A practical approach towards a distributed and flexible
realization of policies using intelligent agents

René Wies, BMW AG, Corporate Network, 80788 Munich, Germany, Phone: +49-89-382-
40098, Fax: +49-89-382-49145, Email: rene.wies@bmw.de

Maria-Athina Mountzia , Munich Network Management Team, Technical University of
Munich, Oettingenstr. 67/D04, 80538 Munich, Germany, Phone: +49-89-21782164, Fax:
+49-89-21782262, Email: mountzia@informatik.tu-muenchen.de

Philip Steen ekamp, Telkom SA Limited, Pretoria, South Africa, Phone: +27-12-311-4355,
Fax: +27-12-311-1734, Email: steenepj@telkom.co.za

Abstract

For the past decade it is a known fact that management of heterogeneous networks,
distributed systems, and applications can only be done "computer aided”. Ever since then,
management agents and platforms have been deployed or installed throughout the IT
infrastructure;, on networking devices, systems, peripherals, and even on mobile end
systems and in applications. Now that we network managers have complete (?!) control
over our infrastructure, we see ourselves in a very similar position as system analysts were
15 years ago: managing a network is like programming in some assembly language.
Aspects of automation, flexibility, and dynamics are rare!

In this paper we will very briefly introduce the concept of management policies as being
derived from business goals to raise the level of abstraction for network, system, and
application managers. Based on an architecture to realize management policies, we will
outline the basic characteristics of the Intelligent Agent technology. The paper focuses on
management policies but uses the concepts of mobile and intelligent agents to enable and
facilitate the enforcement of high level management tasks and thereby providing for
effective network and systems management. We will also present the first steps towards a
prototype implementation using the IONA ORB (Orbix CORBA implementation) to realize
the ideas and concepts described herein.

Keywords: Network and Systems Management, Management, Policy, Intelligent Agent

1 Introduction

1.1 Management Policies

The task of managing information technology resources becomes increasingly complex as
managers must take heterogeneous systems, different networking technologies, and
distributed applications into consideration. In order to deal with this complexity the notion of
Management Policies has evolved during the last years [SLOM94, LUSL96]. Management
policies are often seen as a link between corporate management and technology
management. Thus, the word policy is surrounded by a vast number of other related terms,
such as strategy, goal, vision, direction, mission, process, tactic, procedure, plan, scheme,
course, and guideline, to name just a few.

The corporate mission leads to a number of long-term business strategies [PORT85] from
which policies are derived. Policies define technical management measures that are
specific for a particular department, such as the network and systems provisioning

department. Hence, management policies are derived from the goals of management and
related business strategies to define the desired behavior (i.e., technical characteristics) of
distributed heterogeneous systems, networks, and applications. Management policies thus
define what has to be accomplished by use of appropriate management tools.

In order to be implemented, policies must eventually lead (i.e., be transformed) to
management scripts or rules that are interpreted by agents which can act on IT resources.
Therefore, policies have to be converted into an algorithmic and functional representation of
management goals and strategies, acting on a generic representation of resources
supported by management agents. When specifying a corresponding and appropriate
architecture to support the application of policies, it is obviously necessary to make use of
existing standardized management architectures and management platforms, as far as
these provide the necessary functions within their infrastructure. The aim of such a system
is to aid an IT manager when specifying management policies and to guide IT operators in
applying these policies. For this reason, such a system must be integrated in the
management systems which administrators use on a regular basis. Such systems are
frequently network and systems management platforms based on standardized frameworks
[KASE94]. Section 2.1 will introduce the proposed policy architecture.

Until recently, it was believed that network and systems management applications will
manage resources directly rather than invoking intelligent management services provided
by the agents in the resources. This was because management information available in
vendor-specific MIBs or MIFs is insufficient to do real management, they generally only
provide heterogeneous monitoring information [BEYU93, HNGU94]. With the use of more
advanced agents (such as RMON agents) and the concept of intelligent agents (see below)
real automated and policy driven management can become reality.

1.2 Intelligent Agent Technology

Intelligent Agent Technology, as defined in [WOJE95], is another key technology in the area
of distributed network and systems management. Similar to management policies, a large
amount of research has so far been done on intelligent agents [GOYE95, MEBS95,
FFMK92, FFMM93]. However, most of the work has focused on these two concepts in
isolation, and very little research has been done to bring these two concepts together.
[SLOMO5, LUSL96, KOCH95] are the only other efforts known to the authors. In [SLOM96]
intelligent agents are used to interpret obligation policies. The approach is based on a
similar concept as the one presented in this paper. However, the advantages of our
approach will be pointed out later on in the realization and implementation issues. It should
be noted that we will make use of intelligent agent ideas and concepts formulated by the
artificial intelligence community and apply those ideas in the area of network and systems
management. We will not re-invent mature concepts, but rather re-use them for our
purposes.

