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Abstract
Nowadays, companies of any size rely on their IT–infrastructure since it provides connectivity to the outside
world. Services like firewalls, being positioned between the own domain and a foreign one, form a premises
for higher level services. Therefore, such gateway services must be considered as especially mission–
critical. While there exist high availability solutions for special service types, a generic solution which can
be applied to arbitrary gateway services, especially for smaller sized scenarios, is missing.
Fault tolerance in terms of high availability is addressed by this paper through the concept of redundancy.
Presenting a generic state machine for monitoring and takeover processes, it leads to an universally applica-
ble logic. The state machine’s basis is derived from requirements posed by the generic scenario of gateway
services. Furthermore, our solution’s practical applicability is shown by presenting an implementation
carried out for a Linux–based firewall system.
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1 Introduction
Today, IT–equipment and provided services represent mission–critical parts in a company’s business in-
frastructure. Serving as a fundament for advanced services, this especially applies to those involved in
connectivity to foreign domains. Against the background of increasing security threats even small and
mid–range companies cannot abstain from complex gateway services like firewalls and application–level
proxies. Hence, for such services, fault tolerance in terms of availability is gaining rising importance in
environments of any size. While large companies already afford adequate solutions, in smaller scenarios
the problem is often disregarded.

Especially in lower budget environments, nowadays off–the–shelf hard– and software components (like
industry–standard PCs running multi–purpose operating systems like Solaris, Linux or Windows) are used
to realize gateway services. But with a rising number of mission–critical components the probability of
service failures increases equally. As a common and widespread solution, this problem can be solved
by hot–standby redundancy, which means to supply additional systems with the ability to immediately
take over service provisioning in case of a failure. While this approach is often feasible from a financial
viewpoint, it poses problems in management: To realize seamless service availability, failures have to
be detected and service provisioning has to be shifted, preferable automatically, to a different system.
Furthermore service functionality has to be replicated on the redundant systems.

As gateway services like firewalls and application–level proxies often are not dependent on a persistent
state, service replication is fairly straightforward by spreading static configuration data among systems in
the redundancy cluster. Therefore this paper concentrates on failure detection and hot service takeover. It
presents a reasonable generic solution for realizing fault tolerance by redundant systems, particularly for
smaller environments based on off–the–shelf hard– and software components. For being universally appli-
cable, the whole logic regarding the processes of monitoring and takeover is depicted by a state machine.
Thereby an eye is kept on being directly implementable and easily customizable for concrete services with
minimal additional effort.

In the following section an abstracted scenario is used to derive requirements for the solution. Af-
terwards Section 3 presents related work and compares it to these requirements. Section 4 presents our
solution and the following Section 5 shows an implementation of our solution for a packet filtering fire-
wall. Finally Section 6 concludes the paper und indicates further work.
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2 Scenario Analysis and Requirements for a Generic Solution
For developing a widely applicable solution an abstract scenario is introduced in this section. By means
of this scenario, important terms will be defined and requirements for a generic solution will be identified
afterwards.

 Gateway Service

Service Domain

Foreign Domain

U
ps

tr
ea

m
 S

id
e

D
ow

ns
tr

ea
m

 S
id

e

Reference Point

Client Client...

Client Client...

Uplink

Downlink

Reference Point

Figure 1: Logical View on
Abstract Scenario

Fig. 1 shows a logical view of our abstract scenario, which is divided into
two domains. One provides the gateway service that is linked by a commu-
nication network both inside the own domain (downstream side) and to the
foreign domain (upstream side). The particular network links ending at the
reference points are referred as uplink and downlink. Systems accessing
service functionality from either sides are called clients. A gateway service
in our context now is defined as a service being linked to different domains
by discrete network links, while being completely located inside a single do-
main. In this scenario it is furthermore assumed that the communication pro-
tocol used to access the service is not genuinely capable of load balancing,
otherwise fault–tolerance would already be present by service redundancy via
the communication protocol. Examples for a scenario in our sense are IP edge
routers, firewalls or application–proxies without a dynamic routing protocol.

