
Achieving Service Dependability Through
Context-Awareness

Michael Schiffers
Munich Network Management Team
Department of Informatics
Ludwig-Maximilian-University
Oettingenstr. 67, 80538 Munich, Germany
michael.schiffers@ifi.lmu.de

Abstract
By large-scale services (LSS) we understand IT services that are being deployed
over unbounded large-scale infrastructures. Typical examples may be found in
e-commerce scenarios, in computational Grids, or in ubiquitous computing envi-
ronments. The more such services will be composed on the fly from other services
the more dependability becomes a challenge. Service dependability is about error
processing and fault tolerance. There are operational similarities between error
processing and context provisioning in ubiquitous computing.

In this paper we are exploring the beneficials of applying context-awareness
to the dependable composition of services. Based on an e-commerce scenario we
analyze the similarities between error processing and context provisioning, but
we also show how the single phases of these processes translate into each other.
We address how service dependability may benefit from context-awareness and we
finally report on a prototypical implementation of a Web Services based context
provisioning framework.

Keywords
context-awareness, context provisioning, dependability, service management, ser-
vice composition, large-scale service

1. Introduction

In the past few years the popularity of large-scale Internet services such as email
services, auction services, and search services has grown enormously. Their scal-
ability and dependability requirements have led to service orientated system ar-
chitectures that are typically provided over clusters of thousands of geographi-
cally distributed computers undergoing frequent reconfiguration and functionality
changes [1]. Similarly, Grid computing is turning more and more into a mainstream
technology for large-scale distributed resource sharing addressing the increasing
demand for collaborative problem solving [2]. Other examples of large-scales ser-

∗This work has partly been funded by the Bavarian Government under contract 1312/685 66.



vices (LSS) include Peer-to-Peer applications, vehicular ad-hoc services [3], or such
services as envisioned in the Agentcities initiative [4].

By Large-Scale Services (LSS) we understand IT services that are being de-
ployed over large-scale infrastructures composed of autonomous systems each be-
longing to and managed by independent organizations [5, 6]. Typically, the compo-
nents are existing prior to the configuration of the LSS and are well established in
providing useful services to their hosting organizations. In such systems change is
no longer rare, rather it is a standard situation without prior notice. Consequently,
the components of an LSS are capable of independent behavior and independent
failing. Since a global view of the whole infrastructure is not possible, the interop-
erability between the respective components (belonging to different administrative
domains) has to be determined by local conventions. Sometimes these systems are
referred to as “unbounded” [6], “federated” [7], or “Systems of Systems” [5].

Dependability of a service is typically defined as that property of a service that
makes the service justifiably trustable under all circumstances, even in hostile
environments [8]. Thus, dependability encompasses availability, reliability, confi-
dentiality, maintainability, manageability, integrity, privacy and safety. Providing
dependable services over unbounded infrastructures raises questions of how to cope
with dynamically changing user expectations, flexible infrastructures, domain spe-
cific SLAs, or dynamic management policies.

Treating the dependability of composite services (and of the composition pro-
cess itself) not only requires an adequate presentation of critical information, but
also the automatic chaining of services under erroneous conditions. These chal-
lenges resemble those being studied in context-aware research. We are interested
in understanding these similarities and their limitation. This idea is to look at
policies, SLAs, infrastructures, user locations, and the like as context information
a service may adapt to.

Context-awareness presents a new paradigm in service provisioning in that
context-aware services (CAS) automatically adapt their functionality to the service
execution environment in a transparent way. Context is not just there, it has to
be provided. This directly leads to the question of how to obtain it. Any necessary
context information is derived from raw data delivered by various context sources,
like sensors, and iteratively refined by different operators and providers.

Context information can be used to characterize the situation of a person, a
place, or any other physical or abstract object, which is of relevance for a particular
service [9]. Examples of context information are the user’s current activity (work-
ing, sleeping, eating, etc.), her spatial environment (indoor, outdoor, at home, at
work, etc.), or the technical capabilities of the mobile device she uses. A service
is then regarded as context-aware if it uses context to adapt its behaviour to the
user’s task. For example, an instant messaging service will become context-aware
if the message exchanges between its users (the buddies) are adapted to their cur-
rent location, activities, and mood, and if the appearance of the service, e.g., the
representation format of messages (text, pictures, audio, etc.), is adapted to the



capabilities of the respective user’s mobile device and the transport protocols of
the underlying network [10].