Intelligent agents can be described as pieces of autonomous software that act on behalf of
a specific user or management application in various roles. Stephen Hawking once
described viruses as being "... life forms because they satisfy all the criteria for being a life
form - they react to stimuli, they reproduce, they consume.” The same is valid for intelligent
agents. Agents can also be classified according to their behavior into:

e static agents which are statically configured and cannot move around from one physical
location to another,

» dynamic agents which can be extended in their functionality and can move from one
location to another autonomously.

Examples of such agents are information gathering agents, email filtering agents, or service
management agents. The aspects below will be used in the following as characteristic
properties describing intelligent agents:

» Autonomy: agents operate without the direct intervention of humans or others and have
some type of control over their actions and internal state.

e Social ability: agents interact with other agents (and possibly humans) via some kind of
agent-communication language.

» Reactivity: agents perceive their environment and respond in a timely fashion to
changes that occur in it.

» Pro-activeness: agents do not simply act in response to their environment, they are able
to exhibit goal-directed behavior by taking the initiative thereby reacting to indicators
rather than reacting to severe faults or problems as perceived by the user.

» Flexibility and Dynamics: agents are flexible in their reaction, i.e., their behavior
depends on the particular environment and is not merely a deterministic set of actions.
Flexible rule bases that can be updated in combination with inference engines usually
form the basis of flexible and dynamic agents.

Based on these characteristics and the proposed policy architecture, we will outline how
intelligent agents can be used to enable the architecture in Section 3.2. Section 4 will briefly
characterize the prototype-implementation of the framework using the IONA ORB (Orbix
CORBA implementation) that is still being refined, followed by a conclusion and outlook in
Section 5.

2 Management Policies and Intelligent Agents

2.1 Policy Architecture

The Policy Architecture depicted in Figure 1 (see also [WIES95b,LEWI95], enables the
implementation of systems management policies from a top-down perspective. This implies
that all policies applicable to a specific domain have to be defined and transformed into low-
level implementable policies as mentioned in Section 1.1. Management policies are defined,
transformed, checked for conflicts, enforced and monitored by means of a Policy Support
System.

The architecture can be implemented as a separate management application, for example
on top of an open management platform such as HP OpenView or CA Unicenter. The most
important modules in this architecture are the "Definition, Transformation, and Conflict
Resolution Module®, the "Enforcement Module” and the "Monitoring Module“. The end
product of the policy transformation and conflict resolution are management scripts which
define how existing management tools, agents, functions, or services are to be used to
enforce and monitor the policy.

However, it should be noted that policies are very dynamic, both in terms of the goals they
must enforce and the methods (management functions) they may use to achieve their
goals. Hence, the enforcement of policies is not something one can define or derive once
and code in some programming language. Policy enforcement is dynamic in that it responds
to changes in the environment and is interdependent with other policies acting on the same
or related resources. For example, keeping software versions of business applications (e.g.,
MS-Word, Excel, etc.) up to date by automatic software distribution can be realized by
distribution lists in different software servers. However, permanent changes within the
environment requires frequent updates of these distribution lists. The deployment of
intelligent agents in the environment can ease this tedious process of interpreting and

enforcing policies specifying when and where to distribute distribution lists to. The previous
implementation of the policy architecture is not distributed [WIES95a], policies are not
interpreted and thus require recompilation in order to be changed. This paper addresses
exactly these points by applying the concept of intelligent agents for the distributed and
flexible realization of the policy architecture avoiding policy conflicts and utilizing the
"flexibility" of intelligent agents.

User Interface | Policy
Support
System

Policy Definition,
Transformation, and
Conflict Resolution

A

li Poli
Em%?cé%ent Mor?itlc():ying
Module <] Module
A A A
<]
>
D
] -~
MIB/MIF —T = 3
3
>
«Q
0]
=)
Managed Resource

L Enforcemen

t
Monitoring Functionality
Reporting

Figure 1: A simplified View of the Policy Architecture

In the above example, the intelligent agents identify the need for a new version of software
based on the date the user last used the specific software product. If the user has not used
MS-Word for more than four months, a new version is not installed on the user’'s workstation
in advance, but only on demand. This scenario can be enforced by intelligent agents.
Depending on the frequency of usage, the agent could also automatically decide to choose
a fixed license for the new version of the product rather than a floating license, (i.e., if the
software product is not used very extensively, there is no need for an expensive floating
license and a fixed license will be sufficient.) This policy at a lower and interpretable level of
specification could have the following format (see also [NEWI96]:

if (applicationSW.name == "Word" .and. applicationSW.version == "7.0"
O applicationSW.request _license("Word",“7.0") == true)
then
if (applicationSW.frequency of use("Word",“7.0“) <= 5 (* usage per month *)
O applicationSW.frequency of use("Word","7.0") == not_used_in_last_month)