Now that the system hosting the service is identified as a classical single–
point–of–failure, adding extra systems to the scenario introduces fault–
tolerance in terms of high availability (Fig. 2). The system which currently
provides the service is called master system. The additional hosts, which are ready to take over service
provisioning are called backup systems. Having backup systems raises the question how failure detection
and handover in the case of a failure could be realized. For specifying a universally applicable answer, we
have identified specific requirements by performing an in–depth analysis of a variety of concrete scenarios:
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Figure 2: Logical View with Re-
dundant Systems

Separation of logic and actions: In designing failover solutions two
major layers of abstraction can be differentiated. The logic is respon-
sible of steering and coordinating the processes during monitoring and
handover. In contrast, actions describe the execution of concrete activi-
ties. For gaining a generic solution, it is necessary to separate the logic
(which is identical for any service the solution is designed for) from ser-
vice specific actions.

Distinction of service monitoring from communication link moni-
toring: To design a flexible solution applicable to a wide range of
scenarios in a modular way, monitoring of service functionality must be
strictly separated from checking of communication links. This enables
partial reuse of realizations, when only the service type changes but the
communication technology remains the same, and vice versa.

Service monitoring from client’s perspective: In the sense of cus-
tomer orientation, service monitoring must not only be carried out lo-
cally [HaRa 01]. From a client’s point of view the service is provided
properly when service functionality and communication links are avail-
able. Therefore, in addition to testing service functionality itself, monitoring also must include service
accessibility through the communication links. In case of gateway services both links to the upstream and
downstream side must be taken into account.

Independence from specific services and communication technology: A generic solution must neither
make any assumption on the specific service nor the communication technology being used. Particularly
in smaller scenarios, where off–the–shelf communication services (like IP mass–services) are deployed,
special management and communication protocols are neither available by default nor can they be ordered
optionally.

Independence from technology–specific communication primitives: For gaining wide applicability,
special communication primitives like multicasting must not be used for the purpose of coordination the
takeover. Only unicast communication can be assumed to be available in general.



Minimal active links to foreign domain: Regarding security, connections to foreign domains should
considered to be harmful. Therefore the number of active links to the foreign domain has to be kept to a
minimum. This implies that upstream links should be kept down unless they are absolutely needed.

No need for extra hardware: For gaining flexibility in the usage of machines and achieving a short setup
time of backup hosts, no hardware should be needed in addition to the one required to deliver the service
anyway.

The next section will explain why existing solutions to the given problem need to be rethought and
afterwards our own solution will be presented.

3 Related Work
In the field of fault–tolerance and high availability a great amount of valuable work has been published. A
whole class of solutions deals with specific services and is mostly aimed for large–scale scenarios. In addi-
tion, they use specific properties and address special requirements of the particular service type, especially
dealing with questions of service replication. High availability solutions for database management systems
are a typical example. As they are aiming for a specific scenario, they are not considered further.

Another class of fault tolerance solutions proposes special communication protocols, like Stream Con-
trol Transmission Protocol [RFC 2960], to manage the takeover process. As these are specific protocols,
the requirement of independence from specific communication architectures is violated.

The IETF Working Group for Virtual Router Redundancy Protocol (VRRP) [IETFWG-VRRP] has
developed a protocol [RFC 2338, HMHH+ 02] delivering hot–standby redundancy for routing devices.
Major limitations regarding our requirements result from being specific in communication technologies: On
layer 2 it assumes IEEE 802, on layer 3 IPv4 is required. This limitation in generality is underlined by the
fact that even for IPv6 a new revision [Hind 02] had to be prepared. In specifying a state machine consisting
of only three states, specification is imprecise. Nevertheless VRRP was a good source of inspiration in
general. Furthermore in [RFC 2787] it addresses management explicitely.

Closely related to VRRP is the Cisco Hot Standby Router Protocol (HSRP) [RFC 2281]. It is also
designed specifically for routing services. In addition to the prerequisites of VRRP, it requires a dynamic
routing protocol on the upstream side. Although not being directly applicable as a solution, it served as a
valuable inspiration, namely its in–detailed specified state machine.

