
Tiny Internet Project

Bruno Quoitin

January 2, 2008

1 Introduction

The objective of this lab session is to model a complex interconnection of networks. For this
purpose, you will rely on the C-BGP simulator [QU05, Quo07], a software tool developped at
UCL1. The model you will build requires the complete configuration of several routers belonging
to multiple network domains. This configuration mainly includes the following elements: (1).
the physical topology of the network, (2). the intradomain routing protocol configuration as well
as static routing setup if needed, (3). the configuration of BGP routers to achieve interdomain
connectivity and enforce the business relationships among the participating domains by using
routing filters.

In addition to building the network model, you need to provide a detailled report that describes
your design choices. For instance, we do not provide the IGP weights of the links. You have to
provide them and motivate your choices. The report should also contain a description of how
you validated your setup. For instance, how do you ensure that the routing corresponds to your
predictions.

This document is organized as follows. Section 2 describes the Tiny-Internet topology. Then,
Section 3 briefly explains how the modelling tool works. This section also details step-by-step how
to describe the Tiny-Internet in the modelling tool’s language.

2 Topology

The topology of the Tiny-Internet internetwork2 is shown in Fig. 1. The topology is composed of
9 different domains. A brief description of the domains is provided in Table 1. This table lists the
function of each domain as well as its ASN and the prefixes it owns. Depending on their function,
all the domains do not behave equally in the topology and this has an impact on how routing
information is exchanged.

First, there are commercial networks such as BigCarrier, Spring and iCompany. Then we have
non-profit networks such as Abilene, GEANT, BELNET, CERN and university networks: UCLA,
UCL and ULg. The commercial company iCompany, the university networks and CERN are stub
networks. They only contain sources and sinks of traffic but they don’t provide a transit service
to other networks. To the opposite, transit is the core business of the BigCarrier and Spring net-
works. Abilene, GEANT and BELNET are special transit networks. They are government-funded
networks and they only provide connectivity among non-profit networks (such as universities). We
will consider for this lab session that there is one exception: GEANT will provide a commercial
transit service to CERN since it has no other mean to reach the commercial Internet destinations
such as iCompany.

One important objective of this lab session is the configuration of routing policies to con-
strain the propagation of routing information among domains in conformance with the business
relationships described above. You can obtain more information on the link between business

1C-BGP is freely available from http://cbgp.info.ucl.ac.be.
2The Tiny-Internet setup is inspired from the real Internet, however, any resemblance to existing network names

is purely coincidental.

1

R2 R3R1 R3 R4R1
R1 R2R1

BigCarrier
GEANTR1

BELNET

iCompany

R1 R1UCL ULg
UCLA

R2Abilene
R1CERN

70ms
10ms50ms 50ms 10ms12ms20ms40ms 5ms5ms60ms

65ms

R2 R2
5ms 5ms

R2

R2

R2R410msR4R310ms R175ms 70ms2ms R3R1 10ms10ms8ms2ms

5ms55ms

Spring

Figure 1: Network topology of the Tiny-Internet.

relationships and routing filters in [Gao00, GR00, CR05]. For example, your setup should prevent
the GEANT network to advertise to BELNET routes received from BigCarrier, since GEANT
is not allowed to provide a transit service for commodity Internet traffic to BELNET. Another
example is the case of CERN. Your setup should prevent traffic from transiting through CERN
as it is a stub network. This must remain true even in case of a link failure between Abilene
and GEANT. We do not list all the business relationships between the different domains but you
should be able to infer them from the above paragraph. You are invited to list in your report the
business relationships and how your routing policies are defined to enforce them.

Note that in real networks, it is also important to configure routing policies in a way that eases
future maintenance. One way to achieve such goal is through the use of BGP Communities. We
briefly discuss BGP Communities [CTL96, CB96, BQ03] in Section 3.3.

To build your network model, you will need to make several design decisions just as if you were
a network operator. You are of course free to refer to network design and configuration books to
learn about best operational practice. Some interesting references are provided at the end of this
text [Ste99, HP00, ZB03]. Do not forget to describe in your report the design decisions
you made and why.

