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Abstract: Quality of Service (QoS) in networks is an essential ingredient for pro-
viding attractive, reliable services to customers. In contrast to model layered protocol
stacks, where resources are used exclusively, virtualization introduces a series of novel
specific challenges, due to shared resources. This paper presents the model and map-
ping procedure of an approach for matching network QoS attributes with the needs of
virtualization environments (VE). The key of our solution is an extended view on net-
work topologies which adequately includes virtual components and links. We identify
discernible types of network components and links, to enabe accurate descriptions of
network paths through VEs. Our procedure is used to automatically describe (sub-)
topologies yielding enough information to enable network QoS implementations.

1 Introduction
Over the last few years, virtualization with its plethora of applications has been changing
the development of IT infrastructures in data centres. Within a virtualization environment
(VE), virtual infrastructures (VI), consisting of virtual machines (VM) and virtual net-
work components, are created, managed and deployed as needed for predefined services
or simply as a vanilla topology of servers for arbitrary use through customers.
Specifications and management of VIs are abstracted from the underlying physical in-
frastructure and intentionally leave out details about the concrete implementation. When
activated, VIs are placed within the VE, onto the providing physical components. This
includes two important aspects:

1. Placing a VI within a VE usually expands its network links to network paths, in-
cluding many physical and virtual components.

2. Quality of Service (QoS) attributes and requirements are formulated for abstract
components and links, requiring refinement to match their placement.

Many aspects of VIs can be changed swiftly and on demand, especially the shape and par-
ticipants of their respective virtual network topologies. The implied changes on resource
consumption and consequently available network capacities, may lead to VMs starving
each other for network resources. In extreme cases the services they provide are no longer
useful. In order to avoid such effects, network QoS management must be performed.
This contribution introduces a model and procedure to map VI network paths onto VEs.
This enables automated mapping of network QoS requirements, making them an integral
part of a management architecture for network QoS management in VEs. The procedure
is intended to be automated, so that it can be applied for all VI paths. We prove our
methodology by exemplary introducing the throughput QoS attribute to a Xen based VE.

2 Analysis and Approach

Looking at traditional network QoS with only physical components, network components
and endpoints are physical resources with known capacities to provide services. In VIs,
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Figure 1: Three methods of implementing a switch

components, endpoints and links can be placed on dedicated physical hardware, or as
virtual instances, implemented as a service on a shared platform.
Network virtualization yields a variety of network components, that are equivalent regard-
ing their purpose and functionality according to the ISO OSI model, but may mandate dif-
ferent treatment for network QoS and QoS management. Figure 1 exemplary shows three
conceptual implementations of a network switch. The physical switch, is implemented
on dedicated hardware, whereas the virtual switch is one of possibly many virtual com-
ponents realised by a virtual machine monitor (VMM), installed on a physical computer
(host). VM-based switches are realised as part of a VM’s operating system.
Sharing few physical components among many virtualized entities involves a multiplex
which must be managed, in order to correctly manage network QoS. Often, multiplexes
are hidden and we attribute this challenge being unsolved to the increasing complexity
introduced by virtual components and shared resources.
Performing network QoS management concerns different (sub-)components and therefore
requires an adopted management procedure. For each example in Figure 1, each layer rep-
resents (at least) a subcomponent of the switch, possibly requiring additional management
when management on the switch is performed. This is a challenge for planning and pro-
visioning, as the managed component “switch” becomes one of many possible concrete
implementations. Further, in VEs, single components may be moved to another host after
initial deployment (migration), which may result in a change of the implementation of
“switch”, and therefore how QoS must be implemented, enforced and monitored.
This gap between VI and component management can be met by requiring static configu-
rations, eliminating a key feature of virtualization, or by a system with abstract description
of VIs’ QoS paths as target configuration that are continuously adopted to the VE’s current
state. We aim to realise the latter, for which we identify four main steps:

S1 determining involved components,
S2 mapping of high level QoS attributes,

S3 adopt to contestants and shortages,
S4 develop monitoring strategies.

This contribution focuses on S1 to determine all involved components of a VI network
path and their types, so that QoS management can be performed correctly, with respect to
the VE’s current state.
The overall goal is an adoption of the layered approach first introduced in [JN04], that de-
velops “concrete QoS parameters [. . . without] knowledge of the underlying [. . . ] network
conditions” as an intermediary result. In our adoption we aim to map specifications of
QoS parameters for VIs onto the VE. Referring to the “layers [representing] very different
features of services” in [JN04], our approach corresponds to developing mappings from
the application-layer to the resource-layer.
We follow a bottom up approach and first analyse types of network components and links
that differ in QoS management. The result is an enhanced topology resource-layer model,
containing information on the degree of virtualization of components. This enables canon-
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ical implementation by the concrete technologies and components used to build VEs. The
introduced procedure describes the refinement from application- to resource-layer.

