
188 PIK 27 (2004) 4

 K.G. Saur Verlag, München, 2004

H. Reiser, and G. Volker

Honeynet Operation within
the German Research Network –
A Case Study

Dr. Helmut Reiser studied computer sci-
ence at the Munich University of Tech-
nology (TUM), Germany. He received
his diploma degree (M.Sc.) in 1997.
Since then he has been a member of the
MNM Team, working as a research and
teaching asistant at the Ludwig Maximi-
lan University Munich (LMU), Germany.
Dr. Helmut Reiser received his Ph.D. in
Computer Science from LMU in 2001.
The title of his thesis: “Security Architec-

ture for a Management System based on Mobile Agents”. Since
2001 he is working as a senior researcher and lecturer at the
LMU. His research interest include IT-Management, Security in
management-systems and in distributed systems as well as in-
terorganizational aspects in IT-Management and their impact
on security policies and mechanisms. He is member at GI,
IEEE and ACM.

Gereon Volker1, received his Diploma
(M.Sc.) in Computer Science from the
the Munich University of Technology,
Germany, in 2003. Since then he is a
employee at the Munich Re in Munich
and works at the department IT Security
Services. Gereon Volker’s main topics
are currently PKI and security monitor-
ing.

ABSTRACT

A honeynet is a special prepared network which is not used in
normal business. It is a kind of playground to watch and learn
the tactics of crackers. The only purpose of a honeynet is to be
probed, attacked or compromised. During the operation other
systems may not be harmed by an attack originated within the
honeynet. In this paper the design, realization and operation of
a honeynet built within the German Research Network (DFN)
will be described. Concepts for continuously monitoring and se-
curing the honeynet are introduced. A selection of the results of
the operation phase will be presented as well.

1 INTRODUCTION

Due to increasing number and severity of attacks it is important
for security administrators to know about tactics, motives and
preferred targets of their adversaries. In this paper the design,
operation and analysis of a honeynet built within the German
Research Network will be described. A honeynet is a screened
and controlled network of honeypots. A honeypot is a system
whose single purpose is to be probed, attacked, or compro-
mised, by attackers. Learning the tactics, tools, and motives of
attackers is one reason to build honeypots. The other reason is
to slow down an attack by engaging the attacker with a system
whose only purpose is to be attacked. The honeypot should be
sufficiently interesting for the attacker, to extend his efforts and
spend a lot of time at this system. A honeynet is not a single
system but a network. Within this honeynet different types of
honeypots can be placed. The whole honeynet with all its sys-
tems is not used productively in regular business. Therefore, all
traffic within this network must be originated by an attacker. The
honeynet is located therefore behind a filter (the honeywall)
where all inbound and outbound data is captured. This data is
then analyzed to learn about the techniques of attackers
[Ho01].

The honeynet described here has been set up at the Leibniz-
Supercomputing Center within the German Research Network.
The German Research Network is the Internet backbone for all
universities and research institutes in Germany. In German it is
called “Deutsches Forschungsnetz (DFN)”. DFN is the national
research network with upstream connections to the European
research network Géant, to various commercial providers and
the global Internet. DFN connects all research facilities and pro-
vides them Internet access and additional services (e.g. mail,
WWW, Video-Conferencing, etc.). DFN is one of the largest In-
ternet providers in Germany. In 2003 data transmitted per
month, exceeded the petabyte barrier. The Leibniz-Supercom-
puting Center (“Leibniz Rechenzentrum”, LRZ) in Munich oper-
ates the Scientific Network in Munich (MWN) and research fa-
cilities in the south part of Bavaria and is directly connected to
one of the core routers of the DFN. The honeynet which will be
described in this paper has been built at the LRZ. Its operation
time lasted from July 15th until September 12th 2003.

Section 2 describes the requirements, the design, the architec-
ture and the operation of the honeynet. Alarming mechanisms
as well as analysis tools are described. The results of the de-
ployment are pointed out in section 3. The paper is concluded
by a “lessons learned” section and a view to further work.

1 This work was carried out and completed while the author was working at
the Technical University Munich.

PIK 27 (2004) 4 189

Honeynet Operation within the German Research Network – A Case Study Reiser, Volker

2 DESIGN, OPERATION AND ANALYSIS

To deploy a honeynet, three basic tasks must be carried out:
data capture, data control and data analysis. Data capture
deals with the recording of all traffic which arrives or leaves the
honeynet. This must be done on several layers and on all sys-
tems within the honeynet. For this reason a few tools are in-
stalled on the honeywall and the honeypots which are de-
scribed in the following. Honeynets must be configured in a way
that other systems cannot be harmed or attacked if an attacker
breaks into the honeynet. This is the aim of data control. Data
analysis means efficient analysis of the collected data. There-
fore, tools are required which are able to help the administrator
to analyze fast growing log files (up an even more than 100 MB
a day) and to extract relevant information out of data noise. In
the following, we describe a hardware and software architec-
ture design to meet these requirements.

