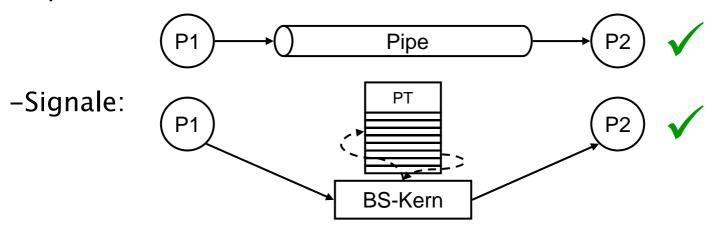


Systempraktikum im Wintersemester 2009/2010 (LMU): Vorlesung vom 07.01. – Foliensatz 7


Rechnernetze & Verteilte Systeme (T) Netzprogrammierung/Sockets (P)

Thomas Schaaf, Nils gentschen Felde

Interprozesskommunikation

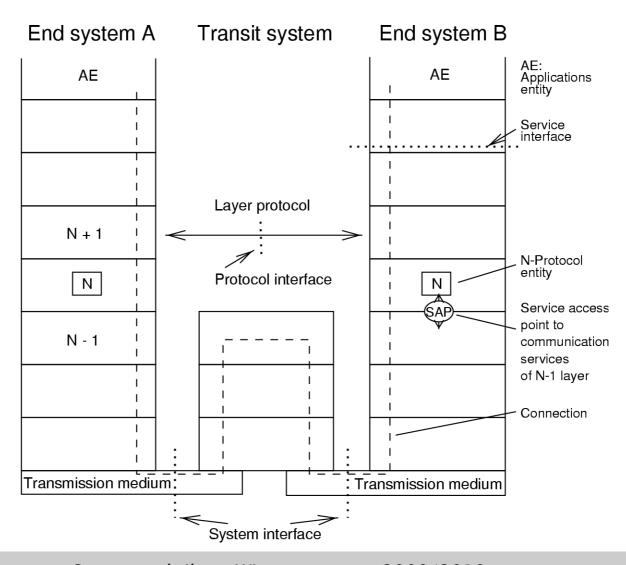
- · Überblick: Interprozesskommunikation (stark abstrahiert)
 - -Pipes und FIFOs:

-Speicherbasierte Kommunikation (Shared Memory-Konzept):

-Netzbasierte Kommunikation (TCP/IP):

Protokolle

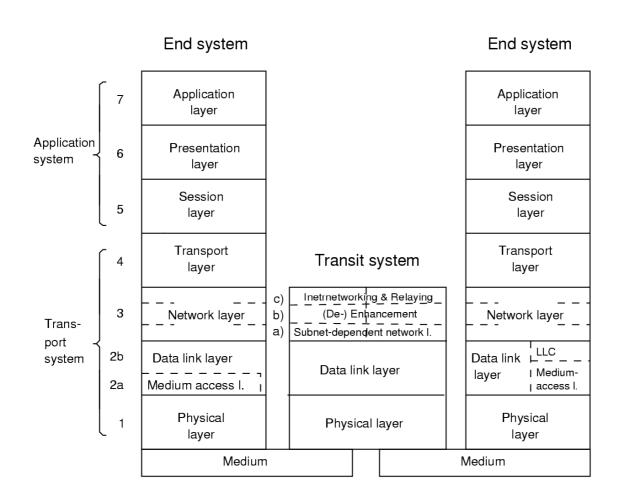
- · Protokoll definiert "Regeln für den Informationsaustausch"
- Teile einer Protokolldefinition:
 - -Verwendete Codes
 - -Nachrichtenlänge
 - -Nachrichtenformat
 - -Form der Adressierung
 - -Bestätigungen
 - -u.a.