then
(applicationSW.allocate _license("Word",“7.0“)->number :=
applicationSW.allocate_license("Word*,“7.0“)->alloc_table(IP_Adr,ul);
applicationSW.allocate_license("Word*,“7.0*)->user := ul;
applicationSW.allocate _license("Word*,“7.0")->type := "fixed";)

else
(applicationSW.allocate _license("Word",“7.0“)->number :=
applicationSW.allocate _license("Word*,“7.0)->allocate_float(next_free);
applicationSW.allocate_license("Word*,“7.0*)->user := ul;
applicationSW.allocate _license("Word*,“7.0")->type := "float*;)

end:;

end:;

If necessary, the existing management agent may be extended with policy specific
functionality such as engines to interpret enforcement or monitoring scripts. By making use
of the idea of "management by delegation" [GOLD96] the load on the manager is
transferred to the managed systems.

A different example, where feature interaction [POAT96, BRAT94] of agents can also be
used is the following: an intelligent agent (e.g., Microsoft's SMS agent, Tally’'s NetSensus
agent) detects that a new machine has been introduced in the distributed system
environment. The feature of automatically detecting a system leads to a delegation of
configuration tasks to other agents in the network, such as for updating software on the
other systems, reconfiguring the firewall, informing the name and directory server, etc.

2.2 Intelligent Agent Framework

Centralized realization of management applications reveals a number of problems that
indicate the need for distributed and flexible realization of existing management practices.
In order to reduce network traffic and to increase the reliability and effectiveness of the
management system, a hierarchical, distributed management architecture is necessary.
Such an approach requires distribution of functionality across the managed environment.

The same applies to management policies. The realization of systems responsible for the
enforcement and monitoring of policies requires a distributed approach as well. This
distribution is imposed by the same reasons that impose distribution in most (management)
applications. The organization of different domains with different types of policies applying
to them is another argument towards a distributed realization.

Besides this, due to the dynamic nature of management policies, it is necessary for the
system to be dynamically adjustable to new requirements. This includes new policies
resulting from requirements that could not have been anticipated during the management
system design phase. The realization of these policies should be done in the most effective
way regarding resources usage, speed, traffic, and cost. As a result of the dynamic nature
of policies, we have the need to update monitoring and enforcement rules to adapt to new
requirements.

Delegation of functionality from a manager to selected management entities in the
distributed system enables hierarchical, distributed management. Dynamic delegation
allows a management system to be adjusted to changes and/or new requirements at
system runtime, i.e., be flexible. Dynamic delegation of functionality can be realized with the
Management by Delegation paradigm [MEBS95, GOYE95] or language-based mobile
agents. The dynamic approach involves delegation of functionality at management
application operational phase. This means that the functional parts to be assigned to the
remote agents are sent there while the systems are running and are dynamically
incorporated to the agents’ normal operation.

Policy Server

User Interface
Administration

!

Juaby
JUELITEIN

Policy Definition
Transformation, an
Conflict Resolution

<—

by
BUELITTRIT]

Policy Definition
Transformation, and
Conflict Resolution

|

Policy

>
=—>
=—>

Enforcement
Module

Monitoring
Module

Enforcement
Module

Monitoring
Module

by
wabijaug

Juaby
wabijaug
Juaby
uabijjaug
by
_ | juabidug

Policy

Policy

Policy

Figure 2: A distributed Policy Architecture

The concept of Intelligent Agents and specifically their flexibility in terms of their ability to
dynamically expand their functionality allows the hierarchical, flexible realization of
management policies. The policy architecture presented in the previous section allows the
implementation of such a policy support system. However, applying the concept of IAs
within this architecture requires a number of additions to the management infrastructure.

First of all we need to decide which parts of the policy support system can be delegated to
the managed systems. From the building blocks of the policy support system, it is obvious
that the Policy Enforcement and the Policy Monitoring modules are good candidates for
delegation. Therefore we could assign those tasks to IAs for each domain. The number of
IAs used depends on the number and types of policies respectively. The same could be
done for the Policy Definition, Transformation and Conflict Resolution Module. An IA could
undertake this task for each domain taking care of domain specific properties such as
available agents, monitoring or metering tools, etc.

The decision of what to delegate brings up the question of where to delegate functionality
to. A precondition for the execution of the delegated functionality is that the managed
systems have the infrastructure to receive and execute it. The new notion introduced as a
result of the delegation is the flexible agent. This is an agent whose functionality can be
dynamically enhanced with new management functionality and can communicate not only
with the manager but also with other management agents (e.g. SNMP agents or other
flexible agents). A flexible agent consists of the delegated functionality and the execution
engine for it. Agents possessing the above properties incorporate a specific form of
intelligence. An overview of these agents and an analysis of the resulting requirements on
management architectures is given in [MODR96]. In this way we end up with the
architecture depicted in Figure 2.