2.1 Honeynet Software- and Hardware-Architecture

Based on the ideas of Lance Spitzner, one of the founders of
the honeynet project [Honb], a second-generation (Gen II) hon-
eynet (see Fig. 1) has been selected for this work [Sp03]. A
Gen I honeynet is placed behind a simple firewall with a captur-
ing component. In a Gen II honeynet the “copy of the produc-
tion net” is placed behind a honeynet sensor which is also
called honeywall. The only way to reach a honeypot is through
the honeywall. A honeynet is a smaller copy of the network and
system infrastructure within a certain organization. Therefore it
should contain systems similar to those regularly used within
the organization. In our case Linux and Windows honeypots
have been placed in the honeynet.

The honeywall is a more complex gateway, it is a bridging fire-
wall with an intrusion detection system. It has to realize two
properties: The attacker should not be able to detect the exist-
ence of the honeywall and for the operator of the honeynet it is
an efficient analyzing, filtering and controlling tool.

From the attackers point of view the honeywall acts like a bridge
which means that the honeywall is nearly “invisible” to the at-
tacker. There is no decrement of the time-to-live (TTL) field in
the IP-Header, there is no packet routing (bridges operate on
layer two of the ISO/OSI model) and there are no MAC ad-
dresses to identify. Bridges usually use the spanning tree proto-

col to detect loops. This protocol is deactivated at the honeywall
during operation. The only way to recognize the bridge respec-
tively another system between the attacker and a honeypot is to
capture the network traffic on one of the honeypots. If the at-
tacker exceeds the outgoing connection limit or starts new at-
tacks which get dropped by the controlling component of the
honeywall he might wonder why his attacks do not reach the
destination system. However in this case the attacker has al-
ready gained access to a honeypot and left behind lots of infor-
mation about his attack. Even if he realizes that he has been
bluffed, his traces can be used to reconstruct the way the at-
tacker compromised the honeypot.

From the honeynet operators point of view the honeywall works
like an extended firewall. All of the data passing the honeywall
can be captured, and filtered. As the firewall component does not
analyze any content of packets an Intrusion Detection System
(IDS) and a controlling component is installed. The intrusion de-
tection system is realized with snort [snoa]. Snort controls the
traffic from the Internet to the honeypots. Known attacks (espe-
cially attacks on web servers) can be easily detected: snort com-
pares each packet with its internal database of signatures. A sig-
nature describes a kind of a pattern of a known attack. If a packet
matches one of these signatures an alert is generated or an ac-
tion can be triggered. To simplify the analysis self defined signa-
tures can be added. This feature has been used during the anal-
ysis phase to separate data noise from interesting traffic and new
attacks. Data noise in this case is traffic which is already known
and analyzed, e.g. probes which can be seen regularly, known
mass attack-attempts from certain sources or senseless attacks
like testing Windows IIS exploits on a Linux honeypot.

Snort_inline [snob] is a modified version of snort. It is intended
as a protection for foreign hosts. It must be prevented that a
honeypot is used as a platform for further attacks on other sys-
tems in the Internet. Therefore the firewall forwards outgoing
packets from a honeypot to snort_inline (via the queue target of
iptables [ipta]). The signatures are similar to snort and all rec-
ognized attacks from one of the honeypots are dropped by
snort_inline. Even if a worm (e.g. like Blaster or MS Slammer)
or another kind of “automatic” attack reaches one of the honey-
pots this will not harm other systems. One deficiency of snort is
that this kind of signature based IDS is unable to detect new at-
tacks which are not known and therefore not represented in the
signature database. In consequence a concept is necessary for
protecting the “rest of the world” from unknown attacks.

For that purpose a controlling component has been installed to
restrict the number of outgoing connections. The firewall which
counts all outgoing connections could be used as such a con-
trolling component on the honeywall. In our case each honey-
pot is allowed to have 15 outgoing connections per day (in each
case for TCP, UDP and ICMP). This number is quite restrictive
and the asymmetry between inbound and outbound traffic
bandwidth might give an attacker a hint that he is within an ho-
neynet. We are aware of that problem, however our most impor-
tant requirement is to protect foreign systems from damage
caused by our honeynet.

Besides this protection and control system a data capturing
concept has been implemented. Data capture is done on all
systems and on several layers:

1. All network traffic (inbound and outbound) will be dumped on
the honeywall. To log binary dumps of all packets tcpdump
has been used.

Fig. 1 Gen II honeynet with additional log server

190 PIK 27 (2004) 4

Reiser, Volker Honeynet Operation within the German Research Network – A Case Study

2. Firewall logfiles are more general than network dumps. Sev-
eral tools exist to analyze these files. Analyzing the tcpdump
log files is very time-consuming so it’s much easier to get an
overview of the events by firewall logfiles and select the most
interesting binary dumps with this information.

3. A mechanism to dump attacker’s keystrokes on each honey-
pot is required. Only with shell inputs the attacker’s ap-
proach could be analyzed. Members of the Honeynet
Project developed some tools to dump the keystrokes: for
Windows platforms exist a tool called ComLog [com] on Unix
systems Sebek [seb] is used. This tool is a modified rootkit
based on the Adore rootkit [ado]. It forwards keystrokes and
even SSH connections to a specified host. In this case these
messages are forwarded to the honeywall. The messages
can’t be recognized by the attacker because Sebek puts the
data directly to the network device driver and not via the
socket interface and the TCP/IP stack of the kernel [Mc03].
The attacker does not see any suspicious network connec-
tions. Even if he puts the network interface in promiscuous
mode he is not able to see related outgoing packets.