Many solutions try to overcome availability limitations by adding load balancers, whose purpose is to
spread service requests to a cluster of hosts. While this approach remedies shortcomings on service hosting
machines, it simply shifts the single–point–of–failure problem to the load balancer itself. Consequently
they don’t solve the problem, but the load balancing service as a gateway service itself is subject for
redundancy and considerations made so far apply for it.

The IETF Working Group for Reliable Server Pooling (rserpool) [IETFWG-RSP] proposes an architec-
ture [TXSS+ 02] which can be used to provide high availability for various services. In fact two different
solutions are suggested. The one introduces a special protocol [SXS 02] for servers and clients and there-
fore violates the requirement of being independent from specific communication architectures. The other
solution suggests to install a proxy which is equivalent to a load balancer. Hence, this solution also must be
disregarded. Anyway, other documents of the working group helped in developing our own solution. For
identifying requirements [RFC 3237] made suggestions and [LSXS 02] contributes by reviewing further
related work.

Finally two prominent projects of the open source community should also be reviewed: High-
Availability Linux (HA-Linux) Project [HALP] and Linux Virtual Server (LVS) Project [LVS, Zhan 00].
Both projects’ goal is to provide high availability to the Linux operating system by redundancy in spec-
ifying clustering solutions. In the context of HA-Linux the takeover daemon “heartbeat” [Robe 00] was
developed. It fully meets the requirement of independence from concrete communication technologies and
does not require extra communication channels for message and heartbeat signaling. Unfortunately it is
strictly limited to a two host setup (one master / one backup) and does not include any options for service
monitoring facilities at all. As LVS’s failover daemon “keepalived” [Cass 01] implements VRRP, it suffers
directly from VRRP’s limitations. Furthermore, LVS focuses in general on services solely connected to the
domain it is hosted in and therefore does not address problems related to gateway services.

4 Generic State Machine
In this chapter our solution to the problem of designing generic redundancy for gateway services is pre-
sented. It starts with showing a design overview (Sec. 4.1), followed by an in–detail explanation of our



generic state machine (Sec. 4.2). Section 4.3 explains messages and timers used in the state machine. Af-
terwards customizable local procedures for applying the generic state machine to concrete scenarios are
presented in Section 4.4. Finally, Section 4.5 summarizes our design.

4.1 Design Overview
The overall goal of our solution is to keep the gateway service operational in case of a failure. This is
realized by setting up a redundancy cluster, where one single host acts as the master and an arbitrary
number of hosts are serving as hot–standby backups, ready to immediately take over service provisioning
in case of a failure (see Fig.2 in Sec 2). Hereby the following basic failure types are considered:

� Failure of service functionality of any cause on the current master host (e.g. internal service errors,
hardware failures, ...)

� Failures in communication links of any cause on any machine in the redundancy cluster, either on
upstream and downstream side.

Our design incorporates three main components: a local state machine executed on each host in the
redundancy cluster, message exchange between hosts and a status table which lists all hosts in the redun-
dancy cluster.

The state machine is responsible for monitoring service operation and coordinates service takeover in
case of a failure. Customizable procedures are used to describe the necessary activities. They are noted as
actions inside the states and are executed sequentially on entry into a state.

Message exchange: For coordinating a service takeover, messages are exchanged between hosts in the
cluster and thereby our design assures that exactly one master host is present in the whole cluster. As the
following explanations will show, the state machine’s design is robust against loss of messages and assures
that communication is operational before a backup becomes the new master host.

Status table: To designate which machine is to become the new master host, the status table is used. It
priorizes all hosts in the redundancy cluster in the manner of a total order, with the current master owning
the highest priority. All hosts in the cluster are listed in this status table together with their current priority.
Every host keeps a local copy of the table. Maintenance and distribution of the table is managed by the
state machine, including new hosts being dynamically added to the cluster and others removed from it.

Furthermore, our solution relies on the following reasonable assumptions:

� State machine is implemented as specified and executed correctly as long as hardware is operational.
� Monitoring and testing procedures deliver positive–definite results. This means, whereas an erro-

neous negative result is acceptable (claiming that the object under test has failed, while it is still
operational), a positive result must be reliably valid.