Our interest is in automatically providing and managing the dependable com-
position of dependable services from autonomous components. In this paper we
address the issue of tolerating service composition errors. We propose to apply
concepts from context-awareness to achieving this.

The rest of the paper is structured as follows: In sections 2.1 and 2.2 we will
give a short introduction into the notions of dependability and context-awareness.
In section 3 we introduce a large-scale e-commerce service and address the simi-
larities between error processing and context provisioning. In section 4 we report
on a prototypical implementation of a context provisioning framework. Before we
conclude the paper in section 6 we relate our work to other contributions in section
5.

2. Basic Notions of Dependability and Context-Awareness

2.1 Dependability

Following [8], dependability is a fundamental property of any system addressing
the reliance that can be placed on the services it delivers (see figure 1). The causal
relationship between faults, errors, and failures, is a key dependability concept. The
basic means for achieving dependability are fault tolerance, fault avoidance, fault
removal and fault forecasting [8]. A fault is considered as the hypothesized cause
of an error. An error is that part of a system state that may cause a subsequent
failure. A failure occurs when a system service deviates from the behaviour ex-
pected by the user. Fault tolerance is a means for achieving dependability assuming
that any system contains faults and is thus inevitably uncertain. Error processing
typically consists of three steps: error detection, error diagnosis and error recov-
ery. Error detection identifies an erroneous state in the system. Error diagnosis
assesses the damage caused by the detected error, or the errors propagated before
detection. Error recovery transforms a system state that contains errors into an
error free state. Fault treatment consists of fault diagnosis and system repair [8].



Dependability

Means Attributes Threats

Failures

Errors

FaultsMaintainability

Availability

Reliability

Safety

Confidentiality

Integrity
Fault Forecasting

Fault Removal

Fault Tolerance

Fault Prevention

Dependability

Means Attributes Threats

Failures

Errors

FaultsMaintainability

Availability

Reliability

Safety

Confidentiality

Integrity
Fault Forecasting

Fault Removal

Fault Tolerance

Fault Prevention

Figure 1: The dependability tree [8]

A system is dependable to
the extent to which its oper-
ation is free of failures. Then
dependability can be defined as
that property of a system such
that allows placing justifiable
trust on the service it delivers.
A user is regarded as just an-
other system which interacts
with the former. Typical at-
tributes of dependability are
availability, reliability, safety,
confidentiality, integrity, main-
tainability. Following [8] secu-
rity is not considered as a de-
pendability attribute as it in-
volves a combination of availability, confidentiality, and integrity.

2.2 Context-Awareness

We call a service context-aware if it uses context when providing relevant informa-
tion and/or services to the user, where relevancy depends on the user’s task [9].
Context is regarded as any“information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and the
application themselves” [9]. This definition is very broad and lacks the reflection of
context as an operational term: “something is context because of the way it is used
in interpretation, not due to its inherent properties” [11]. Hence, context is not just
there, it is created when needed. However, bear in mind that focusing on specific
aspects – those that characterize a situation – implies some prior knowledge of
which aspects are more significant than others.

Context-aware services (CAS) can be categorized into three classes: “presenting
information and services”, “executing a service”, and “tagging captured data” [9].
The first class refers to services that either present context information to the
user, or use context to propose appropriate selections of actions to the user. The
second class describes services that trigger commands, or reconfigure the system
on behalf of the user according to context changes. Attaching context information
for later retrieval refers to services that tag captured data with relevant context
information. For examples of these categories we refer to [12].

Designing and building CASs requires appropriate abstraction mechanisms,
context models, and a generic way to provide the necessary context information
for a service’s functional adaptation. This process of acquiring context informa-
tion is typically arranged along a value chain (see figure 2 and is called context
provisioning [10, 13].



Context
Sensing

„raw“ context
information

Context
Refinement

Context
Refinement

Context
Dissemination...

interpreted,
transformed, or
combined context
information

interpreted,
transformed, or
combined context
information

aggregated
context
information

CAS
Adaptation

Figure 2: The context provisioning value chain

The process of
“infusing” the con-
text information
into an adaptation
mechanism and the
adaption itself are
sometimes referred to
as contextualization.