Geschichtete Protokolle

- Geschichtete Protokolle
 - -Grundidee: Verschiedene Protokollebenen (statt ein allumfassendes Protokoll)
 - -Teilprotokolle:
 - Kümmern sich jeweils um einen bestimmten Teil der Kommunikation
 - Bauen aufeinander auf
 - Setzen bestimmte gegenseitige Schnittstellen voraus
 - -Geschichtete Teilprotokolle bilden einen Protokollstapel (Stack)
- Interoperabilität
 - -Konsortien/Gremien definieren herstellerübergreifende Standards/Normen
 - -Wichtige Gruppe: OSI (Open Systems Interconnection)

OSI-Architekturmodell

Das OSI-Schichtenmodell (1)


OSI

Transport Layer (Transportschicht) Network Layer (Vermittlungsschicht) Data Link Layer (Sicherungsschicht)				
Session Layer (Kommunikationssteuerungsschicht) Transport Layer (Transportschicht) Network Layer (Vermittlungsschicht) Data Link Layer (Sicherungsschicht)	7	'		
(Kommunikationssteuerungsschicht) Transport Layer (Transportschicht) Network Layer (Vermittlungsschicht) Data Link Layer (Sicherungsschicht)	6	1		
(Transportschicht) Network Layer (Vermittlungsschicht) Data Link Layer (Sicherungsschicht)	5	Session Layer (Kommunikationssteuerungsschicht)		
2 (Vermittlungsschicht) Data Link Layer (Sicherungsschicht)	4			
(Sicherungsschicht)	3	1		
Physical Layer	2	,		
(Bitübertragungsschicht)	1	Physical Layer (Bitübertragungsschicht)		

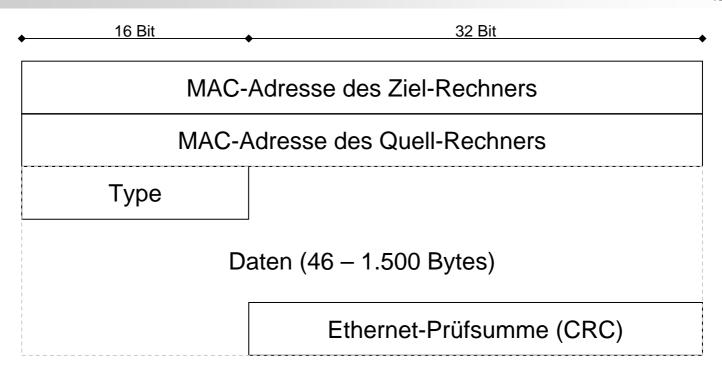
- Open System Interconnection (OSI) Basisreferenzmodell der International Standards Organisation (ISO)
- 7 Schichten (layers)
- Jede Schicht repräsentiert eine Funktion, kein Protokoll
- Kommunikation über Protokolle

Das OSI-Schichtenmodell (2)

- c) Global network layer
- b) Network adaption layer
- a) Subnetwork network layer

OSI- und Internet-Schichtenmodell

OSI		Internet
7	Application Layer (Anwendungsschicht)	
6	Presentation Layer (Darstellungsschicht)	Anwendungsschicht
5	Session Layer (Kommunikationssteuerungsschicht)	
4	Transport Layer (Transportschicht)	Transportschicht
3	Network Layer (Vermittlungsschicht)	Vermittlungsschicht
2	Data Link Layer (Sicherungsschicht)	Netzanschlussschicht
1	Physical Layer (Bitübertragungsschicht)	Netzanschlussschlicht


Ethernet

- Protokoll des Physical und Data Link Layers (Schichten 1 und 2)
- Spezifiziert in RFC 894
- · Identifikation über eindeutige MAC-Adresse
 - -6 Bytes lang
 - -Ersten 3 Bytes beinhalten Herstellerkennung
 - -Folgenden 3 Bytes sind fortlaufende Nummer
 - -Beispiel: 00:0A:E4: 12:C4:62 (Intel) (Nummer)
- Spezielle Adressen sind reserviertBsp.: ff:ff:ff:ff:ff für Broadcast
- Medienzugang nicht streng geregelt
 - -Jeder darf senden, falls er das Medium als frei betrachtet
 - -Medienzugangsverfahren CSMA/CD (Carrier Sense, Multiple Access, Collision Detection)

Der Ethernet-Header

Beispiele für den "Type"