In the following sections our generic hot–failover state machine is explained in detail.

4.2 Hot–Failover State Machine
The UML statechart diagram in Fig. 3 shows the Main state machine. It gives an overview over the state
machine as it is executed on each host participating in the redundancy cluster for a certain service.
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Figure 3: State Diagram of Main State Machine

The process starts with an initialization phase (init).
Next, based on the initial priority received during init
main state, a decision on the initial state of the host is
taken (decide). When the host’s own priority is lower
than the one of the current master host, backup main
state is entered. In case of the own priority being equal
to the current master priority this host is the active mas-
ter, consequently service main state is the next one. If
the current master’s priority is lower than the one of this
host, a service takeover is necessary. This is accom-
plished by moving to handover main state.

In case a service takeover being necessary, handover
main state is entered. If the takeover succeeds, service
main state is reached, else the machine falls back to
backup. When a host gives up service main state for



any reason it falls back to the initial decision process. Additionally, from each main state a transition to the
final state is possible.

In the following sections each of the mentioned main states will be explained in detail by showing
sub–states inside and depicting conditions triggering transitions between the main states.

4.2.1 Init Main State
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Figure 4: State Diagram of Init Main State

Init main state is passed only once in the life–cycle
of the state machine and detects the initial priority of the
host.

Entering check service present state (Fig. 4) the
presence of a master host is detected by the customizable
procedure remoteSvcCheck() (see also Sec. 4.2.2).
When it succeeds a SVC CHECK message is sent. When
receiving a SVC CHECK REPLY message, the status ta-
ble is initialized by the message’s contents (see Sec. 4.3).
When no SVC CHECK REPLY message arrives the cycle
is restarted.

In case of an initial bootstrap of the redundancy clus-
ter, no master service will be detected. Therefore the
status table has to be initialized from a statically predefined initial table.

4.2.2 Backup Main State
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Figure 5: State Diagram of Backup Main State

The backup main state de-
scribes the behavior of a host act-
ing as a backup for the service, re-
maining in this state until a ser-
vice failure is detected. To detect
such a failure (fulfilling one of the
main requirements) an active ser-
vice monitoring from the client’s
perspective is performed here.

Entering in backup idle state
the SVC CHECK TIMER is started.
Being started on each entry, this
timer is responsible for trigger-
ing periodical remote checks of
the service. In case there is a
SVC CHECK TIMER alarm, the ser-
vice functionally is first checked
from the client’s point of view us-
ing remoteSvcCheck(). In case
of failure, backup main state is left
and handover main state is entered
(Fig. 3). On success, a local ser-
vice check on the master host is triggered by sending a SVC CHECK message. If a SVC CHECK REPLY
message with fault status is received or such a message does not arrive at all, the service is considered
to have failed and a takeover is initialized. When a success indicating SVC CHECK REPLY message was
received, in learn state the local status table is updated from the message’s data. Depending whether the
own priority in the status table is the highest, learn state is left. If it is the highest, this host is designated to
become the new master host and therefore a handover is necessary. Otherwise the system returns to backup
idle state and the so far described process restarts.

Both checking processes are interrupted immediately when either a DNSTR TAKEOVER,
SVC SHUTDOWN or SVC TAKEOVER message (see Sec. 4.2.3 and Sec. 4.2.4) is received. As they all indi-
cate a change of the master host, further service checking would be useless. In case of a SVC SHUTDOWN



or a SVC TAKEOVER message, the status table is updated in learn state and the above described decision
on the following state is taken.

4.2.3 Handover Main State
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Figure 6: State Diagram of Handover Main State

When the service monitoring proce-
dures in backup main state indicate a
service failure, a backup host needs to
become the new master host. As the
failure indication might not only be pro-
voked by a real service failure, but also
by a failure in the backup host’s connec-
tivity to the network, these both cases
have to be separated before the service
takeover finally can be completed. This
distinction is the main purpose of the
handover main state shown in Fig. 6.
Additionally the current master host is
informed about the ongoing takeover.