Notice that context refinement may comprises several very different transfor-
mation methods: the transformation between different formats of a representation
(e.g., from GPS coordinates to street names and numbers), the augmentation with
quality attributes [14], the fusion of several similar context sources [15] in order
to overcome the inevitability of imprecision, or the mathematical computation of
context information from other ones (e.g., calculating the distance between two
objects).

3. Approaching Service Dependability by
Context-Awareness

3.1 A Scenario

To provide a reference scenario for subsequent discussions we introduce GSRM, a
hypothetical service for Globally Sourcing of Raw Materials. GSRM assists corpo-
rate procurement departments in globally sourcing of, bidding for, and purchasing
of raw materials from appropriate spot markets. Typical application scenarios for
GSRM would be the sourcing of raw chemicals, stainless steel, wheat, or even
investment capital. The GSRM service is provided by HotHouse Corp. either on
behalf of their customers as an outsourced service or they act as a Service Provider
on request for subscribed customers. GSRM requires from the user a set of static
profile parameters (e.g. authentication information) and service specific, mostly
dynamic, parameters such as the user’s actual preferences for price ranges, the
required material quality, the shipping method preferences, time limits, or prefer-
ences for financial transactions.



HotHouse Corp.

GSRMGSRM

Corporation X

RECOMMENDERRECOMMENDER

Corporation Y

COMMUNITYCOMMUNITY

CATALOGCATALOG

PUNCHOUTPUNCHOUT

Corporation Z

AUCTIONAUCTION

COMMUNITYCOMMUNITY

Logistics Inc.

LOGISTICSLOGISTICS

InternetInternet RECOMMENDERRECOMMENDER

HotHouse Corp.

GSRMGSRM

Corporation X

RECOMMENDERRECOMMENDER

Corporation Y

COMMUNITYCOMMUNITY

CATALOGCATALOG

PUNCHOUTPUNCHOUT

Corporation Z

AUCTIONAUCTION

COMMUNITYCOMMUNITY

Logistics Inc.

LOGISTICSLOGISTICS

InternetInternet RECOMMENDERRECOMMENDER

Figure 3: The GSRM domain structure

As depicted in figure 3,
in operating GSRM HotHouse
offers the user to take ad-
vantage of other services pro-
vided by other corporations.
Here are some examples: A
recommender service (REC-
OMMENDER) rates trading
transactions and recommends
potential community partners
for joint bidding (similar to
the services considered in [16].
The temporary buying com-
munity itself could be estab-
lished using a community ser-
vice (COMMUNITY). An auction service (AUCTION) such as those discussed
in [17] could place bids in e-auctions. In case the supplier offers a set of similar
products, an intelligent catalog crawler service (CATALOG) could walk through a
supplier’s catalog, probably based on pre-negotiated prices and terms and condi-
tions. Finally, a logistics service (LOGISTICS) will be invoked in case the material
has to be moved physically. An example of such a service can be derived from the
Freightmixer scenario in [17].

A typical (simplified) use case for GSRM is given in figure 4:
User GSRM Recommender Community Auction Supplier Logistics

Request
Request

Request
Supplier List

Community List
Request
Bid List

Bid Proposal

Purchase
Confirmation

Request
Confirmation

Confirmation

Selection

User GSRM Recommender Community Auction Supplier Logistics

Request
Request

Request
Supplier List

Community List
Request
Bid List

Bid Proposal

Purchase
Confirmation

Request
Confirmation

Confirmation

Selection

Figure 4: Example of a sequence diagram for GSRM

A user requests
sourcing a tonnage
of say stainless steel
with a certain quality.
GSRM first creates a
co-operative buying
community using rec-
ommendations, places
bids on behalf of this
community, selects
the most appropri-
ate one and finally
places the order and
arranges for shipping.
GSRM also supports
punchout [18] for
“shopping cart” ap-
proval, purchase order, and the automatic generation of shipping documents,
invoices, and credit notes.



3.2 Similarities Between Value Chains

Referring back to section 2.1 and to [8], an important objective to attain service
dependability is tolerance to both service internal faults and faults related to the
composition of services. The phases of fault tolerance can generally be arranged
along a dependability value chain as depicted in figure 5.