-0800: Daten

-0806: ARP

-0835: RARP

 Prüfsumme: CRC-32 als Generatorpolynom

Repeater und Switches

- Repeater
 - -Arbeitet auf Netzanschlussebene
 - -Nimmt Signale auf, gibt sie an alle angeschlossenen Stationen weiter
 - -Verstärkung/Rekonstruktion der Datenimpulse
- Switch
 - -Ähnlich dem Repeater
 - -Filterung des Datenverkehrs nach MAC-Adresse
 - -Überprüft Pakete auf Korrektheit (CRC-Check)
 - -Vorteil: erhöhte Performanz
 - -Nachteile z.B. bei Fehlersuche

OSI- und Internet-Schichtenmodell

OSI			Internet	
7	Application Layer (Anwendungsschicht)			
6	Presentation Layer (Darstellungsschicht)		Anwendungsschicht	
5	Session Layer (Kommunikationssteuerungsschicht)			
4	Transport Layer (Transportschicht)		Transportschicht	
3	Network Layer (Vermittlungsschicht)		Vermittlungsschicht	
2	Data Link Layer (Sicherungsschicht)		Netzanschlussschicht	
1	Physical Layer (Bitübertragungsschicht)	INGIZATISCITIUS	INGIZATISCHIUSSSCHICH	

Das Internet Protocol (IPv4)

- 32 Bit Adressen (4 Byte)
- Gängige Schreibweise: "Dotted-Decimal" Bsp.: 192.168.218.43
- IP-Adresse besteht aus 2 Teilen:
 - -Netzadresse
 - -Hostadresse
- · Längen von Netz- und Hostadresse variieren
- · Längen von Netz- und Hostadresse spezifiziert durch Netzmasken
 - -CIDR (Classless Inter-Domain Routing, RFC 1519)
 - -Ebenfalls 32 Bit
 - -Durch AND-Verknüpfung von IP-Adresse mit Netzmaske ergibt sich die Netzadresse
 - -Durch XOR-Verknüpfung der Netzadresse mit der IP-Adresse ergibt sich die Hostadresse

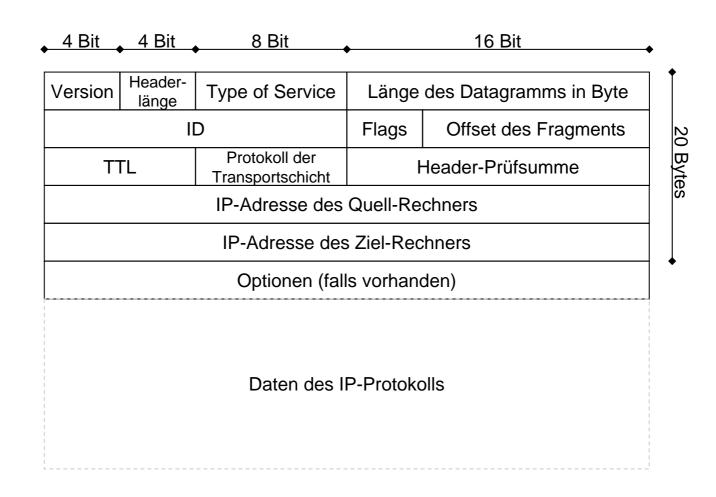
Beispiel

```
MNM
```

- IP-Adresse: 192.168.218.43 (11000000.101010000.11011010.001011)
- Netzmaske: 255.255.25.0 (11111111.1111111.1111111.00000000)

(192.168.218.0) -> Netzadresse

- 11000000.10101000.11011010.00000000 XOR 11000000.10101000.11011010.0010111
 - 00000000.00000000.0000000.00101011 (0.0.0.43) -> Hostadresse