An example of design decision is the assignment of IGP weights to the links. For each router in
each domain, you will need to assign an IGP weight. Tuning link weights allows you to influence
how the IGP selects shortest paths. You are completely free to select the IGP weights, however,
be aware that there are more clever link weight assignments than others. One possibility is to
select lowest delay paths. The delay along the links is provided in Fig. 1. We assume that the

2

Domain name ASN Description Prefix

BigCarrier 1 Commercial Transit Provider 1.0.0.0/8
Spring 2 Commercial Transit Provider 2.0.0.0/8
iCompany 200 Enterprise Network 2.1/16
Abilene 11537 US Research and Education Transit Provider 3.0.0.0/24
GEANT 20965 European Research and Education Transit Provider 4.0.0.0/24
BELNET 2611 Belgian NREN 4.1.0.0/24

1.1.0.0/24
CERN 201 European Research Institution 4.200.0.0/16

3.200.0.0/16
UCLA 52 University Network 3.1.0.0/16

2.2.1.0/24
UCL 65535 University Network 130.104.0.0/16
ULg 65534 University Network 139.165.0.0/16

Table 1:

links without a delay explicitly shown have a 1ms delay.
Note that in this lab session, all the domain networks will be operated by a single person

or group: you. However, you need to keep in mind that in the real Internet, these domains
are operated autonomously by different entities. In your configuration, you need to take that
into account and maintain a clear distinction between the configuration of each domain. For
example, it is not allowed to configure all the routers of the Tiny-Internet in a single IGP domain.

3 Modelling tool

In order to better understand the process of building a network model with the C-BGP simulation
tool, it is useful to learn some important facts. C-BGP is aimed at computing the outcome of the
routing protocols (in particular BGP) in large networks. C-BGP does not model the network at
the physical or link levels. For instance, it does not care about Ethernet segments and switches.
C-BGP only cares about the layer-3 adjacencies between nodes. Moreover, the model of the
intradomain routing protocol in C-BGP is static. That means that the computation of the IGP
routes is done in a centralised way based on the knowledge of the topology, without exchanging
information between nodes (as in IS-IS or OSPF).

To compute the routes in a network, C-BGP takes into account the network topology and
the configuration of all the routers. C-BGP is configurable through a CISCO-like command-
line interface. A summary of important C-BGP commands is provided in Section 3.2. When
configuring large projects, is is often more convenient to write a script that describes the simulation
setup. This setup includes several steps that need to be carried in a well-defined sequence. These
parts are described in more details in the following paragraphs.

The first step consists in describing the topology shown in Fig. 1. The topology is composed
of nodes (routers) and links. A node is created using the net add node X command while a link
is added using the net add link X Y D command. At the level of the “physical” topology, there
is no distinction between domains.

The second step consists in configuring an intradomain routing protocol in each domain. For
this, you need to specifiy to which domain each node belongs. In addition, you need to assign an
IGP weight to each link in each domain. To create an IGP domain, you need to use the net add
domain D igp command. Then, each node can be assigned to a domain by using the net node
X domain D command. You can assign an IGP weight to a link by using the net link X Y
igp-weight W command. This command assigns the weight in the direction X to Y. You can
assign the same weight to both directions by using the –bidir option. Finally, the IGP routes are
computed by running the command net domain D compute. In addition to IGP routing, it is

3

possible to configure static routes. This can be done with the command net node X route add
D G I W.

The final step consists in configuring BGP routers. To create a BGP router on one existing
node, use the command bgp add router A X. To add a BGP neighbor to a BGP router, use
bgp router X add A Y. You need to change the state of the session with each peer in order to
activate them. This is done with bgp router X peer Y up. Some neighbors will need routing
filters to enforce the business relationships among domains. Routing filters can be configured in
two directions: for incoming routes (routes received from the neighbor) and for outgoing routes
(routes advertised to the neighbor). Adding an inbound route filter can be done with the command
bgp router X peer Y filter in. The configuration of routing filters is detailled in Section 3.3.

3.1 Example

In order to help you write C-BGP scripts, this section provides a small but complete example of
configuration. The example topology is shown in Fig. 2. It is composed of two domains, each
containing 3 routers. In each domain, the routers are fully meshed. The links are all assigned an
IGP weight value of 1. Peering links are not configured in the IGPs; static routes are used instead.R1 R3 R2 R1 R3 R2AS1 AS2

Figure 2: Example topology.