DetectionDetection DiagnosisDiagnosis RecoveryRecovery TreatmentTreatmentDetectionDetection DiagnosisDiagnosis RecoveryRecovery TreatmentTreatment

Figure 5: The dependability value chain

The similarities between
the value chains in figures 5
and 2 are obvious as both
are intrinsically process orien-
tated, both need to acquire
appropriate information, both
need to analyze the information, and both need to draw adequate conclusions
which may or may not result in adaptations. Context provisioning addresses ex-
actly this generic value chain when supporting context-awareness (see section 2.2).
Although both areas have developed their own methods and methodologies to
address their specific challenges, we think it is worthwhile – because of the afore-
mentioned similarities – to consider mutually leveraging the achievements in the
respective other area. In the following sections we will therefore address tolerance
to Service Composition Errors (SCE) as an example of exploring the suitability of
approaching dependability issues by context-awareness. In doing so, we will follow
the intrinsic value chain as explained above.

3.3 Tolerating Service Composition Faults

The dependability of large-scale services like GSRM requires a dependable com-
position of the diverse component services. For example, if GSRM is configured to
use both a RECOMMENDER service and an AUCTION service, this composition
must be able to cope with inconsistencies between the GSRM components. The
challenge is not only to identify those components that are appropriate enough for
the provisioning of a composed service, but also to make sure that this composition
does not degrade the dependability of the components.

Service composition faults may occur when either trying to compose services
from other services or when executing a composed service. Upon activation they
generate Service Composition Errors (SCE). Composition errors are an undesired,
though expected, circumstance which in most cases must be tolerated as they
cannot be avoided. Consequently, SCEs need to be processed and treated appro-
priately, otherwise the overall service will fail if the error gets propagated.

Since we cannot expect a generic runtime error handling mechanism, it is nec-
essary to classify SCEs and try to apply class specific detection and diagnosis
mechanisms. A major challenge, however, is the capability to distinguish SCEs
from other service errors and to distinguish composition problems or even intended
behaviour from faults.

Typical SCE-classes range from architectural and protocol mismatches [5] to
dependability related faults like incompatible reliability metrics and failure modes,



to wrong sub-service selection (e.g. referring to figure 3: which COMMUNITY
service to select).
Detecting Composition Errors
Detecting SCEs means uniquely identifying an error as an SCE. This may require
additional information concerning system states or service histories. This informa-
tion is required at runtime. Notice that the identification of an SCE is not essential
if respective provisions are made in the later stages of SCE tolerance. However,
the later an error is identified as an SCE, the more costly and the more uncertain
the respective processes of recovery and repair will be.

Consider the GSRM session from figure 6 and assume an SCE AuctionFailed

for whichever reason. Identifying this error as an SCE needs at least some knowl-
edge about the failing sub-service (e.g. AUCTION), the providing organization
(e.g. corporation Z), the actual user preferences, the general GSRM service prop-
erties (e.g. QoS requirements), and contracted SLAs. Notice that even the user’s
location and device type may have an impact. Bearing in mind that GSRM is
composed from autonomous services, collecting these information on-the-fly raises
issues like completeness, speed, consistency, and privacy (e.g., corporation Z may
not be interested to “open their books”).

RECOMMENDERRECOMMENDER COMMUNITYCOMMUNITY

AUCTIONAUCTION

LOGISTICSLOGISTICS
GSRM

User RECOMMENDERRECOMMENDER COMMUNITYCOMMUNITY

AUCTIONAUCTION

LOGISTICSLOGISTICS
GSRM

User

Figure 6: Example of a GSRM session

The first step in all context provi-
sioning is context sensing capturing all
relevant context information for all ref-
erence objects involved in determining
a context information. As a simple ex-
ample, the location of a reference ob-
ject may be sensed by a GPS receiver.
All actual settings of a reference ob-
ject are retrieved from very different
and heterogeneous context sources during context sensing. Context provisioning
implies a goal-oriented co-operation of several actors in the roles of CAS Users,
CAS Providers, Context Providers, and Context Owners. Figure 7 depicts this
role model, an edge between two roles indicates a contractual or information flow
relationship. For a more detailed discussion of this model we refer to [13].