IPv4-Netze und reservierte Bereiche

Klasse	Netzadresse	Standard Netzmaske	Reservier	rte Netze
A	{0127}.0.0.0	255.0.0.0 bzw. "/8"	0.0.0.0 10.0.0.0 127.0.0.1	Default-Route privater Adressbereich Loopback-Interface
В	{128191}.xxx.0.0	255.255.0.0 bzw. "/16"	172.{1631}.0.0	privater Adressbereich
С	{192223}.xxx.xxx.0	255.255.255.0 bzw. "/24"	192.168.xxx.0	privater Adressbereich
D, E	{224255}.xxx.xxx.xxx	spezielle Multicast-Adressen bzw. reserviert für zukünftige Zwecke		

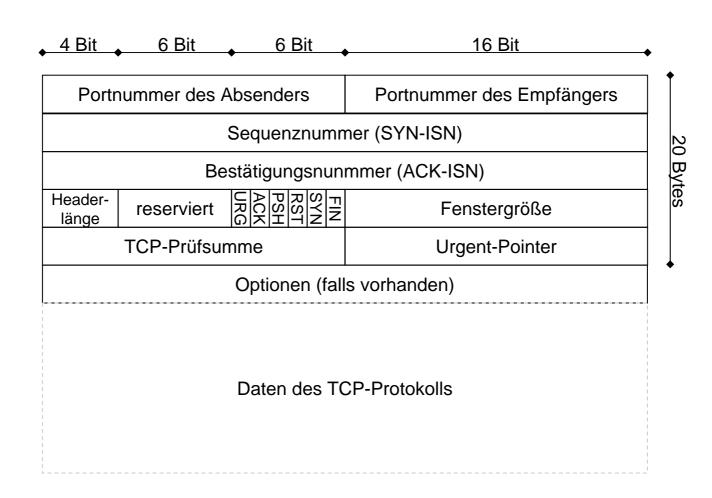
Aufbau des IPv4-Headers

OSI- und Internet-Schichtenmodell

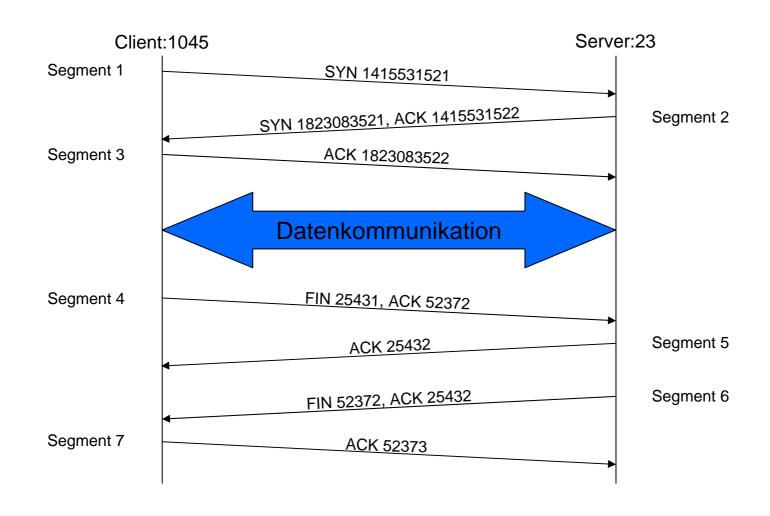
OSI		Internet	
7	Application Layer (Anwendungsschicht)		
6	Presentation Layer (Darstellungsschicht)	Anwendungsschicht	
5	Session Layer (Kommunikationssteuerungsschicht)		
4	Transport Layer (Transportschicht)	Transportschicht	
3	Network Layer (Vermittlungsschicht)	Vermittlungsschicht	
2	Data Link Layer (Sicherungsschicht)	Netzanschlussschicht	
1	Physical Layer (Bitübertragungsschicht)	INELZATISCHIUSSSCHICHL	

Transmission Control Protocol (TCP)