===

AS1

===

Topology

net add node 1.0.0.1

net add node 1.0.0.2

net add node 1.0.0.3

net add link 1.0.0.1 1.0.0.2 0

net add link 1.0.0.1 1.0.0.3 0

net add link 1.0.0.2 1.0.0.3 0

IGP

net add domain 1 igp

net node 1.0.0.1 domain 1

net node 1.0.0.2 domain 1

net node 1.0.0.3 domain 1

net link 1.0.0.1 1.0.0.2 igp-weight --bidir 1

net link 1.0.0.1 1.0.0.3 igp-weight --bidir 1

net link 1.0.0.2 1.0.0.3 igp-weight --bidir 1

net domain 1 compute

BGP

4

bgp add router 1 1.0.0.1

bgp router 1.0.0.1

add peer 1 1.0.0.2

peer 1.0.0.2 up

add peer 1 1.0.0.3

peer 1.0.0.3 up

exit

bgp add router 1 1.0.0.2

bgp router 1.0.0.2

add peer 1 1.0.0.1

peer 1.0.0.1 up

add peer 1 1.0.0.3

peer 1.0.0.3 up

exit

bgp add router 1 1.0.0.3

bgp router 1.0.0.3

add peer 1 1.0.0.1

peer 1.0.0.1 up

add peer 1 1.0.0.2

peer 1.0.0.2 up

exit

===

AS2

===

Topology

net add node 2.0.0.1

net add node 2.0.0.2

net add node 2.0.0.3

net add link 2.0.0.1 2.0.0.2 0

net add link 2.0.0.1 2.0.0.3 0

net add link 2.0.0.2 2.0.0.3 0

IGP

net add domain 2 igp

net node 2.0.0.1 domain 2

net node 2.0.0.2 domain 2

net node 2.0.0.3 domain 2

net link 2.0.0.1 2.0.0.2 igp-weight --bidir 1

net link 2.0.0.1 2.0.0.3 igp-weight --bidir 1

net link 2.0.0.2 2.0.0.3 igp-weight --bidir 1

net domain 2 compute

BGP

bgp add router 2 2.0.0.1

bgp router 2.0.0.1

add peer 2 2.0.0.2

peer 2.0.0.2 up

add peer 2 2.0.0.3

peer 2.0.0.3 up

exit

bgp add router 2 2.0.0.2

5

bgp router 2.0.0.2

add peer 2 2.0.0.1

peer 2.0.0.1 up

add peer 2 2.0.0.3

peer 2.0.0.3 up

exit

bgp add router 2 2.0.0.3

bgp router 2.0.0.3

add peer 2 2.0.0.1

peer 2.0.0.1 up

add peer 2 2.0.0.2

peer 2.0.0.2 up

exit

===

Interdomain peerings

===

Interdomain links

net add link 1.0.0.2 2.0.0.1 0

net add link 1.0.0.3 2.0.0.3 0

Static routes for peering links

net node 1.0.0.2 route add 2.0.0.1/32 * 2.0.0.1 0

net node 2.0.0.1 route add 1.0.0.2/32 * 1.0.0.2 0

net node 1.0.0.3 route add 2.0.0.3/32 * 2.0.0.3 0

net node 2.0.0.3 route add 1.0.0.3/32 * 1.0.0.3 0

eBGP sessions in AS1

bgp router 1.0.0.2

add peer 2 2.0.0.1

peer 2.0.0.1 next-hop-self

peer 2.0.0.1 up

exit

bgp router 1.0.0.3

add peer 2 2.0.0.3

peer 2.0.0.3 next-hop-self

peer 2.0.0.3 up

exit

eBGP sessions in AS2

bgp router 2.0.0.1

add peer 1 1.0.0.2

peer 1.0.0.2 next-hop-self

peer 1.0.0.2 up

exit

bgp router 2.0.0.3

add peer 1 1.0.0.3

peer 1.0.0.3 next-hop-self

peer 1.0.0.3 up

exit

6

===

BGP routes

===

Originate network 1.0.0/24 from AS1

bgp router 1.0.0.1 add network 1.0.0/24

Originate network 2.0.0/24 from AS2

bgp router 2.0.0.1 add network 2.0.0/24

===

Simulation

===

Run the simulation

sim run

Perform a traceroute

net node 1.0.0.1 traceroute 2.0.0.2

3.2 Useful C-BGP commands

This section enumerates a large number of C-BGP commands that your setup will probably need.
For each command, a short description is provided along with the list of parameters.

• include F
Load and execute a C-BGP script from file F.

• net add node X
Create a new node with IP address X.

• net add link X Y D
Create a new link between nodes X and Y. An informational delay D is assigned to the link.
Note that D is purely informational and it is not taken into account during the simulation.
You can assign whatever value you want, it won’t affect the outcome of the simulation.

• net add domain D igp
Create a new IGP domain identified by D.

• net node X domain D
Assign node X to domain D.