For every domain there is one IA for Policy Definition, Transformation and Conflict
Resolution, and a number of IAs with the functionality of the Policy Enforcement and Policy
Monitoring Modules respectively. We will call the |1As for the realization of the Enforcement
and Monitoring Modules PEAs and PMAs correspondingly. This enables the parallel
execution of these in the different domains.

The decision to split the Policy Enforcement and Policy Monitoring Modules to the PEAs
and PMAs (instead of having just one performing both tasks) is due to the different type of
functionality they incorporate and the fact that this way we have a better structure of the
system. The same PEAs can be used by many other PMAs and the corresponding IAs are
less bulky. This is a modular approach that allows the easy accommodation of changes.
Since a PEA might be used by many different PMAs it makes sense to keep them
separated and "shared" among the different PMAs. They are reusable and parameterisable.
If a PEA that is used from many different PMAS changes, then we all need to change that
and the rest of the system remains the same. Otherwise, if we had kept them together then
all corresponding PMAs would have to be updated.

PMAs need a mechanism to know which PEAs to call for the enforcement of the policies
and communicate with them.

New requirements imposed on the system - reflected to new policies - can then be
dynamically sent to the IAs. This enables the creation of new and/or update of existing
Policy Enforcement and Policy Monitoring rules as well as Definition, Transformation and
Conflict Resolution rules. These rules are handled by an execution engine in each IA. The
IA architecture to meet the above requirements is depicted in Figure 3.

N

(3\

Intelligent

Agent | Interface |

| Execution engine |<>-<>

()

Communication
Interface

SN

to other 1As to SNMP agents

| User Interface |

Policy Server

Administration |

Solution Base

Figure 3: Intelligent Agent Architecture

The distributed realization of the management policies imposes new requirements on the
policy server too. Due to the fact that the policy Monitoring and Enforcement rules are
dynamically distributed among the PEAs and the PMAs the policy server needs to take the
following into account:

* Which policies are transformed, enforced, and monitored by which IAs. This requires an
administration unit on the manager for the delegated functions and for the handling of
results (as shown in Figure 2 and Figure 3). The information kept in the administration
unit consists of the functions that have been delegated, where they have been sent and
what their status is (i.e., running, suspended). If there are more systems involved in the
delegation, which is usually the case for different domains, then the usage of one or

more traders, keeping information on which manager has delegated what type of
functionality to which flexible agent, seems to be more appropriate.

 The manager should also possess the ability to remotely control the execution of the
delegated functions. That is remotely suspend, abort, stop, reinitiate a policy.

» Conflicts among policies realized by different 1As. For this purpose we would need a
global Conflict Resolution Module to handle inter-domain conflicting policies.

» Dependencies on management policies. If something changes on the monitoring rules
for one IA, how does it affect the others or the enforcement rules?

After the functionality has been distributed in the system and when more than one systems
are involved, there is the question of how they communicate with each other and how the
overall operation of the system is coordinated. How do PMAs know where the correct PEAs
they need to invoke for the enforcement of a specific policy are located? For this purpose
the trader concept is also applicable. The PEAs and PMAs export their services to the
trader and they can be used by other IAs.

2.3 Realization of the framework

So far in this paper we took a top-down approach for the development of a model enabling
a flexible and distributed realization of management policies. This consists of a humber of
flexible agents that are responsible for the enforcement and monitoring of policies in the
different domains. The corresponding requirements to the policy architecture have been
specified along with the architecture of the agents and the communication models.

The framework in [STRO96] provides a configuration server and policy server for domain
and policy definition, implementation and maintenance purposes. This mapping of the policy
architecture to the framework applying intelligent agents is outlined in Figure 4. The
Configuration Server operates from a domain perspective. The environment is configured in
terms of domains with a set of "intelligent* agents implementing the policies applicable to
that domain. The Policy Server is used to control policies in the domains it is responsible
for. The Policy Server will notify an IA when the policies, attached to the domain it is
responsible for, change.

The functionality provided by the modules (Policy Enforcement Module, Policy Monitoring
Module and Policy Definition, Transformation and Conflict Resolution Module) is distributed
to the IA-level of operation. The Policy Server will ensure that the policies are distributed to
the correct IAs to be refined and checked for conflicts. This will happen in a dynamic
fashion, when the IA is ready for an update of its policies.