Context
Provider

Federation

CAS
Provider

Context
Owner

CAS
Customer

SLAService
Provisioning

Security
Specifications

CAS User

Security
Specifications

Context
Delivery

Figure 7: Context provisioning
role model

Thus, applying context-awareness to SCE
detection means identifying the right context
information, identifying the actors and roles,
and executing the appropriate interactions.
The model automatically takes care of issues
like privacy compliance, costs and billing, in-
formation quality assurance, and federated co-
operation which are all more or less considered
relevant for the detection phase.
Diagnosis of Composition Errors
The purpose of SCE diagnosis is to assess the
damages caused by the detected SCE by identi-
fying all the erroneous states of both the com-
posed and the composing services. This typi-
cally requires the identification of the service’s dependencies, the availability of
all information necessary for damage assessment, and the availability of adequate
refinement tools.

Consider again the GSRM session from figure 6 and assume again the SCE
AuctionFailed exception which now, however, has been identified as an SCE.
Notice that AuctionFailed is usually thrown after the bidding community
has been established using the COMMUNITY service. Assessing the impact of
AuctionFailed requires the ability to reason about this SCE and to derive from
the exception all information adequate for deciding on the recovery strategies.
A very simple example is given in figure 8 depicting how the (boolean) indi-
cators UpAndRunning and CommunityTrust and the Retry list are derived from
AuctionFailed.



Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

Retry
CommunityTrust

ComputeRetry

GetCommunityDuration

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

Retry
CommunityTrust

ComputeRetry

GetCommunityDuration

Figure 8: Example of error diagnosis

Context refinement deals
with the question of how to
generate a concrete context in-
formation from those informa-
tion that is already available
from the previous acquisition
phase or which must be cap-
tured additionally. For exam-
ple, a distance could be di-
rectly sensed by a distance me-
ter or it could be computed
from two geographical coordi-
nates. Context information is
refined using a multi-step ap-
proach. In every step, previ-
ously sensed or computed in-
formation is taken, and refine-
ment techniques like fusion,
combination, deduction, filtering, transcoding, or inter- and extrapolation are ap-
plied to derive “higher level” context information with a certain quality. Concep-
tually we model the dependencies between context information as required by a
CAS using a Petri Net like Context Composition Graph (CoCoGraph). Actually,
figure 8 depicts such a graph. For more information on constructing and applying
CoCoGraphs see [19]

Once the necessary base information for a successful SCE diagnosis is available,
concepts like CoCoGraphs and their construction resp. processing tools could be
beneficial to all further diagnostic endeavours, provided the knowledge from where
to capture the base information exists.

Recovery from Composition Errors
The purpose of SCE recovery is to replace an SCE state by an error-free state.
The level of difficulty encountered for recovering from SCEs varies with the spe-
cific characteristics of an SCE and the service. Typically, there are backward re-
covery mechanisms and forward recovery mechanisms [20]. The former is more
appropriate when dealing with service independence and general approaches for
recovery like roll back. Due to the service characteristics we have in mind, how-
ever, rolling back may conflict with the un-ability of other services to roll back.
This requires co-ordination. For SCEs caused by service specific problems forward
recovery techniques like exception handling may be more appropriate. We want to
mention though that in all those cases in which not enough information is available
for supporting SCE tolerance, error recovery often becomes very complex.

Consider again the GSRM session from figure 6 and assume again the SCE
AuctionFailed has been diagnosed. Assume further that backward recovery tech-
niques have been applied and that GSRM has been – as a orchestrated action –
rolled back. What is missing now in order to make GSRM dependable is an au-



tomatic reconfiguration of GSRM. This does not necessarily always mean a new
service implementation, it could also mean replacing sub-services by alternatives
(e.g. exchange the COMMUNITY from corporation Z by the one from corporation
X).

Contextualization covers both the dissemination of context information and
the transparent adaptation of the CAS accordingly. After the refinement process,
context information must be delivered to CASs. Generally, context dissemination
can be subdivided into a pull and a push mode. Using the pull mode, context
information are requested during CAS usage. The pull based context dissemination
can be further classified into a polling and a caching mode. In the former case,
context refinement is just activated on demand, whereas in caching mode, it has
been executed in a proactive manner. Whether pull based context dissemination
runs in polling or caching mode, may depend on the update frequency of context
information. Using the push mode, context information are automatically delivered
if their values reach a predefined range. The push mode is useful to realize context-
aware push services.

Translating these concepts to service dependability issues induces support for
new surveillance techniques, proactive SLA monitoring, failure situation dependent
proactive replication management, or in general proactive policy adjustments.