4. On each honeypot the local logfile entries are forwarded to a
central log server. This prevents from modifications of local
logs concealing the attacker if a honeypot has been taken
over. To ensure the forwarding to the log server and to cam-
ouflage forwarding a second syslog daemon (with a hidden
configuration file) is installed and configured on the Linux
honeypot. The Windows eventlog is forwarded with Eventlog
to syslog [eve] to this log server.

Especially for forwarding of local logs a central log server is
needed. The first idea was to place it together with the honey-
pots within the honeynet, but in this configuration the log server
becomes another honeypot and might also be a potential aim
for an attack which is not intended. For this reason the honey-
wall is equipped with a fourth network interface card where the
log server is connected to.

The resulting architecture consists of a honeywall two honey-
pots (operating systems Windows 2000 and SuSE Linux 8.0)
which are connected to the honeywall (cf. Fig. 1). Two inter-
faces on the honeywall are used for inbound and outbound ho-
neynet traffic (eth0 and eth1), one is a dedicated management
interface to administrate the architecture remotely (eth2) and
the fourth is needed for the log server (eth3). The IP address of
the management interface is placed in a different and addition-
ally protected subnet which can not be reached directly from
the honeynet. The log interface is protected by the firewall. The
Windows honeypot is installed without any Service Packs or
patches for IIS or Windows. On the Linux honeypot a default in-
stallation with X environment (also without any patches) was
chosen.

The honeypots must be configured in a way that attackers
should not notice the existence of the honeynet and the honey-
pots must be as interesting that they will be selected as a target
for an attack. For this reason several services are set up and
“attractive” names for the systems must be found to suggest
productive systems. One honeypot is named internal.lrz-
muenchen.de to indicate a host where confidential information
is stored. The other one got the name tivoli.lrz-muenchen.de to
pretend a running network management host.

The following services are configured:

– Web servers: On both honeypots are web servers installed,
an Internet Information Server (IIS) on the Windows honey-

pot, which is included with Microsoft Windows 2000 Profes-
sional. There are no web pages configured to pretend the in-
stallation was done by a careless administrator who forgot
this installed service. An Apache web server with PHP is
configured on the Linux honeypot. To generate content
every day two statistics of the daily traffic amount are gener-
ated by the accounting server of the LRZ and copied to the
Linux honeypot. A Perl script randomizes the IP-addresses
and stores the timestamp of the generation in a MySQL da-
tabase to implement a history function.

– FTP servers: Both honeypots have a FTP server installed.
Downloadable data (a Knoppix distribution) is available on
the Windows honeypot.

– SSH server: A SSH server is installed per default on the
Linux honeypot.

– Database server: The MySQL database which is used for
the generation of web pages is also directly accessible from
the Internet.

In addition, users with weak passwords have been created on
both honeypots to provoke password guessing and account
cracking. Table 1 summarizes the installed systems within the
honeynet.

Table 1 Systems building the honeynet

2.2 Alarming

Operation of a honeynet is a time consuming and critical task.
During operation it is necessary to keep the administrator in-
formed about the ongoing incidents in the honeynet. Therefore
different notification mechanisms were set up on the honeypots
and on the gateway. A notification via email was one way to in-
form the administrator.

In the honeynet a program called swatch [swa] watches the fire-
wall logfile. If a new entry was added to the logfile swatch sends
out an email to predefined addresses. To restrict the traffic and
prevent a mailbox overflow limits were set: Maximum ten emails
were sent within an hour. Additionally all entries within one hour
were counted. If the value of this counter exceeds more than 25
an additional email informed the administrator. Besides notifica-
tions via email Short Message Service (SMS) was used as a
further alarming mechanism which allows the administrator
greater mobility. As SMS is pretty expensive the notification via
SMS was highly restricted. A maximum of two SMS per hour
and only if outgoing connections were registered were sent.

2.3 Analysis Tools

During and after operation the collected data must be analyzed.
There are three main tasks: Logfile Analysis, binary packet an-
alyzing and investigation of the source of the attack and the
tools used. Some tools are suitable to do an offline analysis; es-

Name Function CPU/RAM Operating System

gway.lrz-
muenchen.de

Honeynet
sensor

PIII 500 MHz
128 MB RAM

SuSE Linux 8.3

tivoli.lrz-
muenchen.de

Honeypot I Pentium 200 MHz
256 MB RAM

Microsoft Windows
2000 (without any
Service Pack)

internal.lrz-
muenchen.de

Honeypot II Pentium 200 MHz
64 MB RAM

SuSE Linux 8.0
(default installation)

logging.lrz-
muenchen.de

Log server Pentium 200 MHz
128 MB RAM

SuSE Linux 8.3

PIK 27 (2004) 4 191

Honeynet Operation within the German Research Network – A Case Study Reiser, Volker

pecially web based tools are better for online analysis. The fol-
lowing tools were used:

