbitrary data. The recent study of Stefania et al. [11] has proposed
a CBR system for self-healing in software systems. The description of the system
lacks some details. Any case is represented in features which contain binary
and symbolic values. Cases are retrieved by using the k-NN algorithm; where
the similarity distance function evaluates case features with the corresponding
weight values, but the weight function for features is not provided. The system
mainly depends on the retrieval process to classify problems.

Policy-Based Management (PBM) simplifies the complex management tasks
of large scale systems, since high-level policies monitor the network and auto-
matically enforce appropriate actions [4,12,13]. Industry and PBM have been
closely related in autonomic computing and self-management approaches [14].
The main advantage which makes a policy-based system attractive is the func-
tionality to add controlled programmability in the management system without
compromising its overall security and integrity. Policies can be viewed as the
means to extend the functionality of a system dynamically and in real time in
combination with its pre-existing hard-wired management logic [4,13]. Policies
are introduced to the system and parameterized in real time, based on man-
agement goals and gathered information. Policy decisions generate appropriate
actions on the fly to realize and enforce those goals.

Outbound inter-Autonomous System (AS) Traffic Engineering [5,6,1] is a set
of techniques for controlling inter-AS traffic exiting an AS by assigning the traf-
fic to the best egress points (i.e. routers or links from which the traffic is for-
warded to adjacent ASes towards destinations. The general problem formulation
of outbound TE is: given the network topology, BGP routing information and
inter-domain Traffic Matrix (TM), determine the best Egress Point (EP) for
each traffic demand so as to optimize the overall network performance,such as
inter-AS link load balancing [1].

Srivastava et al. [15] discussed the feasibility and theoretical aspects on using
planning methods in autonomic computing. They concluded that automated
planning is an evolutionary next step for autonomic systems that possess the
self-managing capabilities. Kephart [14] addresses in his paper the challenges
of using AI-based planning methods to the autonomic computing. Arshad et al.
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[16] presented a planning based recovery system for distributed system. However
the proposed approach has several disadvantages; e.g. the recovery knowledge
elicitation is not considered and lack of details in many aspects of applying
automated planning methods in fault recovery.

6 Conclusion

Motivated by the need for an efficient fault recovery management, we have pre-
sented our initial efforts towards an integrated architecture. By combining the
strengths of three paradigms: Automated Recovery Planning, Knowledge Dis-
covery and Policy-based Management, we attempt to provide an automated
framework. We have demonstrated a dual stage recovery process based on a case
study of border router (EP) failure, aiming to maintain optimized configuration
of outbound inter-domain traffic and quickly reinstate normal operation.

Beyond initial architecture design, we intent to investigate further interactions
among subsystems and define generic and reusable interfaces. This will allow the
extension of the architecture to a variety of case studies. We will aim to increase
the automation of recovery and plan execution, thus minimizing human inter-
vention and recovery times. Our future work will focus on intelligent planning
algorithms that will combine system knowledge and business goals, aiming to
gradually migrate to fully automated fault recovery management.

Acknowledgments. The work reported in this paper is supported by the EC
IST-EMANICS Network of Excellence (#26854).
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