4. A Prototypical Framework for Context Provisioning

In order to practically explore the suitability of context-awareness to the provi-
sioning of dependable services we developed and implemented as a first step a
framework supporting the acquisition and refinement of context information ac-
cording to the context provisioning value chain as per figure 2 [21]. The prototype
is based on Web Services technologies. We implemented parts of the context pro-
visioning role model and the interactions between the roles. An overall conceptual
view is given in figure 9.



CAS Provider Context Provider

Context Broker

SOAP/CASSP

SOAP/CASSP

SOAP/CASSP

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

RetryCommunityTrust

ComputeRetry

GetCommunityDuration

CoCoGraph

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

Retry
CommunityTrust

ComputeRetry

GetCommunityDuration

CoCoGraph

Context
Information
Model

CAS Provider Context Provider

Context Broker

SOAP/CASSP

SOAP/CASSP

SOAP/CASSP

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

RetryCommunityTrust

ComputeRetry

GetCommunityDuration

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

RetryCommunityTrust

ComputeRetry

GetCommunityDuration

CoCoGraph

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

Retry
CommunityTrust

ComputeRetry

GetCommunityDuration

Output

Input

ActionFailed

UpAndRunning

GetTrustLevel

GetCommunity

GetStillLiving

Retry
CommunityTrust

ComputeRetry

GetCommunityDuration

CoCoGraph

Context
Information
Model

Figure 9: Context Provisioning Architecture

For the dynamic compo-
sition of context information
we implemented the aforemen-
tioned CoCoGraphs [19]. Af-
ter initializing the service spe-
cific CoCoGraph the dynamic
runtime composition could be
realized by having the graph
control transitions fire which
means actually the collection
of the respective context infor-
mation.

For implementing the inter-
actions between the different
roles we used a SOAP-based
protocol CASSP (CAS Simple Protocol) which supports both the Context In-
formation Model (CoIM) for modeling context information and locating Context
Providers and CoCoGraphs.

Although we had to extend UDDI to a more flexible repository better serving
our needs as far as search capabilities and semantics are concerned, we have found
that the basic concepts and the distributed architecture of Web Services are in
principle suitable for the kind of context provisioning we have in mind. The big
overhead in Web Services protocols due to the XML-format, however, constraints
the overall system performance and may require dedicated solutions. Additional
concepts are necessary in particular for the dynamic discovery and composition
of services, CoIM and CoCoGraph are two such concepts. The drawback is the
need for a higher level protocol over SOAP which we provided with CASSP. For a
full automation, a semantic solution based on ontology libraries is required. [22]
proposes such a solution.

5. Related Work

Research on context-awareness is getting momentum. However, most of the work
is still being done for experimental studies covering prototypical implementations
in single provider environments. To our best knowledge, context-awareness has not
been applied to the questions we addressed in this paper. For a good overview of
the research in the field of context-awareness we refer to [9, 12, 23, 24].

Research on dependability on the other hand is not a new topic. A count-
less number of contributions has addressed lots of issues relating to the threats
to, the attributes of, and the means by which dependability is attained (see e.g.
[25, 20, 8, 26]. Lots of work has also been performed by the IEEE-CS Tech-
nical Committee on Fault-Tolerant Computing (www.dependability.org/tc)
and IFIP’s Working Group 10.4 Dependable Computing and Fault Tolerance
(www.dependability.org/wg10.4). In spite these many contributions little work
has been done in dependably composing large-scale services from autonomous com-

www.dependability.org/tc
www.dependability.org/wg10.4


ponents while preserving their dependability. Nearly all approaches assume a prior
knowledge of a correct system state or they assume a total management control
within well-defined perimeters. The DSoS project (Dependable Systems of Sys-
tems [5]) focuses on challenges close to ours but neither do they cover any service
management related issues, nor do they take into account role-specific issues as
they emphasize on the design of the linking interfaces between component sys-
tems only. InfoSpect [27] on the other hand is an approach aiming at managing
dependability in large-scale systems. However, they do not consider multi-provider
scenarios and their logic language approach (based on Prolog) does not scale well
when dealing with fast growing rule bases. Existing middleware approaches (e.g.
CORBA) all have the disadvantage that their primary focus is not on depend-
ability issues. Hence, they provide only very specialized solutions. Finally, some
contributions from Grid community [28] are promising. However, the Grid commu-
nity either assumes a central management authority or still fails in transparently
adapting to sudden Grid changes. The applicability of Web Services architectures
has also been discussed in [29].