– Logfile Analysis:
The honeynet administrator had to investigate snort logs,
firewall logs and honeypot logs. To have efficient searching
and querying possibilities all logfile entries were additionally
stored in a database (e.g., MySQL). To analyze snort logs
ACID [aci] was used, which is a PHP based web frontend for
snort. ACID allows, for example, to generate charts, summa-
rize alerts, select time frames or to take a look at the content
of selected packets. All logs during the whole operation time
of the honeynet have to be accessible, therefore ACID has to
cope with huge amounts of data (cf. Fig. 2). The perform-
ance of the hosting system is the determining factor for ACID
response times.
The firewall was implemented using Linux iptables. To eval-
uate the logfiles, iptables log, a PHP/MySQL based web
frontend was used [iptb]. This tool stores every entry of the
iptables logfile in a database. With the database approach
entries are easier to read, easier to group and easier to an-
alyze than the logfile itself.
Snort_inline [snob] logs all outgoing attacks and drops them.
These logs are important if a successful attack hit one of the
honeypots because it’s possible to gain information about
further propagation of the attack. Also ACID could be used
here.
This kind of analysis is very suitable for online analysis. If the
administrator gets informed about an incident he can easily
take a look at ACID or iptables log via a web browser.

– Binary packet analysis:
All inbound and outbound traffic was
dumped via tcpdump [tcp]. Packe-
tyzer [pac] and Ethereal [eth] are ef-
ficient and handy tools to cope with
tcpdump logfiles and support decod-
ing of several protocols. Packetyzer
(for Windows platforms only) is eas-
ier to handle and allows searching
for patterns within captured packets.
Ethereal is recommended for UNIX
platforms. Normally binary packet
analysis is done offline.

– Investigation of the source of the at-
tack:
One of the interesting questions dur-
ing an analysis is the source (sub-
network or domain) of an attack. An
IP address doesn’t contain any infor-
mation about the geographical posi-
tion of the system the attacker uses.
If nslookup returns a hostname of
the IP address a rough guess of the
location is possible. With traceroute
transit systems between the honey-
net and the attacker’s system might
be determined. Unfortunately tracer-
oute doesn’t determine the country
where the system is located. Visual-
route [vis] shows results of tracer-
oute on a world map using known lo-
cations of a lot of transit systems.
This approach is far from being per-
fect, however in quite a lot of cases it

reveals helpful and useful information. By these tools it is
only possible to determine the name and the rough location
of the attacker’s system. P0f [p0f] allows to identify the oper-
ating system of the attacker’s host by using a technique
called passive fingerprinting. Unlike active fingerprinting
where packets are sent to the foreign host, passive finger-
printing uses the passing network traffic and analyzes the
TCP options [Do].

3 RESULTS

The honeynet was in operation between July 15th and Septem-
ber 12th 2003. At no time existence of the new subnet was
propagated actively and no connections were made from the
honeynet to other sites, e.g. there was no mail, news or www
traffic. The honeynet was brought online at 8:55 am (GMT+1)
on July 15th and two minutes later the first successful attack –
a CodeRed2 on Microsoft IIS – hit the Windows honeypot. The
honeynet was frequented quite often enabling us to collect a
high amount of data (cf., Fig. 2).

Most attacks targeted the Windows systems. Regarding the
services being attacked (cf., Fig. 3) one can observe that more
than half of all attacks (47% in sum) tried to exploit one of the
plenty Windows NetBIOS vulnerabilities. The second biggest
group, 36% of the traffic, targeted Web servers. Incidents pre-
sented in the following can be classified in four main categories:
Attacks against web servers, worm attacks, spoofing attacks
and noise traffic.

0

1

10

100

1000

1
5

.0
7

.0
3

1
7

.0
7

.0
3

1
9

.0
7

.0
3

2
1

.0
7
.0

3

2
3
.0

7
.0

3

2
5
.0

7
.0

3

2
7

.0
7

.0
3

2
9

.0
7

.0
3

3
1

.0
7

.0
3

0
2
.0

8
.0

3

0
4
.0

8
.0

3

0
6

.0
8

.0
3

0
8

.0
8

.0
3

1
0

.0
8

.0
3

1
2
.0

8
.0

3

1
4
.0

8
.0

3

1
6
.0

8
.0

3

1
8

.0
8

.0
3

2
0

.0
8

.0
3

2
2

.0
8

.0
3

2
4
.0

8
.0

3

2
6
.0

8
.0

3

2
8

.0
8

.0
3

3
0

.0
8

.0
3

0
1

.0
9

.0
3

0
3
.0

9
.0

3

0
5
.0

9
.0

3

0
7
.0

9
.0

3

0
9

.0
9

.0
3

1
1

.0
9

.0
3

M
b

yt
e

 p
e

r
D

ay

57699 (Mysterium 55808)

8% (3134)

137 (NetBIOS)

2% (699)

1434 (MS-SQL)

2% (693)

1433 (MS-SQL)

20% (612)