The existing monitoring functionality of the managed resources can be used by intelligent
agents to monitor the policies enforced upon a certain domain's Managed Objects (MOs). In
[STRO96] the objects that provide functionality to be used by intelligent agents to enforce or
monitor policies are called Solution Service Object (SSO). There are two classes of SSOs,
one for monitoring and one for enforcement. In the current implementation the two classes
were realised in one object. When the functionality gets more complex, they can be
separated. The las will obtain access to the SSOs via a Directory Server and a Trader. The
SSOs will register themselves at the Trader. A reference to the applicable SSO for a
specific policy will be provided by the Directory Server.

For the implementation of this architecture different approaches can be taken. The
framework proposed in [STRO96] meets the requirements we have identified through our
top-down analysis. However, other approaches are also possible. The authors believe that
Web and Java technologies can be applied very successfully in the implementation of the
Policy Server's User Interface and Administration functionality. This also applies to the User
Interfaces of the Configuration Server. Furthermore, the agents could be implemented as

JavaBeans. The Java RMI (Remote Method Invocation) will be used for inter-communication
between the agents (JavaBeans). E.g., the Policy Definition, Transformation, and Conflict
Resolution IA will use the RMI to communicate with the Policy Enforcement Module 1A and
the Policy Monitoring Module 1A. The Java IDL (IlIOP) will be used for communication
between JavaBeans and CORBA objects (e.g., SSOs). | this scenario, it is important to
recognize that Java be seen as a client (user interface) technology, whereas CORBA is a
server technology”.

)
(@)
i User Interface | o
{ Policy Server <> =1
=
c
=
.
o
=}
w
@D
=
s
N . Intelli t Policy Definition, =
Intelligent Policy Definition, nietiigen Transformation, and
Transformation, and Agent Conflict Resolution
Agent Conflict Resolution

VN

7
(

B
(
Intelligent Policy Intelligent Policy
Enforcement Monitoring
Agent Module Agent Module

Trader and -)
Directory Server Domain A

=7

Solution Service
Management Agen Objects (SSOs)

Domain B

Figure 4: Mapping the Policy Architecture to the Framework using Intelligent Agents

3 Assessment of the proposed architecture

After having described how the policy architecture to enforce network and systems
management goals and objectives can be realized using intelligent agents, we will nhow
discuss the characteristics of the proposed architecture such as the decide-and-delegate or
the provisioning of well-defined policy enforcement code. We will also outline several
aspects of the Intelligent Agents technology, that promote the proposed concepts.

3.1 Characteristics of the system

The above concept in combination with the framework by [STRO96] provides the following
major characteristics:

! Nothing prohibits one from using Java on a large server if a Java interpreter is available for that specific server
OS. However, we believe that Data Center managers will not allow applets to be downloaded to machines
without being rigorously tested and thereby loosing most of Java’s power. The security issues also have to be
overcome first. In the client (user interface) world every individual user accepts responsibility to his/her
machine. The client side is therefore much more dynamic and Java will be very powerful and successful in
this area.

Provisioning of policy enforcement code in a standardized way:

policy enforcement code is provided by means of the SSO concept, i.e., IAs accessing
enforcement and monitoring functionality through traders. New enforcement code will be
provided by (simply) creating a new SSO (by encapsulating the required code in the
SSO0), and registering it at the trader. Alternatively, the changed enforcement code may
be downloaded to the SSO and embedded in the extensible agent. The SSO will only be
registered after stringent quality assurance procedures, to ensure that the SSO does
what it is supposed to do.

Provisioning of policy monitoring code in a standardized way:

policy monitoring code is provided by means of the IA concept. The IA framework
proposed in [STRO96] provides a rulebase for the implementation of low-level policies.
The monitoring part of the (low-level) policies will be specified as rules. For the software
versions example used in Section 1, the following could be a rule implemented in an 1A’s
rulebase: "If MS-Word NOT_USED_IN_LAST_MONTH then Execute FixedLicenseSSO."
This rule could easily be changed by downloading a new rule (or set of rules) to the IA’s
rulebase, should changes be made to the IT department’s business policies. The update
of the policy (rule) will be initiated by the policy server. The policy server will send a
notification to the 1A to update its policies. The IA will then, at its earliest convenience,
download the changed policy to its rulebase, to reflect the change in the IT department’s
business policy.

Decide-and-delegate approach to the implementation of policies:

the combination of the IA and SSO concepts to implement the policy architecture
proposed above, results in a decide-and-delegate approach to the implementation of
policies. The IA decides (based on received events, etc.) what to do and then delegates
the task of doing it to an SSO. This approach has the advantage that an IA does not
become bulky due to the fact that it only makes use of policy enforcement or monitoring
code (embedded in an SSO and therefore physically independent from the 1A) when
needed. The IA does not have to "carry” code with it that it does not use often. This also
results in lightweight 1As, which is an important requirement from a systems management
perspective. Current implementations of IAs taking up 30% of the CPU are just not
acceptable. The separation of the actions that enforce and monitor policies (realized as
SSO0s) from the actual IA is a major advantage that also differentiates our approach from
similar approaches. We also make use of a "pull' model for the delegation of
management policies, which makes the agents more autonomous, by allowing them to
get the functionality they need whenever they decide it is necessary. This is a more
flexible approach than the corresponding "push" model (which is nevertheless still
supported by the architecture).