6. Conclusion and Future Work

Understanding the concept of context and how to make use of it are central re-
search challenges in the context community. In this paper we proposed to apply
the concepts to achieve dependability of large-scale services crossing organiza-
tional boundaries. Based on an e-commerce scenario we analyzed dependability
issues when composing emergent services from component services. We not only
pointed out the similarities between error processing and context provisioning, but
we also showed how the phases of these value chains translate into each other. We
addressed how service dependability may benefit from context-awareness. We fi-
nally reported on a prototypical implementation of a Web Services based context
provisioning framework.

Our next steps will focus on the extension of the work done so far with special
emphasis on investigating the benefits of treating dependability and other QoS
parameters as context information.

Acknowledgement
The author wishes to thank the members of the Munich Network Management

(MNM) Team for helpful discussions and valuable comments on previous versions
of this paper. The MNM Team, directed by Professor Dr. Heinz-Gerd Hegering, is a
group of researchers at the University of Munich, the Munich University of Technol-
ogy, and the Leibniz Supercomputing Center of the Bavarian Academy of Sciences.
Their web server is located at http://wwwmnmteam.informatik.uni-muenchen.

de.

http://wwwmnmteam.informatik.uni-muenchen.de
http://wwwmnmteam.informatik.uni-muenchen.de


References
[1] David Oppenheimer and David A. Patterson. Architecture and Dependability of

Large-Scale Internt Services. IEEE Internet Computing, pages 41–49, Septem-
ber/October 2002.

[2] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid Services for
Distributed System Integration. IEEE Computer, pages 37–46, June 2002.

[3] Christian Cseh, Reinhold Eberhardt, and Walter Franz. Mobile Ad-Hoc Funknetze
für die Fahrzeug-Fahrzeug-Kommunikation. In Michael Weber and Frank Kargl,
editors, Mobile Ad-Hoc Netzwerke: Proceedings of the 1. Deutscher Workshop über
Mobile Ad-Hoc Netzwerke (WMAN 2002), volume P-11 of Lecture Notes in Infor-
matics (LNI), pages 109–120, Bonn, March 2002. Gesellschaft für Informatik (GI).
(in German).

[4] S. Willmott, J. Dale, B. Burg, P. Charlton, and P. O’Brien. Agentcities: A World-
wide Open Agent Network. The Agentlink Newsletter, (8):13–15, November 2001.

[5] DSoS Project. Final Version of DSoS Conceptual Model. Technical Report CS-TR-
782, University of Newcastle upon Tyne, April 2003.

[6] R. Ellison, D. Fisher, R. Linger, H. Lipson, T. Longstaff, and N. Mead. Survivable
Network Systems: An Emerging Discipline. Technical Report CMU/SEI-97-TR-013,
Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA., USA,
1997, revised 1999.

[7] Gabrijela Dreo Rodošek. A Framework for IT Service Management. Habilitations-
schrift, Ludwig-Maximilians-University, Munich, Germany, 2002.

[8] A. Avižienis, J. Laprie, and B. Randell. Fundamental Concepts of Dependability.
Research Report N01145, LAAS-CNRS, Toulouse, France, April 2001.

[9] A.K. Dey. Architectural Support for Building Context-Aware Applications. PhD
thesis, College of Computing, Georgia Institute of Technology, December 2000.

[10] I. Hochstatter, A. Küpper, M. Schiffers, and L. Köthner. Context Provisioning In
Cellular Networks. In Proceedings of the 8th International Workshop on Mobile
Multimedia Communications (MoMuc 2003), Munich, Germany, 2003.

[11] Terry Winograd. Architectures for Context. Human-Computer-Interaction, 16(2),
December 2001.

[12] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing
Research. Technical Report TR2000-381, Dartmouth, USA, November 2000.

[13] H.G. Hegering, A. Küpper, C. Linnhoff-Popien, and H. Reiser. Management Chal-
lenges of Context-Aware Services in Ubiquitous Environments. Proceedings of the
14th IFIP/IEEE Workshop on Distributed Systems: Operations and Management
(DSCOM 2003), Heidelberg, Germany 2003.