2.1 Components

Figure 2 shows a classification of network components by locality of configuration, in-
troduced in [MD10]. Physical components are fixed within the VE. While they may be
replaced, for instance due to hardware failures, their place and role within the network
topology remains unchanged. Local components, are placed on hosts. Their roles and
function may be copied to other hosts but their state is relevant only for their current host.
Volatile components are (equivalent to) VMs in terms of placement within the VE. Their
state is invariant to placement within the VE, so they can be integrated at different positions
in the (virtual) network topology.
This classification indicates how much immediate control a component has over the un-
derlying physical resources. While physical components can map available resources to
network performance accurately, local components contest for shared resources with other
components and VMs. Volatile components are in general unaware of physical resources
and how they are coordinated. Following through, the introduced classification separates
how network QoS must be implemented by components:
• Physical components can directly implement network QoS.
• Local components must additionally handle resource contention. Effectively they

implement network QoS with respect to the current load of their host.
• Volatile components implement some QoS themselves, but must delegate the task

of ensuring that the required resources are available to the virtualization platform.

2.2 Links

As their physical role models, virtual network links are passive and network QoS man-
agement is performed at their endpoints. For any functional kind of network component,
e.g. switch, classification by locality of configuration yields different types, concerning
how resources are committed and network QoS management is performed. Linking com-
ponents of different types, yields a set of discernible link types, summarised in Table 1.
To characterise these six link types, we look at how the endpoints and therefore the link
are managed. The types physical link, physical uplink, E2E link correspond to links also
found in strictly physical infrastructures, while the types pv-bridge, virtual link, RDMA
bear virtualization specific challenges. We characterize the link types as follows:
(a) physical link There aren’t any virtual components involved, “traditional” QoS [ea98].
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(b) physical uplink Virtual components are connected to the physical network. The
VMM can assign a virtual component resources like an OS scheduler to a process.
For QoS management the virtual component can regarded as an endpoint in strictly
physical topologies.

(c) E2E link A trivial end-to-end (E2E) link in the context of physical networks, as both
endpoints are located on the same host.

(d) pv-bridge The uplink of a volatile component to the physical topology. The volatile
component is generally not aware of resource contestants, but has been given an un-
contested direct uplink, through the VMM. Even though the uplink is uncontested, the
VMM must ensure the volatile component has enough other resources available.

(e) virtual link The usual way of connecting virtual components, mostly a volatile com-
ponent and a local component. The VMM manages both endpoints and can allocate
the resources to meet QoS demands.

(f) RDMA A theoretical direct connection between volatile components, without data
ever crossing the VMMs domain. It is called remote direct memory access (RDMA)
as this is most likely how it would be implemented, as both endpoints are placed on
the same host and traffic between them is never handed to the VMM.

This constitutes a complete list of link types regarding the virtualization of endpoints, with
which network paths through VEs can be described topologically. For (QoS) management
links also differ in the OSI layers the endpoints implement and the concrete technology
employed for virtualization. The above list is a generic template and specialized versions
for the specific technologies employed in the endpoints must be derived. Technology and
OSI layer characteristics for QoS handling yield a VE specific finite set of discernible link
types, for which management functions must be available.

2.3 Resource-Layer topology view

At resource-layer all relevant information is described non-ambiguously [JN04]. We pro-
pose a topological view which groups network components by host and distinguishes be-
tween local and volatile components. This is consistent with describing links by their
endpoints and components by their degree of abstraction from the physical hardware.
Figure 3(a) shows an abstract example featuring each link named in Table 1. By mak-
ing the endpoints’ domains (physical, local, volatile) explicit, the various link types are
discernible without the labels. Figure 3(b) keeps the labelling for clarity purposes. The
Figure itself shows an application example, connecting two servers over three switches,
where each switch is one of the implementations introduced in Section 2. The physical
switch, next to the physical host is correctly displayed as independent and the VM-based
switch is displayed in a different domain as the local switch, yet within the same host.



Coloured/shaded areas group local and volatile components by host. All virtual compo-
nents realised by the same physical host belong to the same area. With this illustration,
volatile components are always contained within the local area. They are set apart opti-
cally, by using a different shade. The link between the two virtualized switches crosses
domains, which means it must be a type-e link. The intersection of a link with the host
boundary in Figure 3(b) is marked and explicitly names the used host’s NIC, nic0. Which
NIC is used determines which resources are used for the specific link, thus must be repre-
sented on the resource layer.
This enhanced topology view may include all identified component and link types. The in-
crease in represented information meets the increased complexity and qualifies as resource
layer for QoS layer partitioning following [JN04] as described in Section 2.