3.2 Aspects of Intelligent Agent Technology supporting the Implementation

The main intelligent agent characteristics supported by the framework proposed in Section
2.2 are:

Autonomy:

The 1A's autonomy results from the application of rules, implementing low-level policies.
For illustration purposes again consider the following rule: "If MS-Word NOT_USED_IN_
LAST_MONTH then Execute FixedLicense". The IA will make an autonomous decision
based on the current state of the IA's environment, and execute the FixedLicense if the
condition of the rule is true for the domain within which the 1A operates. It should be
noted that the IA could make use of an SSO (TestAppUsageSSO), with "MS-Word" as
parameter to determine the extent to which the application has been used over the last
month.

Re-activeness:

The IA’s re-activeness also results from its application of rules. In response to changes
that occur in the IA’s domain, it makes a decision and reacts accordingly. Assuming that
from May 10 until June 9 MS-Word was not used by the specific user and that the last
day of use was May 9, then on June 10 the condition (MS-Word
NOT_USED_IN_LAST_MONTH) becomes true and the rule fires. The IA thus reacts to
changes in its domain of responsibility.

Social Ability:

Agents used for policy enforcement can communicate and exchange information with
other agents to enforce for example a common strategy requiring several cooperating
agents. In the previous policy example for license allocation strategies, IAs could
communicate with each other to optimize their allocation strategy, e.g., agents within a
specific domain (e.g., corporate business unit) could "talk" to each other and exchange
information on the availability of floating licenses from certain servers, the stability of
these servers or the success rate when requesting licenses. They could even share
information on alternative license servers within their domain or outside their domain in
other departments including the prices for floating licenses. Hence, 1As do not need to be
told by managers which server to request licenses from, but rather share information with
other agents to fulfill an overall goal. In other words, the social ability to communicate
provides a mechanism to tell agents the goal and not the method by which to achieve the
goal.

Flexibility:

Finally one of the most important properties of the 1As as specified in our model is their
ability to dynamically expand their functionality. This enables us to adjust the agent
functionality to new requirements imposed on the system without having to reprogram it.
Besides, due to the separation of the Policy Enforcement Rules from the Policy
Monitoring Rules it is easy to update the former without having to update the latter and
vice versa. In this way we get a dynamic and easily adaptable system. The goal is that
agents do not possess predefined functionality but according to the situation this
functionality can at system run time be dynamically enhanced, modified or deleted.

4 Implementation Aspects

A CORBA-based prototype-implementation of the framework has been done at the
University of Pretoria, South Africa, using IONA Technologies' Orbix product. As work is still
in progress, the information provided is not complete at this point in time. So far, a relatively
straight-forward mapping of the framework [STRO96] to Orbix has been achieved. l.e., the
intelligent agents, the "simple“ agents, and the trader are implemented as dynamic objects
in the environment.

The following happens when the implementation, depicted in Figure 5, is activated:

1.

The IA obtains the Trader's address by sending a message to the Configuration Server's
getTraderaddress method.

. The IA obtains the Directory Server's address by sending a message to the Configuration

Server's getDSaddress method.

. The SSOs obtain the Trader's address by sending a message to the Configuration

Server's getTraderaddress method. On receiving the address from the Configuration
Server, the SSOs export their services to the Trader by sending a message to the
Trader's export method, with two parameters: a name for the service it provides (service)
and the SSO's address (object reference.)

4. At any point in time, the Configuration Server can be used to add an entry to the
Directory Server. The put method, with two parameters, is provided for this purpose.
After the actions described in points 1, 2 and 3 are performed, the IA is ready to receive
events from its environment. Upon receipt of an event, the IA will look up the service
addressing the specific event (by means of the Directory Server), obtain the appropriate
SSO’s object reference from the Trader, after which the functionality provided by the
SSO is executed. At this stage of the implementation, the SSO is programmed to only
print a message to standard output.

Configure

Policy Server Configuration Server

P4 &

string getTraderaddress() al
7 i

string getDSaddress() /

Configure Trader / I

strlng getTraderaddress()
/ SSO i port(se rvice) \\
v

export(seryice,SSO, ’
Intelligent Agent ,
/
\ y
short solve(parameter) p

service find(event) -
put(event,service)

Directory
Server

Figure 5: Implemented Infrastructure

As described above, all code written so far only implements the base for further
implementations. The next step is to add the policy-dimension to the prototype
implementation by means of the Policy Server. The limiting factor in the current CORBA
based implementation is that the |1As can only be implemented as primitive objects. Thus, to
add "intelligence" to the 1A, a major compromise will be made regarding the implementation
of rules (which represent low-level policies) by the objects representing 1As. According to
the current design and to add the intelligence to the IAs, a matrix will be used by the 1As to
store their rules (i.e., rules will be implemented as rows in a matrix.)