[14] T. Buchholz, A. Küpper, and M. Schiffers. Quality of Context: What It Is And Why
We Need It. In Proceedings of the 10th Workshop of the HP OpenView University
Association: HPOVUA’03, Geneva, Switzerland, July 2003.

[15] Guanling Chen and David Kotz. Solar: Towards a Flexible and Scalable Data-Fusion
Infrastructure for Ubiquitous Computing. In UbiTools Workshop at UbiComp, 2001.

[16] B.M. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender Systems for
Large-Scale E-Commerce: Scalable Neighborhood Formation Using Clustering. In
Proceedings of the Fifth International Conference on Computer and Information
Technology (ICCIT 2002), East Western University, Bangladesh, December 2002.



[17] Chris Preist, Andrew Byde, Claudio Bartolini, and Giacomo Piccinelli. Towards
Agent-Based Service Composition Through Negotiation in Multiple Auctions. Tech-
nical Report HPL-2001-71R1, HP Laboratories Bristol, Bristol, UK, May 2001.

[18] D. M. Dias, S. L. Palmer, J. T. Rayfield, H. H. Shaikh, and T. K. Sreeram. E-
commerce Interoperability with IBM’s WebSphere Commerce Products. IBM Sys-
tems Journal, 41(2):272–286, 2002.

[19] M. Krause and I. Hochstatter. Strategies for On-the-Fly Composition of Context
Information Services. In Proceedings of the 11th Workshop of the HP OpenView
University Association: HPOVUA’04, Paris, France, June 2004.

[20] DSoS Project. State of the Art Survey. Technical Report CS-TR-708, University
of Newcastle upon Tyne, April 2000.

[21] Yingfan Lei. An Architecture for Context Provisioning Over Web Services. Masters
thesis, Ludwig-Maximilian University, Munich, Germany, 2003.

[22] Thomas Strang, Claudia Linnhoff-Popien, and Matthias Roeckl. Highlevel Service
Handover through a Contextual Framework. In Proceedings of the 8th Interna-
tional Workshop on Mobile Multimedia Communications (MoMuc 2003), Munich,
Germany, 2003.

[23] Jason I. Hong and James A. Landay. An Infrastructure Approach to Context-Aware
Computing. 16:287–303, 2001.

[24] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling Context Information
in Pervasive Computing Systems. In Proceedings of the First International Con-
ference on Pervasive Computing (Pervasive 2002), volume 2414 of Lecture Notes in
Computer Science, pages 169–180, Zurich, Switzerland, 2002. Springer-Verlag.

[25] J.C. Laprie, A. Avižienis, and H. Kopetz. Dependability: Basic Concepts and Ter-
minology. Springer-Verlag, New York, 1992.

[26] Claudio Basile, Marc-Olivier Killijian, and David Powell. A Survey of Dependabil-
ity Issues in Mobile Wireless Networks. Technical report, LAAS CNRS, Toulouse,
France, 2003.

[27] Timothy Roscoe, Richard Mortier, Paul Jardetzky, and Steven Hand. InfoSpect:
Using a Logic Language for System Health Monitoring in Distributed Systems. In
Proceedings of the 10th ACM SIGOPS European Workshop, Saint-Emilion, France,
2002.

[28] Ian Foster, Carl Kesselmann, and Steven Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International Journal of High Performance
Computing Applications, 15(3):200–222, 2001.

[29] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Dependability in the
Web Service Architecture. In Rogério de Lemos, Cristina Gacek, and Alexander
Romanovsky, editors, Proceedings of the Workshop on Architecting Dependable Sys-
tems, Orlando, USA, 2002. available from http://www.cs.kent.ac.uk/events/

conf/2002/wads/proceedingsW12.pdf.

http://www.cs.kent.ac.uk/events/conf/2002/wads/proceedingsW12.pdf
http://www.cs.kent.ac.uk/events/conf/2002/wads/proceedingsW12.pdf

	Achieving Service Dependability Through Context-Awareness
	Abstract
	Keywords
	Introduction
	Basic Notions of Dependability and Context-Awareness
	Approaching Service Dependability by Context-Awareness
	A Prototypical Framework for Context Provisioning
	Related Work
	Conclusion and Future Work