In handover start state the downlink
is checked by downlinkCheck() to
ensure communication to the other
hosts is functional. On success, in
handover downstream takeover state
a DNSTR TAKEOVER message is sent
to indicate the beginning takeover
to other hosts in the redundancy
cluster, especially to the master
host. The master may now reply a
DNSTR TAKEOVER DENY message
(see Sec. 4.2.4), leading to fall back
to backup main state. If none is
received, in handover uplink check
state, first the uplink is activated by
activateUplink() and gets tested by
uplinkCheck(). If it succeeds, both
links are proven to be functional. Therefore taking over the upstream is signaled to the other hosts by
sending a UPSTR TAKEOVER message in handover uplink takeover state. If the current master host raises
its veto by sending a UPSTR TAKEOVER DENY message (see Sec. 4.2.4), the uplink is shut down by
deactivateUplink() and the host remains in backup main state. Otherwise the takeover is completed
and service main state is reached.

Takeover is interrupted if either a DNSTR TAKEOVER, UPSTR TAKEOVER or SVC TAKEOVER mes-
sage with a higher priority than the own is received, since this indicates that another host is going to take
over the service. When any of the link checks fail, the host is considered to be inoperable for backup use
and the state machine quits.

4.2.4 Service Main State

A host being in service main state designates it as the master host on which the service currently is executed.
Furthermore it is responsible for maintaining the status table. To avoid inconsistencies it is changed only
on the master host. Besides, a local monitoring of the service is accomplished and on–demand checks are
carried out.

When entering service main state, first the status table is updated to reflect the new situation which is
announced to other hosts in the redundancy cluster by sending a SVC TAKEOVER message. Afterwards
the service is launched (activateService()) and then the takeover is made public to clients on both
interfaces (takeoverDownstream(), takeoverUpstream()). Before moving to service active state



the SELF CHECK TIMER is started. It is responsible for periodically triggering the self monitoring pro-
cess similar to SVC CHECK TIMER for remote monitoring in backup main state (see Sec. 4.2.2). When a
SELF CHECK TIMER alarm occurs, a full service check performed in service full check A state. Its sub–
states are described at the end of this section.
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Figure 7: State Diagram of Service Main State

Service full check
B state is entered
on arrival of a
DNSTR TAKEOVER
message from a host
with a lower priority
than the own. As this
indicates a takeover
attempt on the down-
stream side by a backup
host, a complete check
is performed. In case all
steps were successful,
the takeover is consid-
ered to be unnecessary
and consequently is
vetoed by replying a
DNSTR TAKEOVER -
DENY message. This
process is only executed
in case of a takeover
attempt by a lower
priorized host, as this
leaves the possibility
of direct takeovers by
new higher priorized
candidates entering the
redundancy cluster. A similar process starts for the upstream side in case of a UPSTR TAKEOVER message
arriving.

stop SELF_CHECK_TIMER
downlinkCheck()

downlink check

uplinkCheck()

uplink check

localSvcCheck()
start SELF_CHECK_TIMER

service check

[downlinkCheck() == success]
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failed
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Figure 8: State Diagram of Service Full
Check A�B�C Sub–States

As the master host is responsible for maintaining the
status table, for each host in the redundancy cluster a
SVC REQCHECK TIMER is present. An alarm of such a timer in-
dicates that no heartbeat was recognized from the associated host.
Therefore this host is considered to have left the redundancy cluster
and the status table is updated accordingly.

A simple service check is carried out by localSvcCheck() on
arrival of a SVC CHECK message from a backup host. As this also
indicates that this host is alive, it serves as a heartbeat signal. In
consequence, the associated SVC REQCHECK TIMER is reset. When
the incoming SVC CHECK message has been sent by a new host in
init main state (see Sec. 4.2.1), the new host is added to the status
table. The result of the test is sent back by a SVC CHECK REPLY
message.

Service main state may be left for several reasons. First, in case
of failure detection (leaving to shutdown of the system) and second,
when an explicit service shutdown is requested (returning to decide
state in Fig. 3). In both cases service main state is left carrying out
the same actions but with different succeeding states. A shutdown
might result from one of the full service check states being left in
failed state or a manual shutdown of the service. Explicit service
takeover is signaled by another host from entering service main
state, therefore it is detected by receiving a SVC TAKEOVER mes-
sage. Before leaving service main state, first the status table is updated and a SVC SHUTDOWN message



is sent to all hosts. Clients are informed on both interfaces by releaseDownstream() and release-
Upstream(). Finally the uplink and the service itself are shut down by deactivateUplink() and
deactivateService().