The execution engine (embedded as part of the 1A’s code) will match the events, received
from within its domain, against the conditions of the rules in the IA’s matrix. A rule will fire
when a match is found for the event received. The result of the rule being fired is that a
certain action will be taken, which is typically implemented by means of an SSO.

It should be noted that the Policy Server will maintain a global index of rule-matrices for all
applicable domains, where as the IA will maintain a local matrix of rules for the domain
under its control.

Different operations will be made on the matrix in order to add, delete and update the
policies implemented by the specific IA. Matrices and rules will typically be processed in the
following way:

* Rules will be added by adding rows to the matrix
* Rules will be deleted by deleting rows from the matrix
* Rules will be changed by overwriting an existing row with a new one

Referring back to the software version management example introduced in Section ???, the
following shows the applicable rule that is stored in a matrix with numerous other rules:

Rule Name: Word License request

Condition 1: applicationSW.name = "Word"

Condition 2: applicationSW.version = "7.0"

Condition 3: applicationSW.request_license ("Word", "7.0") = true
Action: Test_App_Usage

The Test_App_Usage action will consist of the if-then-else statement defined in section 2.1.
So, whenever a request for a Word license occurs, the Word license request rule will fire.
One can almost think of Word license requests as events that occur. The testing and
allocation will be delegated to an SSO implementing the functionality of the
Test_App_Usage action.

It should be noted that an SSO (TestAppUsageSSO, introduced in Section 3.2) can be
scheduled once a day to monitor the usage of applications within a specific domain of
users. As soon as it detects that MS-Word has not been used by the specific user over the
past month, it forwards the MSWord_NOT_USED_IN_LAST _MONTH event to the IA. When
the IA receives the event, it looks up the matching action (FixedLicenseSSO.Activate()) and
invokes it.

This implementation is not yet ideal, but it has the advantage that a standard platform is
used for realizing the framework. No proprietary technologies are required to implement the
framework.

Another advantage to the CORBA-based implementation is that in the application
management context, it will be quite easy to instrument applications by means of "simple“
agents, which are implemented as CORBA-objects. The application will communicate status
information to the agents, which will be interrogated by IAs. Legacy applications will be
instrumented for management by encapsulating certain pieces of the legacy infrastructure
(code) by means of SSOs. Integration with the Application Monitoring MIB, currently being
defined by one of the IETF sub-groups, will be provided. An SSO will typically act as an
element-level agent, used to obtain the information represented in the MIB. This is currently
being investigated as one of the sub projects which focuses on Application Management.

5 Conclusions and Future Work

The term Enterprise Management already suggests that network and systems management
can no longer exist on their own but need to take business aspects into account.
Management policies provide an effective mechanism to enforce such management goals
in distributed network and system environments. With the growing heterogeneity and

complexity of these environments, it becomes increasingly important to relieve network and
system managers from tedious tasks and raise the level of abstraction by adding
"intelligence" to the management resources and applications. Intelligent agents have proven
to add this intelligence to managed devices.

Based on the policy architecture presented, this paper has shown how the intelligent agent
technology can be deployed to enable the enforcement of policies in distributed
environments. We have also shown, that the ideas presented can be realized using
standardized mechanisms such as CORBA. Through the prototype-implementation,
especially of the SSOs and an SSOManager, further experience with this approach will be
gained in the near future.

Further work will focus on the reusability of our agent code in terms of inheritance to other
agents and in terms of code delegation. Furthermore, we will extend the monitoring ability of
our implementation to cater for advanced pro-active policies.

Acknowledgments

The authors wish to thank Prof. Morris Sloman of Imperial College London and the
members of the Munich Network Management Team for fruitful discussions and valuable
comments to preliminary versions of this paper. The MNM Team directed by Prof. Dr. Heinz-
Gerd Hegering is a group of researchers of the University of Munich, the Technical
University of Munich, and the Leibniz Supercomputing Center of the Bavarian Academy of
Sciences. The authors would also like to extent their thanks to the students, Nico de Jager
and Marne Karsten, at the University of Pretoria, responsible for the current implementation
of the CORBA-based prototype.

References

[BEYU 93] Lawrence Bernstein and Christine M. Yuhas, "Truce in Protocol Wars", Journal of Network and
Systems Management, 1(2), June 1993.