Other

8% (3034)

445 (NetBIOS)

13% (5145)

57 (FX Scanner)

12% (357)

1740 (Encore)

15% (456)

1080 (SOCKS)

7% (227)

17300 (Kuang2)

7% (215)

4899 (RAdmin)

5% (153)

113 (Ident)

4% (114)

27374 (SubSeven)

9% (268)

21 (FTP)

8% (257)

135 (NetBIOS)

19% (7554)

(98% (7395) blocked)

139 (NetBIOS)

13% (5298)

80 (HTTP)

36% (14339)

554 (RealServer)

12% (375)

Fig. 2 Honeynet traffic

Fig. 3 Attacked ports (services) and frequency

192 PIK 27 (2004) 4

Reiser, Volker Honeynet Operation within the German Research Network – A Case Study

3.1 General Observations

At the start-up of the honeynet (July 15th), additional port filters
had already been enabled on the DFN-Gateway. This filters
block destination ports especially for avoiding wellknown and
easy exploitable bugs in different Windows NetBIOS system
(i.e. ports 135, 137, 138, 139, 445 and 593 are blocked; see
[lrz]). During the operation phase it was decided to open these
ports to observe all attacks. On August 12th these filters were

disabled for the honeynet which resulted
in a heavy rise of traffic per day (cf.,
Fig. 4).

3.2 Attacking Sources

An analysis on source addresses of
packets arriving at the honeynet re-
vealed interesting aspects regarding the
distribution of source domains (cf.,
Fig. 5). The transformation used were
reverse DNS lookups directly on the fire-
wall. The vast majority of attacks were
carried out from t-dialin.net. Addresses
of digital subscriber line (DSL) of “Deut-
sche Telekom” are bound to this do-
main. For the second largest group
(36%) a reverse DNS lookup (promptly
triggered by iptables) did not succeed,
giving that group the name “unknown”.
IP-spoofing or IP-addresses from pri-
vate networks may be possibly the rea-
son for this fact, although some IP-ad-
dresses simply might have no reverse
lookup defined by intention.

3.3 Script Kiddies

Classification of attackers is normally
based on their skills, their capability to
use (special and expensive) equipment
and their ability to spend time. Script kid-
dies can be classified as low skilled, us-
ing normal or low quality equipment but
having plenty of time to do probes. They
mostly use scripts and tools written by
more sophisticated crackers thus they
are called script kiddies.

Because of the following observations
we assume that plenty of our attacks are
caused by script kiddies:

A lot of attacks were web attacks using
tools which are available in the Internet
e.g. FX Scanner [fxs]. Most of these au-
tomated scanners can be detected due
to their individual and characteristic at-
tacking patterns. These tools are suited
for automated attacks over a wide range
of IP-addresses and subnets (brute-
force scans) without knowing anything
about existing systems and their vulner-
abilities.

Scans have been seen, trying to exploit a certain OS-depend-
ent bug, on both honeypots regardless the used operating sys-
tem. In Fig. 6 the number of attacks against port 80 and port
139 for both honeypots are shown. The lines are mostly “paral-
lel” for both systems. Even if a honeypot is not vulnerable the at-
tackers tried to probe both systems. This and further investiga-
tion of the captured data suggests heavy tool usage and broad
scans of Script-Kiddies. Often tools have been seen which
probe the kind of OS and than stop on systems which are not

Fig. 6 Number of attacks on ports 80 and 139 comparing both honeypots

0

25

50

75

100

125

150

175

200

225

250

1
5
.0

7
.0

3

1
7
.0

7
.0

3

1
9
.0

7
.0

3

2
1

.0
7

.0
3

2
3

.0
7

.0
3

2
5

.0
7
.0

3

2
7
.0

7
.0

3

2
9
.0

7
.0

3

3
1

.0
7

.0
3

0
2

.0
8

.0
3

0
4

.0
8

.0
3

0
6

.0
8
.0

3

0
8
.0

8
.0

3

1
0
.0

8
.0

3

1
2

.0
8

.0
3

1
4

.0
8

.0
3

1
6

.0
8

.0
3

1
8
.0

8
.0

3

2
0
.0

8
.0

3

2
2
.0

8
.0

3

2
4

.0
8

.0
3

2
6

.0
8

.0
3

2
8

.0
8

.0
3

3
0
.0

8
.0

3

0
1
.0

9
.0

3

0
3

.0
9

.0
3

0
5

.0
9

.0
3

0
7

.0
9

.0
3

0
9

.0
9

.0
3

1
1
.0

9
.0

3

Sum Different IP-addresses (Windows honeypot) Different IP-addresses (Linux honeypot)