• net link X Y igp-weight [–bidir] W
Assign weight W to the link X Y in the direction from X to Y. If the option –bidir is specified,
the weight is assigned in both directions. Otherwise, it is assigned only in the direction from
X to Y.

• net domain D compute
Compute the IGP routes in domain D. Basically, that means that C-BGP will compute
shortest path trees rooted at each node in domain D.

• net node X route add D G I W
Add a static route towards destination prefix D in node X. An optional gateway G can
be specified (replace by “*” if you don’t care). The output interface is I and the route is
associated with a weight W.

7

• net node X show rt
Show the content of node X’s routing table.

• bgp add router A X
Create a BGP router on node X. The router is configured as belonging to the BGP domain
A.

• bgp router X
Enter the context of router X.

• bgp router X add network P
Originate a prefix P from router X. This will cause the advertisement of BGP routes towards
this prefix to all the neighbors of this router.

• bgp router X add peer A Y
Add a peer Y which belongs to the BGP domain A.

• bgp router X peer Y next-hop-self
Configure the router to update the next-hop with its own address for routes received from
peer Y.

• bgp router X peer Y up/down
Open/close the session with Y.

• bgp router X show peers
Show the list of peers of a BGP router. This command will also provide the current state of
each BGP session (useful for debugging your setup).

• bgp router X show rib P|*
Show the content of the BGP routing information base for a single destination prefix (P) or
for all the destinations (*).

• bgp router X peer Y filter in/out
Create an input or output BGP filter for peer Y. See Section 3.3 for more details and a
complete example.

• bgp router X peer Y filter in/out add-rule
Add a rule to a BGP filter.

• ... match P
Define the matching predicate P for the routing filter rule. See Section 3.3.1 below for more
details.

• ... action A
Define the action A for the routing filter rule. See Section 3.3.2 below for more details.

• net node X traceroute Y
Traces the route from node X to the destination address Y. Note that the traceroute com-
mand requires reachability between X and Y in both directions.

• net node X record-route Y
Traces the route from node X to the destination address Y. It is not required that Y be able
to reach X in order for the record-route command to succeed.

• sim run
Run the simulation of the BGP convergence.

8

3.3 BGP Routing filters

An important part of the simulation setup concerns the configuration of routing filters. This
section explains what is a routing filter and how it is configured. Basically, a routing filter is a
sequence of rules. Each rule is composed of two parts: a predicate and an action. The predicate
describes to which routes the filter applies. An example of predicate is “all routes towards prefix
P”. The action part describes what must be done with the routes accepted by the predicate. There
are three main actions: deny the route, accept the route or change an attribute of the route. An
example of action is “set the value of the route’s local-preference to 100”.

In the following example, router 1.0.0.1 is configured to assign the local-preference 100 to all
routes received from neighbor 2.0.0.1.

bgp router 1.0.0.1

add peer 2 2.0.0.1

peer 2.0.0.1

filter in

add-rule

match "any"

action "local-pref 100"

exit

exit

exit

exit

A common way to configure routing filters in large networks is to rely on a special BGP route
attribute named “Communities”. Basically, the idea is to define classes of routes that must be
treated in the same manner. For example, it is possible to define the class of all the routes
received from customer networks. Technically, to do that, all the routes received from customer
networks are tagged with a community value. A community value is simply an integer number
that is associated with the route. A route can be tagged with multiple communities if it belongs
to different route classes.

In the following example, we assume that we have two border routers 1.0.0.1 and 1.0.0.2. Router
1.0.0.1 is connected to provider AS2 through router 2.0.0.1 while router 1.0.0.2 is connected to
provider AS3 through router 3.0.0.1. We do not want to provide transit through our providers.
Therefore, we need to avoid sending to one provider the routes received from the other one. We
show in the example how router 1.0.0.1 is configured to tag all the routes received from 2.0.0.1
with the community 1:1 and how router 1.0.0.2 relies on this community to avoid advertising these
routes to provider 3.0.0.1.

bgp router 1.0.0.1

peer 2.0.0.1

filter in

add-rule

match any

action "community add 1:1"

exit

exit

exit

exit

bgp router 1.0.0.2

peer 3.0.0.1

filter out

add-rule

match "community is 1:1"

9

action deny

exit

exit

exit

exit

The following sections list the filter predicates and actions supported by C-BGP. The predicates
are shown in Section 3.3.1 while the actions are in Section 3.3.2.

3.3.1 Predicates

• any
Match any route.