Service Full Check A�B�C Sub–States: Although the three service full check states have different pre-
ceding / succeeding states, they have the same internal behavior in common. Therefore they are all specified
in common in Fig. 8. First, in downlink check state the SELF CHECK TIMER is stopped and the downlink
is tested via the customizable procedure downlinkCheck(). On success the uplink check state is entered,
where the uplink is tested by uplinkCheck(). When the test was successful, too, the service is checked
locally using localSvcCheck(). If this test succeeds the whole subprocess was successful. In case any
of the checks failed, the subprocess is left immediately in failed state.

4.3 Messages and Timers
While semantics of messages exchanged between hosts in the redundancy cluster already became clear in
the previous sections, Table 1 specifies data carried with the messages, whether they are uni– or multicast,
the communication side they are exchanged on, and their principle source and destination. Note that al-
though some messages are multicast ones in principle, this does not imply that communication services
must be capable of true multicasting. As every host explicitly knows the other participants in the redun-
dancy cluster through its local status table, true multicasting can be replaced by multiple unicast messages.
Therefore the requirement of only having unicast communication primitives is not violated.

message data type side source destination

SVC CHECK own prio. UC DS BH MH
SVC CHECK REPLY status; UC DS MH host which prior sent

status table SVC CHECK
SVC SHUTDOWN status table MC DS MH all hosts in table
DNSTR TAKEOVER own prio. MC DS BH all hosts in table
DNSTR TAKEOVER DENY - UC DS MH host which prior sent

DNSTR TAKEOVER
UPSTR TAKEOVER own prio. MC US BH all hosts in table
UPSTR TAKEOVER DENY - UC US MH host which prior sent

UPSTR TAKEOVER
SVC TAKEOVER status table UC DS+ BH all hosts in table

US

UC=unicast MC=multicast; DS=downstream US=upstream; BH=backup host MH=master host

Table 1: Messages exchanged between hosts

To ensure proper operations regarding the logic of the distributed system, queuing of asynchronously
arriving messages is necessary to preserve them for processing. E. g. in service main state, while processing
a SVC CHECK from one backup host, another SVC CHECK message arriving from a different host must
not be lost. Otherwise the second host might be removed from the redundancy cluster as its associated
SVC REQCHECK TIMER might alarm, indicating that this backup host is not available anymore.

Table 2 shows a list containing the main state and the messages to queue there. It should be stressed that
this does not include messages which are awaited synchronously as an answer to a prior request message,
like the SVC CHECK / SVC CHECK REPLY pair in backup main state.

main state queued messages

backup DNSTR TAKEOVER, SVC SHUTDOWN, SVC TAKEOVER
handover DNSTR TAKEOVER, UPSTR TAKEOVER, SVC TAKEOVER
service DNSTR TAKEOVER, UPSTR TAKEOVER, SVC TAKEOVER, SVC CHECK

Table 2: Messages to be queued

For messages possibly triggering a direct reply, timeout values have to be specified. Assuming that
the roundtrip delay is some magnitudes smaller than the execution time of customizable monitoring proce-
dures, lower bounds for their timeout read as follows:
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Regarding local alarm timers, the values of SELF CHECK TIMER (see Sec. 4.2.4) and SVC CHECK TIMER
(see Sec. 4.2.2) directly influence how promptly a service failure is detected. Their concrete values de-
pend on complexity, load and duration of the respective checks and the local policy on acceptable service
downtime. Therefore they must be determined individually for the concrete service in its particiular en-
vironment. To avoid unnecessary load, SVC CHECK TIMER, which triggers remote monitoring in backup
main state, should be set indirect proportional to the backup hosts priority. Doing so, a lower ranking host
will check service functionality less often than the master’s direct successor. Additionally it should not be
smaller than SELF CHECK TIMER in any case.