t-dialin.net

40%

unknown

36%

rr.com

1%
ne.jp

1%

wanadoo.fr

1%

verizon.net

1%

bezeqint.net

5%

mchsi.com

4%

lrz-muenchen.de

3%

cistron.nl

1%

hinet.net

1%
qwest.net

1%

aol.com

1%

hispeed.ch

2%

Other

10%

bbtec.net

1%

swbell.net

1%

1

10

100

1000

10000

1
5

.0
7

.2
0

0
3

1
7

.0
7

.2
0

0
3

1
9

.0
7

.2
0

0
3

2
1

.0
7

.2
0

0
3

2
3

.0
7

.2
0

0
3

2
5

.0
7

.2
0

0
3

2
7

.0
7

.2
0

0
3

2
9

.0
7

.2
0

0
3

3
1

.0
7

.2
0

0
3

0
2

.0
8

.2
0

0
3

0
4

.0
8

.2
0

0
3

0
6

.0
8

.2
0

0
3

0
8

.0
8

.2
0

0
3

1
0

.0
8

.2
0

0
3

1
2

.0
8

.2
0

0
3

1
4

.0
8

.2
0

0
3

1
6

.0
8

.2
0

0
3

1
8

.0
8

.2
0

0
3

2
0

.0
8

.2
0

0
3

2
2

.0
8

.2
0

0
3

2
4

.0
8

.2
0

0
3

2
6

.0
8

.2
0

0
3

2
8

.0
8

.2
0

0
3

3
0

.0
8

.2
0

0
3

0
1

.0
9

.2
0

0
3

0
3

.0
9

.2
0

0
3

0
5

.0
9

.2
0

0
3

0
7

.0
9

.2
0

0
3

0
9

.0
9

.2
0

0
3

1
1

.0
9

.2
0

0
3

Linux, Port 80 Windows, Port 80 Linux, Port 139 Windows, Port 139

Fig. 4 Number of different registered IP-addresses per day

Fig. 5 Distribution of DNS domains (more than 250 incoming connections)

PIK 27 (2004) 4 193

Honeynet Operation within the German Research Network – A Case Study Reiser, Volker

vulnerable. This behavior explains the heavy differences in the
number of attacks regarding both honeypots.

3.4 Web attacks

Web servers (especially Microsoft IIS based ones) frequently
become victims of worm code because of plenty and well
known (but mostly unfixed) bugs in the software, e.g. vulnerabil-
ity to buffer overflows.

The IIS webservers in our honeynet was successfully hit by an
attack identified as Code Red II [dfn] only two minutes after be-
ing online. Even on the Linux honeypot, this attack was recog-
nized eight times during the two month of operation. This fact
raises the assumption that script kiddies are randomly trying to
attack systems without determining the type of the running web
server software in advance.

Some attackers tried to harm the web serv-
ers by buffer overflow attacks sending large
HTML requests. In most cases the request
length was 4096 characters.

3.5 Worm attacks

During the honeynet’s operation time the
Blaster worm (also known as Lovsan or
W32Blaster [cer]) spread out over the
globe. Its first appearance at the honeynet
was recognized on August 11th at 10:56
pm. A client within the Munich Research
Network (MWN) – most likely a notebook-
sent requests to port 135 over the whole
network, also hitting the Windows honey-
pot. Further dissemination of the worm was circumvented by
snort_inline blocking outgoing TFTP request. Such a connec-
tion would have been necessary for the worm to retrieve a file
called msblaster.exe which was needed to spread further.

The worm’s impact on the Windows honeypot was to kill the re-
mote procedure call subsystem (RPC), causing messages in
the eventlog (one approximately every 2 minutes). The system
was restored to a clean state by rebooting. Finally, on August
12th at 12:30 am a new rule for dropping requests to port 135/
TCP had to be added to the honeywall, as at that time every two
minutes the Windows honeypot was hit by a new attack.

On August 20th a variant of the Blaster worm (GaobotAA) [sym]
hit the Windows honeypot. This worm also uses the RPC vul-
nerability but it connects via ports 139 and 445. The execution
of the worm code (a file called winhlpp32.exe (about 58 KB)
was dropped in %WindDir%\system32) inducing a connection
to the worm’s source system on destination port 22226 or
22227. Via that connection data could be exchanged. However
GaobotAA was not able to download code because of the
former mentioned new blocking rule for port 135. After Septem-
ber 7th no more attacks of this worm were recognized.

3.6 DoS-Attacks

Between August 26th and September 12th nameservers of dif-
ferent providers in the USA probably became victims of denial
of service (DoS) attacks. The queries’ source address was set

to one of the honeypots’ IP-address, the destination port was
53 or 80. The hosts replied to the given IP-address sending re-
sponse packets with set SYN/ACK-Flag. The honeypots itself
replied with a RST-Flag because the source port of the original
query was 1740 and this port was closed by default. The hon-
eypots received only the spoofed answers and were not among
the intended victims.

3.7 Stumbler/”Mysterium figuref5808”

Since the beginning of operation, packets with a very high win-
dow size were recognized only on the Linux honeypot. The win-
dow size was set to 55808 and destination port was always set
to 57669. Intrusec [int] and ISS [iss] called the causing trojan
“Stumbler” and investigated these packets. The characteristic
of Stumbler is its window size and a spoofed source IP-ad-
dresses. The trend of this activity is shown in Fig. 7.