[BRAT 94] K. Braithwaite and J. Atlee, "Towards Automated Detection of Feature Interaction”, In Proceedings of
the Second International Workshop on Feature Interaction in Telecommunications Software Systems,
January 1994.

[FFMK 92] T. Finin, R. Fritzson and D. McKay, "A Language and Protocol to Support Intelligent Interoperability",
Proceedings of the CE& CALS Conference, Washington, June 1992.

[FFMM 93] T. Finin, R. Fritzson, D. McKay and R. McEntire, "KQML: an Information and Knowledge Exchange
Protocol”, Proceedings of International Conference on Building and Sharing of Very Large Scale
Knowledge Bases, December 1993.

[GOLD 96] German Goldszmidt, Distributed Management by Delegation, PhD thesis, Columbia University,
1996.

[GOYE 95] G. Goldszmidt and Y. Yemini, "Distributed Management by Delegation", In Proceedings of the 15th
Interna-tional Conference on Distributed Computing Systems, June 1995.

[HNGU 94] H.-G. Hegering, B. Neumair and M. Gutschmidt, "Cooperative Computing and Integrated System
Management-- A Critical Comparison of Architectural Approaches"”, In Manu Malek, editor, Journal of
Network and Systems Management, volume 2, pages 283-316, Plenum Publishing Corporation, October
1994.

[INM-1V 95] Yves Raynaud and Adarshpal Sethi, editors, Proceedings of the 4th International Symposium on
Integrated Network Management, Santa Barbara, IFIP, Chapman and Hall, May 1995.

[IWSM-1I 96] IEEE, Proceedings of the IEEE Second International Workshop On Systems Management,
Toronto, Ontario, Canada, June 1996.

[KASE 94] Pramod Kalyanasundaram and Adarshpal Sethi, "Interoperability Issues in Heterogeneous Network
Management”, In Manu Malek, editor, Journal of Network and Systems Management, volume 2, pages
169 - 193,Plenum Publishing Corporation, June 1994.

[KOCH 95] Thomas Koch, "Rule Base Management Architecture with Smart Agents", In International Workshop
on Services for Managing Distributed Systems, IITB, [ITB, Karlsruhe, Germany, September 1995.

[LEWI 95] L. Lewis, Managing Computer Networks, Artech House Publishers, 1995.[LUSL 96] Emil Lupu and
Morris Sloman, "Towards a role based Framework for Distributed Systems Management", In Manu
Malek, editor, Journal of Network and Systems Management, Plenum Publishing Corporation, 1996.

[MASL 96] D. Marriott and M. Sloman, "Implementation of a Management Agent for Interpreting Obligation
Policy", In Proceedings of the IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management, L’Aquilla, Italy, October 1996.

[MEBS 95] K. Meyer, M. Erlinger, J. Betser, C. Sunshine, G. Goldszmidt and Y. Yemini, "Decentralizing Control
and Intelligence in Network Management", In [INM-IV 95].

[MODR 96] M. A. Mountzia and G. Dreo-Rodosek, "Delegation of Functionality: Aspects and Requirements on
Management Architectures”, In Proceedings of the IFIP/IEEE International Workshop on Distributed
Systems: Operations & Management, L'Aquilla, Italy, October 1996.

[NEWI 96] B. Neumair and R. Wies, "Applying Management Policies to manage Distributed Queuing Systems",
In Distributed Systems Engineering Journal, Special Issue on Distributed Systems Management, 1996.

[POAT 96] K. Pomakis and J. Atlee, "Reachability Analysis of Feature Interaction: a Progress Report ", In
Proceedings of the International Symposium on Software Testing and Analysis, January 1996.

[PORT 85] Michael E. Porter, Competitive Advantage, Free Press, 1985.

[SLOM 94] Morris Sloman, Network and Distributed Systems Management, Addison-Wesley, June 1994.

[SLOM 95] Morris Sloman, "Policy Driven Management for Distributed Systems", In Manu Malek, editor, Journal
of Network and Systems Management, volume 2, pages 333-360, Plenum Publishing Corporation, 1995.

[STRO 96] P. Steenekamp and J. Roos, "Implementation of Distributed Systems Management Policies: A
Framework for the Application of Intelligent Agent Technology", In [[WSM-II 96].

[WIES 95a] R. Wies, "Management Policies: Mapping Policy Specifications to parameterized Descriptions of
Management Capabilities”, Proceedings of the Second Workshop of the HP OpenView University
Association, University of Munich, March 1995.

[WIES 95b] R. Wies, Policies in Integrated Network and Systems Management: Methodologies for the
Definition, Transformation, and Application of Management Policies, PhD thesis, Universitat Miinchen,
June 1995.

[WOJE 95] M. Wooldridge and R. Jennings, "Intelligent Agents: Theory and Practice", submitted to: Knowledge
Engineering Review, January 1995.