4.4 Customizable Procedures
To adopt the generic state machine for a concrete service, several procedures are available for customiza-
tion. While the redundancy logic remains untouched and is given by the generic state machine as of
Section 4.2, only the customizable procedures are specific to a certain service.
Monitoring and Testing Procedures: The procedures showed in the following are all responsible for
monitoring the various parts of the gateway services environment. They all return a boolean status, indi-
cating whether the check was successful or not. All monitoring procedures must be implemented to deliver
positive–definite results, meaning that positive answers must be valid, whereas erroneous negative results
are acceptable. By specifying distinct procedures for service and communication monitoring an important
requirement from Section 2 is fulfilled.

The downlinkCheck() and uplinkCheck() procedures are used in several states in the generic state
machine. Their aim is to solely check network connectivity relative to respective reference points (Fig. 2).

In backup main state the remoteSvcCheck() procedure checks the services functionality from the
remote side. Checks should be implemented from a clients side of view. This means that tests should act
like a client, checking service functionality and connectivity as a whole.

In contrast localSvcCheck() solely is used to test the services functionality on the host currently
providing the service. Hence additional service–internal data can be taken into account leading to the
possibility of proactive monitoring.
(De–)Activation Procedures: The two pairs of (de–)activateUplink() and (de–) activateSer-
vice() are responsible for activating and deactivating the network interface on the uplink side and the
service itself. No monitoring/checking actions are carried out within these procedures
Client Related Procedures: To announce a change in the host providing the service to clients two
procedures, each for upstream and downstream, are available (takeoverDownstream(), takeoverUp-
stream(), releaseDownstream(), releaseUpstream()). The takeover procedures should imple-
ment actions necessary to inform clients of the fact that a new master host is starting service provisioning.
The release procedures can be used for activities towards clients necessary on shutdown of the service
functionality.

4.5 Summary and Fulfillment of Requirements
In the previous sections we presented a robust and sound solution for management of redundancy in terms
of high availability. Hereby, the requirements identified in Section 2 are fulfilled as follows.

The separation of logic from actions is accomplished by specifying the logic as a generic state machine
(Sec. 4.2), while actions are noted as customizable procedures (Sec. 4.4). Consequently the state machine
design makes no assumption whether a later implementation is done as an integrated part of a (new) service
application or a standalone addition to an already existing application. Section 5 gives an example for
implementing the state machine as additional component. Leaving concrete actions to be carried out in
customizable procedures, the requirement for independence from specific services and communication
techniques is also fulfilled.

Messages used to coordinate takeover — to ensure that only one single master host is present in the
redundancy cluster and to define a total priorization order of hosts — are exchanged on communication
links present already for service provisioning. Thus no extra heartbeat link is presumed.



Furthermore the requirement of having only a minimal number of active upstream links is fulfilled. Dur-
ing normal service operation, all messages between hosts are exchanged via the downstream side (Sec. 4.3)
and uplinks of a backup host are just activated shortly before becoming the master host (Sec. 4.2.3).

To gain service monitoring from the client’s perspective, a host serving as a backup system actively
tests the status of the service (Sec. 4.2.2). By this, monitoring of connectivity and service functionality
as a whole is achieved. On the other hand, to enable proactive actions, the active master host additionally
does local service monitoring (Sec. 4.2.4), taking internal conditions of the service into account. Espe-
cially in case of an integrated implementation, where internal data are more easily observable, monitoring
capabilities are substantially extended compared to external monitoring only.

By specifying different customizable procedures for service monitoring and communication link mon-
itoring the distinction of monitoring types is realized (Sec. 4.4).

Independence from technology–specific communication primitives are addressed in Section 4.3 and
Section 4.4.

5 Application to a Linux–based Firewall
Applying the generic state machine to solve the single point of failure problem induced by the Linux–
based packet filtering firewall of our institute´s infrastructure resulted in the implementation described in
this section.

Implementing the generic state machine for use in a concrete service consists of three main steps:

1. Implementing the state machine
2. Implementing the message communication mechanism according to the scenario’s specific circum-

stances
3. Implementing the customizable procedures

The following sections show how these steps were carried out in our scenario.