3.8 ”Noise”

Lots of connection requests were registered which tried to set
up a connection to known trojan ports like Skydance respec-
tively IRC (Port 4000), RAdmin (Port 4899), NetBus (Port
12345), Kuang 2 (Port 17300) and SubSeven (Port 27374).
None of these ports were in listen state so all requests have
been confirmed with RST. Nearly the same number of requests
were noticed on both honeypots. This is also evidence that
script kiddies tried to find vulnerable systems by doing random
scans. The same situation showed up with the classic proxy
ports (3128, 8080) and the SOCKS port (1080).

4 LESSONS LEARNED AND FUTURE WORK

This work showed that computer systems which are placed in
the Internet without publishing their existence are under attack
extremely fast. The honeynet got online and only two minutes
later the first attack took place. “Unfortunately” no “real” or
“clever” hostile take-over happened; neither to windows nor to
linux. Nevertheless, it was very interesting to watch and ana-
lyze the ongoing events in the honeynet, especially the propa-
gation of the Blaster worm.

The honeynet project presents the results and traces of clever
attacks. However our experience was that such attacks are
quite seldom. This implies that more than 90% of the attacks
can be defended quite easily by applying a patch for vulnerable
software. The Windows platform was the favorite target of our

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1
5
.0

7
.0

3

1
7
.0

7
.0

3

1
9
.0

7
.0

3

2
1

.0
7

.0
3

2
3

.0
7

.0
3

2
5

.0
7

.0
3

2
7

.0
7

.0
3

2
9

.0
7

.0
3

3
1
.0

7
.0

3

0
2
.0

8
.0

3

0
4
.0

8
.0

3

0
6

.0
8

.0
3

0
8

.0
8

.0
3

1
0

.0
8

.0
3

1
2

.0
8

.0
3

1
4

.0
8

.0
3

1
6
.0

8
.0

3

1
8
.0

8
.0

3

2
0
.0

8
.0

3

2
2

.0
8

.0
3

2
4

.0
8

.0
3

2
6

.0
8

.0
3

2
8

.0
8

.0
3

3
0

.0
8

.0
3

0
1

.0
9
.0

3

0
3
.0

9
.0

3

0
5
.0

9
.0

3

0
7
.0

9
.0

3

0
9

.0
9

.0
3

1
1

.0
9

.0
3

Fig. 7 Received Packets per day with window size 55808

194 PIK 27 (2004) 4

Reiser, Volker Honeynet Operation within the German Research Network – A Case Study

attackers, 69% of the attacks aim at this platform. On the Win-
dows honeypot one third of all connections tried to attack the
Web server. On the Linux honeypot however we could not de-
tect any serious or successful attack.

A lot of our attackers can be categorized as Script-Kiddies. We
saw plenty of automated attacks using tools which are widely
spread within the Internet as well as brute-force scans without
knowing anything about existing systems and their vulnerabili-
ties. Scans have been seen, trying to exploit a certain OS-de-
pendent bug, on both honeypots regardless the used operating
system. Another big group of unintentional “attackers” became
infected by a worm or virus, which started to spread out and hit
the honeynet casually.

Regarding the sources of the attacks: More than 40% could be
assigned to systems which use the Deutsche Telekom as ISP
(based on the IP-addresses and domain names). For the at-
tacker such a big provider might be used as a kind of “ano-
nymizer”. Each dial in results in a changed IP address. Without
judicial authorization it is nearly impossible to find further infor-
mation about the “real” source of the attack.

To sum it up: Most attackers are low skilled, the favorite target
of attacks was Windows especially the IIS. In most cases the
security level could be improved quite easily. A firewall blocking
services which are a cinch to exploit and a patch management
which operates continuously, consequently and rapidly are the
two most important building blocks for higher security.

Deploying a honeynet the way described here and especially its
operation requires a lot of time (supervisioning and analyzing
the collected data) and a lot of knowledge about operating sys-
tems. However, a honeynet can give hints to ongoing mass at-
tacks and very important information about propagation and ef-
fects of such attacks (e.g. worms). A honeynet can slow down
an attack. It shows which systems used in the production net-
work are mostly attacked and which services are preferred.
These insights can influence the security policy of an organiza-
tion. Honeynets are very flexible and can be deployed for a mul-
tiplicity of scenarios.

During the operation of this work several new ideas were devel-
oped to enhance and achieve new insights e.g. how honeynets
can help to fight spam. Therefore faked open proxies (e.g. Bub-
blegum proxypot [pro]) are configured which pretend to ano-
nymize the spammers’ data but this data is captured. A possible
way to fight relay spam with a special sendmail configuration is
pointed out in [fig].

We are interested to compare a virtual honeynet (Honeyd
[hona]) with a dedicated system. In the virtual honeynet the
honeypots are not represented as physical hosts but emulated
on a single host.

A honeynet might also be used as an Intrusion Response Sys-
tem (IRS) or even as an Intrusion Prevention System (IPS). De-
tection of an attack can be coupled with active defense opera-
tions (e.g., closing ports or filtering certain sources). We are
aware that this can be double-edged sword. However defending
against extremely fast automatic attacks only an automatic de-
fense system may help.