3 Refinement procedure

With the resource-layer established in Section 2.1, we can outline a generic procedure for
mapping application-layer management information or tasks to the resource-layer. As an
example we use the mapping of management information in the form of QoS attributes.
This is achieved by iteratively refining application-layer links to eventually match the
resource-layer topology. QoS attribute refinement is then performed based on reasoning
on intermediary results. With each step the QoS attribute and its requirements are adopted
to suit the sub-path which ultimately results in QoS requirements for each link at resource
layer, which can then be implemented in a technology specific manner.
Network components are often characterized by the highest layer of the ISO OSI reference
model they implement, e.g. routers implement layer 3. Combined with our taxonomy in
Section 2.1 every component within a virtualization infrastructure can be characterized
by the highest OSI layer it implements and its locality of configuration. The refinement
procedure must therefore trigger two tasks: adoption of QoS attributes to the identified
link segments and advancing the refinement process by detecting and resolving com-
pound links. Our procedure develops the resource-layer topology (final topology) from
the application-layer topology (initial topology), based on available management informa-
tion. Algorithm 1 shows the core procedure refinePath, which uses two noteworthy
subroutines: link (lines 8 and 22) and adoptQoS (lines 8, 12 and 22).

input : Tres as the list of all links in the final topology, Pinput as endpoints of a path and the path’s QoS attribute
output: Prefined as a list of links in the final topology associated with an associated QoS attribute

1 Prefined← ε

2 e0 , e1← Pinput .endpoints
3 Pres−layer ← pathAtOsiLayer(e0 ,e1 ,e0 .layer)

4 while Pres−layer /∈ Tres do
5 n← neighborOf(e0 ,Pres−layer)
6 if n 6= e1 then
7 if path(e0 ,n)∈ Tres then
8 Prefined .append( link(e0 ,n,adoptQoS(Pinput ,n)))
9 end

10 else
11 Psub← path(e0 ,n)
12 Psub .qos← adoptQoS(Pinput ,n)
13 Prefined .append( elementsOf(recursion into subpath))
14 end
15 e0← n
16 end
17 else if n= e1 then
18 e0 .layer← e0 .layer- 1
19 end
20 Pres−layer ← pathAtOsiLayer(e0 ,e1 ,e0 .layer)
21 end
22 Prefined .append( link(e0 ,e1 ,adoptQoS(Pres−layer ,e0 .layer)))
23 return Prefined

Algorithm 1: The refinePath procedure



The refinePath procedure uses the property of the OSI model, that every layer n uses
the links and services provided by layer n-1, to break paths into sub-paths, starting at the
layer of an input-endpoint, proceeding to lower layers. If a sub-path cannot be split up,
it corresponds to a single resource-layer link, for which adequate management functions
are available. When a path with a directly corresponding link in the resource-layer is
found, the function link is called. Calling link is a request to apply the input-path’s
QoS attribute to a resource-layer link. To actually apply the attribute, link uses topology
information to identify the technologies used for the endpoints and the link type. With this
information link can determine the correct management for the path segment.
The task of adoptQoS is provide an adopted QoS attribute to link, by tracking the per-
formed path refinement. The concrete adoption procedure is specific to the QoS attribute.
For instance, for a sensible implementation for an attribute “data rate”, adoptQoS would
alter the attribute values to account for protocol header fields, when regarding data rate at
varying OSI layers, or special implementations of virtualized links.
Besides accounting for implementation characteristics, adoptQoS tracks paths and sub-
paths, to consolidate requirements of multiple high-level links sharing the same resource-
layer link. This happens when link is called multiple times for the same resource-layer
link. Also, the information collected by adoptQoS is used to set up monitoring.
The result of the procedure are the application-layer links as resource-layer paths, where
each path segment is a resource-layer link with a refined QoS attribute associated. The
actual application of the attribute is resource allocation and deploying monitoring.
The implementation of links, resource allocation and QoS is technology specific. For ex-
ample, in previous work [DgFKM11], we analysed that VMMs often use different metrics
to model similar aspects of virtual and physical components. As QoS management heav-
ily depends on the monitoring data obtained from the managed systems, QoS management
must become ever more specific for the managed object. This can be seen as one of the
main causes for the existing gap in QoS management, when introducing virtual compo-
nents to IT infrastructures. The advantage of using the model and procedure introduced
herein, lies in the generic structure and methodology for describing links and compo-
nents. The model’s application results in a finite and sensible set of managed object types
and corresponding management functions or strategies that allow for automated adoption,
propagation and application of management information and functions from the high level
view of virtual infrastructures to the concrete provisioning components.