5.1 Universal IP–Service Daemon
Performing steps 1 and 2 from above lead to a universal application for IP–based services. It was imple-
mented in C as a background daemon on Linux. For message implementation simply UDP packets were
used with an additional symmetric encryption. All hosts in the redundancy cluster share the same key.
Configuration is done on file basis. The configuration files need to be distributed manually among the
hosts.

Knowing the fact that IP–communications is used, parts of step 3 also can be realized already. Trans-
parency to clients is solved by using a roving pair of IP–addresses, each one for up– and downstream side.
Therefore all hosts in the redundancy cluster own a host–specific pair of IP–addresses for message exchange
and testing in backup and handover state. In service state the roving pair of IP–addresses is additionally
bound to the interfaces (this capability is often referred as “single link multihoming” or “IP–aliasing”) by
takeoverDownstream() and takeoverUpstream(). Additionally, to announce the change of the host
which owns the roving IP–addresses, a broadcast ping on both sides is sent, giving clients an opportunity to
notice the change and re–adapt their IP / Layer-2 translation mechanism (e.g. change ARP table entries in
case of Ethernet). One of the main advantages of the roving IP–addresses scheme is that IP–related service
configuration remains independent of the actual host, permitting simple configuration replication among
backup hosts.

The downlinkCheck() is implemented as a broadcast ICMP ping on the downstream IP–network,
claiming the connection to be healthy when at least one foreign reply arrives. The upstream side is checked
in uplinkCheck() by sending an ICMP ping on the upstream interface to the next hop router.

Having only made the assumption of an IP–based infrastructure the pair of activateUplink() / de-
activateUplink() cannot be determined as they are specific for the underlying layer 2 technology. Their
implementation is delegated to external programs (e.g. shell scripts) configurable in the configuration file.
The same applies for service related checking procedures (remoteSvcCheck() and localSvcCheck())
and service (de–)activation ((de–)activateService()).

The next section will show how those delegated procedures were implemented for a firewall service.

5.2 Tailoring for Firewall
For use in our institute’s firewall scenario the above described daemon was enhanced by some shell scripts.
As Ethernet is used on the upstream side, the scripts for (de–)activateUplink() (un–)load the kernel



driver modules for the Ethernet–card, realizing a total link deadness on deactivation of the link. Addition-
ally IP–configuration of the interface is done here. Service activation is done by enabling IP forwarding,
adapting the routing table and setting up the firewall rules via iptables. Deactivation is done by the re-
spective inverse actions. Remote service checking in remoteSvcCheck() is done by an ICMP ping from
the downlink interface to the next hop router on the current firewall host’s upstream side. On the master
host localSvcCheck() is realized by comparing currently active filter rules to the expected ones.

6 Conclusion and Further Work
Services which are provided and connected to one domain, but also are linked to a foreign domain, so
called gateway services, demand special requirements to fault tolerance in terms of availability. As current
solutions are restricted to specific services and/or violate one of the requirements for gateway services, no
generic solution for high availability is available.

The introduced generic state machine gives a solution for any gateway services by separating moni-
toring and failover logic from individual actions specific for concrete services. Its applicability has been
proved by implementing a universal daemon for IP–based gateway services and its deployment for a Linux–
based firewall.

Moreover this paper could serve as a first starting point for standardization. By reusing the logic
described by the generic state machine in conjunction with an in–depth specification of the customizable
procedures for a concrete service type, a vendor–independent and interoperable failover mechanism for
this service type could be specified.

Although an applicable solution is provided, there is room for further improvements. First, security
considerations regarding authorization and authentication in message delivery between redundant hosts
will be specified at the level of the generic state machine. For this purpose [RFC 2338, HMHH+ 02] and
[Robe 00] will provide a valuable basis. By now message security topics are left to the responsibility of
a concrete implementation. Furthermore, to setup redundancy clusters where hosts serve as a backup for
multiple services, the generic state machine will be extended to incorporate the notion of a service type,
enabling to distinct between different services. Included are questions regarding load balancing and active
feedback of backup hosts to influence their priority ranking in the redundancy cluster.
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