Acknowledgment

The authors wish to thank the members of the Munich Network
Management (MNM) Team for helpful discussions and valuable
comments on previous versions of the paper. The MNM Team
directed by Prof. Dr. Heinz-Gerd Hegering is a group of re-
searchers of the University of Munich, the Munich University of
Technology, and the Leibniz Supercomputing Center of the Ba-
varian Academy of Sciences. The web server of the MNM Team
is located at http://wwwmnmteam.informatik.uni-muenchen.de.

5 REFERENCES

[aci] Danyliw, R.: Analysis Console for Intrusion Databases (ACID).
http://acidlab.sourceforge.net/.

[ado] Team-Teso: Adore rootkit. http://packetstormsecurity.nl/groups/
teso/adore-0.39b4.tgz.

[cer] Dougherty, C.; Havrilla, J.; Hernan, S.; Lindner, M.: CERT Advi-
sory CA-2003-20 W32/Blaster worm. August 14, 2003, http://
www.cert.org/advisories/CA-2003-20.html.

[com] Floydman: ComLog.pl, a WIN32 command prompt logger. August
13, 2002, http://www.geocities.com/floydian_99/comlog.html.

[dfn] Thorbrügge, M.: Code Red2 Analyse und Gegenmaßnahmen. 35.
DFN-Betriebstagung 22.11. – 23.11.2001; http://www.dfn-cert.de/
dfn/bt/2001/bt-2001-codered.pdf.

[Do] Doyle, B.: Passive Fingerprinting Utilizing the Telnet Protocol Ne-
gotiation data. The SANS Institute; http://www.sans.org/re-
sources/idfaq/fingerp_telnet.php.

[eth] Combs, G. et. Al.: Ethereal. http://www.ethereal.com/.
[eve] Smith, C.: Eventlog to Syslog Utility. Purdue University; https://en-

gineering.purdue.edu/ECN/Resources/Documents/UNIX/evtsys.
[fig] Fighting Relay Spam the Honeypot Way. 2002; http://www.track-

ing-hackers.com/solutions/sendmail.html.
[fxs] FX-Scanner. http://www.egocrew.de/port.php.
[HAN99] Hegering, H.-G.; Abeck, S.; Neumair, B.: Integrated Management

of Networked Systems – Concepts, Architectures and their Oper-
ational Application. Morgan Kaufmann Publishers, ISBN 1-55860-
571-1. January 1999. 651 p.

[Ho01] Honeynet Project (Eds.): Know Your Enemy: Revealing the Secu-
rity Tools, Tactics, and Motives of the Blackhat Community. Addi-
son-Wesley. 2001.

[hona] Provos, N.: Developments of the Honeyd Virtual Honeypot. http://
www.honeyd.org.

[Honb] Honeynet Project (Eds.): The Honeynet Project. www.honey-
net.org.

[Honc] Honeynet Project (Eds.): The Honeynet Project: Frequently Asked
Questions. http://www.honeynet.org/misc/faq.html.

[int] Intrusec: Intrusec Alert: 55808 Trojan Analysis. June 19, 2003.
http://www.intrusec.com/55808.html.

[ipta] Welte, H.: The netfilter/iptables Project. http://www.netfilter.org/.
[iptb] Garcia, G.: IPTables log analyzer. http://www.gege.org/iptables/.
[iss] Internet Security Systems Security Alert: “Stumbler” Distributed

Stealth Scanning Network. June 2003. http://www.iss.net/issEn/
delivery/xforce/alertdetail.jsp?oid=22441.

[lrz] Leibniz Rechenzentrum: Einschränkungen und Regeln im Netzbe-
trieb. http://www.lrz-muenchen.de/services/netz/einschraenkung/.

[Mc03] McCarty, B.: The Honeynet Arms Race. IEEE Security and Pri-
vacy. 1 (6). December 2003.

[p0f] Zalewski, M.: P0f. http://lcamtuf.coredump.cx/p0f.shtml.
[pac] Network Chemistry: Packetyzer – Packet Analyzer for Windows.

http://www.networkchemistry.com/products/packetyzer/.
[pro] Proxypot Project: Bubblegum proxypot. http://www.proxypot.org.
[seb] Honeynet Project (Eds.): Know Your Enemy: Sebek2. November

2003. http://www.honeynet.org/papers/sebek.pdf.
[snoa] Caswell, B.; Roesch, M.: Snort – The Open Source Network Intru-

sion Detection System. http://www.snort.org.
[snob] McMillen, R.: Snort_inline. http://snort-inline. sourceforge.net
[Sp03] Spitzner, L.: The Honeynet Project: Trapping the Hackers. IEEE

Security and Privacy. 1 (2). March 2003.
[swa] Swatch: The Simple WATCHer of Logfiles. http://swatch.source-

forge.net/.
[sym] Symantec: Symantec security response: W32.HLLW.Gaobot.AA.

August 21, 2003. http://securityresponse.symantec.com/avcenter/
venc/data/w32.hllw.gaobot.aa.html.

[tcp] TCPDUMP public repository – tcpdump/libpcap. http://www.tcp-
dump.org/.

[vis] Visualware: Visualroute IP Tracer. http://www.visualroute.com/.