• prefix is P
Match routes whose destination prefix is exactly P.

• prefix is P
Match routes whose destination prefix is included in P.

• path RE
Match routes whose AS-Path matches the regular expression RE.

• community is C
Match routes whose Communities attribute contain the given community value.

3.3.2 Useful C-BGP Filter Actions

• accept
Accept the route.

• deny
Reject the route.

• local-pref L
Set the route’s local-pref to L.

• metric M|internal
Set the route’s multi-exit-discriminator to M or to the internal IGP weight.

• as-path prepend N
Prepend the route’s AS-Path N times.

• community add C
Add the community value C to the route’s Communities attribute.

• community strip
Remove the content of the route’s Communities attribute.

4 Summary

At the end of the project, we expect that you will provide the complete Tiny-Internet configuration
in the C-BGP scripting language. This configuration can be provided in a single or multiple files
(one per domain for example). In addition to this, we expect a detailled report where you describe
your design choices. This report must be no longer than 6 pages.

The deadline for this project is December, 17th 2007. Please package all your files in a single
.tar.gz archive with the following structure. The name of the archive must be tiny-internet-xxx.tar.gz

10

where xxx must be replaced by your group number. The archive must contain a single directory
named tiny-internet-xxx (xxx is your group number). In this directory, you must place your
report in PDF format. The name of the report must be report.pdf. In the same directory, you
must place a sub-directory named “config” that contains all the C-BGP scripts. All the script
must have the extension .cli. Your project archive must be uploaded on the iCampus website
under the section of your group.

If you have questions regarding this lab session, please use the iCampus forum first. If the
question remains unanswered, then send me an e-mail at bruno.quoitin@uclouvain.be. Make
sure you provide me enough details to understand your question (script, example, and so on). If
you need to meet me, please first contact me by e-mail in order to make an appointment.

Good luck !

Bruno Quoitin

5 Some questions to keep in mind

• Ensure that no traffic is allowed to transit through stub networks and more generally that
business relationships are enforced with routing filters. It is especially important to enforce
the valley-free property and route ranking (customer > peer > provider). See [Gao00, GR00]
for more details. Ensure that no commercial traffic is allowed to transit through the research
transit networks.

• Try to select lowest delay routes as much as possible...

• Validate the routing selection obtained. Does it match what you expected ? How would you
automate that check ?

• Determine what will happen if the link between X and Y fails ? Are you sure the business
agreements are still respected ? Example: links between Abilene and GEANT.

References

[BQ03] O. Bonaventure and B. Quoitin. Common utilizations of the BGP community attribute.
Internet draft, draft-bonaventure-bgp-communities-00.txt, work in progress, June 2003.

[CB96] E. Chen and T. Bates. An Application of the BGP Community Attribute in Multi-home
Routing. Internet Engineering Task Force, RFC1998, August 1996.

[CR05] M. Caesar and J. Rexford. BGP routing policies in ISP networks. IEEE Network
Magazine, 19(6), November 2005.

[CTL96] R. Chandra, P. Traina, and T. Li. BGP Communities Attribute. Internet Engineering
Task Force, RFC1997, August 1996.

[FB05] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with Static
Analysis. In Proceedings of the 2nd Symposium on Networked Systems Design and
Implementation (NSDI), May 2005.

[Gao00] L. Gao. On Inferring Autonomous System Relationships in the Internet. IEEE Global
Internet, November 2000.

[GR00] L. Gao and J. Rexford. Stable internet routing without global coordination. In SIG-
METRICS, 2000.

11

[HP00] B. Halabi and D. Mc Pherson. Internet Routing Architectures (2nd Edition). Cisco
Press, January 2000.

[MWA02] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP misconfigurations.
In Proceedings of ACM SIGCOMM 2002, August 2002.

[QU05] B. Quoitin and S. Uhlig. Modeling the routing of an Autonomous System with C-BGP.
IEEE Network Magazine, 19:12–19, November 2005.

[Quo07] B. Quoitin. C-BGP Routing Solver. http://cbgp.info.ucl.ac.be, 2007.

[Ste99] J. Stewart. BGP4 : interdomain routing in the Internet. Addison Wesley, 1999.

[Sys05] CISCO Systems. BGP Best Path Selection Algorithm. http://www.cisco.com/warp/
public/459/25.shtml, October 2005.

[ZB03] R. Zhang and M. Bartell. BGP Design and Implementation: Practical guidelines for
designing and deploying a scalable BGP routing architecture. CISCO Press, 2003.

12