4 Experiments

We apply our procedure to an exemplary VI with a single QoS attribute data rate. To illus-
trate the effect, we include a greedy “attacker” VM, which consumes resources to cause
network performance degradation. With our procedure we identify the relevant compo-
nents to perform QoS management to mitigate the attacker’s negative effect.
Figure 4 shows our testbed: a VM connected via a router to another VM, placed on our
hosts xensrv01, xensrv02 and xensrv03, respectively. While xensrv01 and
xensrv02 are connected via a physical switch, xensrv02 and xensrv03 are di-
rectly linked. All VI components are volatile and only local switches are employed. The
resource-layer topology is augmented by the classifications of its eleven path segments.
In this example, the QoS attribute is implemented correctly, when all path segments deliver
at least the required data rate of 200 MBit/s (≈ 25 MByte/s). The requirement is valid at
application layer, and the data rate must be is adopted to correctly include the IP and
Ethernet PCI. With standard Ethernet frames (up to 1500 bytes data), our use case specific
adoptQoS evaluates ≈ 200.3 MBit/s for IP and ≈ 200.6 MBit/s Ethernet path segments.
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When provided the two VMs as endpoints at layer 7, the procedure performs as follows:

1. Four iterations: OSI l7→ l3.
2. adoptQoS→ 200.3 MBit/s
3. Twice: recursion into subpath

(a) Five iterations: OSI l7→ 2
(b) adoptQoS→ 200.6 MBit/s
(c) link for all found segments.

The application of our customized adoptQoS and link functions yields the following
configuration steps:
• traffic shaping inside the VMs, for all traffic addressed to the other server,
• a new data path on each local switch for each direction and
• a new CPU-pool on each host for the VI’s component.

We test our resulting configuration by comparing data flows between the servers with
different kinds of load on xensrv02. To create flows, we use the program mbuffer to
eliminate potential side effects due to disc I/O.
Our measurements are illustrated in Figure 5. Without the “attacker” VM, we achieve a
fairly constant data rate of 39 MByte/s. Under CPU or network load, a drop below the
required 25 MByte/s is observed. Having applied the developed configuration steps, the
QoS goal is met, and the degradation evaded.



5 Related Work
The management challenge addressed in this paper pertains to network QoS in VEs. The
special characteristics are that network components and network path segments are provi-
sioned alongside endpoints one the one hand, and on-demand placement of virtual com-
ponents which can be moved between hosts after initial provisioning on the other hand.
The gap between VI and component management has been addressed before. In [ea09c]
and [ea09b] the authors suggest adaptive infrastructure management based on feedback
loops. While this targets resources allocated to VMs, the network aspect is not handled
specifically. The herein proposed approach can be used in such feedback loops and bridge
the gap as described in this related work.
[ea09a] also identifies the need to adopt QoS attributes to technologies and (possibly hid-
den) network paths. This can be considered part of a solution, as they target networks only
and the concept of volatile configurations does not fit their model.
Methods for refining resource allocations are still a topic for research, e.g. in [LN09].
This work provides the foundation for providing QoS links and paths in VEs. The re-
cent study [ea13] analyses many such approaches and shows, that current VMMs don’t
“provide sufficient performance isolation [note: see [ea03]], to guarantee the effectiveness
of resource sharing”, which imposes a limit on efficiency and how accurate QoS can be
enforced. The problem of performance of shared resources has been been recognised be-
fore [Rix08] and may motivate an automated implementation of our procedure to address
such problems and trigger dynamic adoptions of QoS attributes if combined with some of
the available other approaches.

6 Conclusions
The proposed refinement procedure requires management information about the VI, i.e.
application-layer topology, and its placement within the VE, i.e. resource-layer topology.
It then reconstructs the placement of network links and in doing to filters the available
management information for all required link segments and DTEs. The thereby generated
information also contains all logical abstractions and compositions that contribute to the
final “visible” link in the VI. This is the important information, required to adopt manage-
ment information to sensible rules that can be applied.
The suggested method of generating views and analysing paths enables the detection of
hidden paths and logical links and the triggering of special treatment, if required. With
this model as information base, generic rules for mapping VI QoS requirements to the
resource-layer and the current state of a VE can be devised. This is a next step, out of the
scope of this paper.
As part of an integrated management system for VEs, our approach is designed to al-
low substantial automation. It can be used to perform management on an existing VI, as
demonstrated, or as part of the placement procedure. The specific link and adoptQoS
functions can be built to provide feedback to acknowledge when VMs can be placed ac-
cording to the specifications, or to force a different placement of VI components. Another
aspect could be the actual planning in infrastructures where redundant network links allow
for multiple network paths between hosts. To facilitate this heuristics can be added to the
recursion stage of the procedure.
Acknowledgments The authors wish to thank the members of the Munich Network Management
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