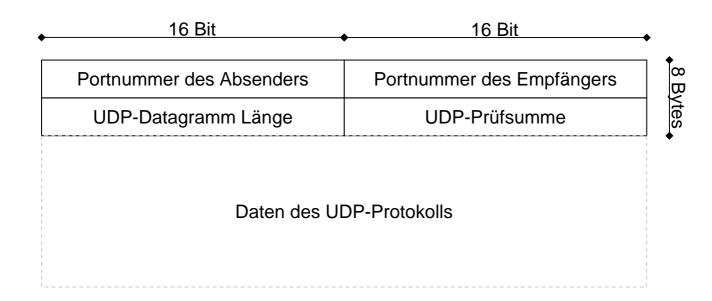
- Protokoll des Transport Layers (Schicht 4)
- Spezifikation
 - Ursprünglich in RFC 793
 - Bugfixes in RFC 1122
 - Erweiterungen in RFC 1323
- IP Protokoll-Nummer: 6
- · Zuverlässige Datenübertragung
 - "Positive Acknowledgement with Retransmission" (PAR)
 - Prüfsumme zur Fehlererkennung
- Reihenfolgesicherung durch "Initial Sequence Numbers" (ISN)
- Verbindungsorientiert
 - 3-Way Handshake
 - Beidseitiger Verbindungsabbau
- Fair gegenüber anderen Datenströmen
 - Sendefenster-Mechanismus
 - slow start / congestion control
 - Keine weitere Betrachtung
- · Es existieren diverse Implementierungen mit unterschiedlichen Charakteristika


TCP-Ports

- Bietet Multiplexing-/Demultiplexing-Schnittstelle zur Netzebene
- Ports charakteristisch für einige Dienste
- Ursprünglich waren nur Ports <1024 reserviert
- Einige "well known ports":
 - 20: FTP (data)
 - 21: FTP (control)
 - 22: SSH
 - 23: telnet
 - -25: SMTP
 - 53: DNS
 - 80: HTTP
 - -110: POP-3
 - 137-139: diverse NETBIOS ports
 - 445: Microsoft DS
- Offizielle Liste unter: http://www.iana.org/assignments/port-numbers
- ... oder unter Unix: cat /etc/services


Aufbau des TCP-Headers

TCP-Verbindungsauf- und -abbau


User Datagram Protocol (UDP)

- Protokoll des Transport Layers (Schicht 4)
- Spezifiziert in RFC 768
- IP Protokoll–Nummer: 17
- Verbindungslos
 - -Kein Verbindungsaufbau
 - -Kein Verbindungsabbau
- Nachteile:
 - -Nicht reihenfolgegesichert
 - -Keine zwingende Fehlererkennung
 - -Keine Flusskontrolle bzw. Retransmissions
- Vorteile:
 - -Wenig Overhead
 - -Einfache Schnittstelle zur Netzwerkebene
 - -Multiplexing/Demultiplexing durch Ports

Aufbau des UDP-Headers

- · Länge: Angabe in Bytes inkl. 8-Byte Header
- Prüfsumme ist optional!

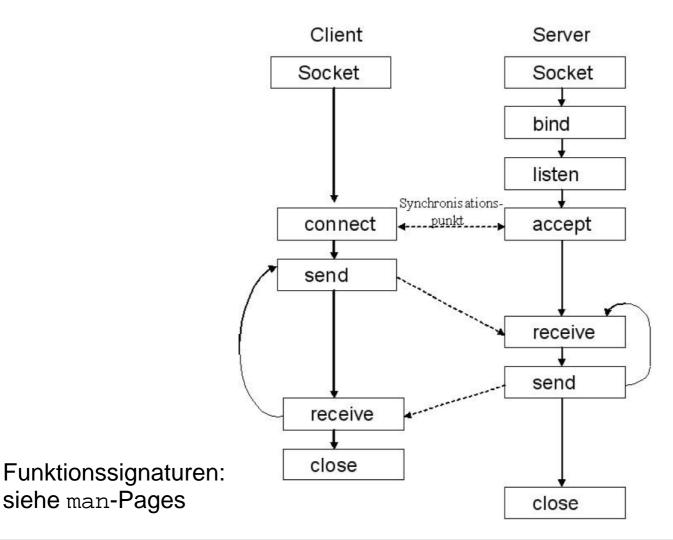
Sockets (1)

- · Idee: Informationen zwischen (entfernten) Rechnern/Prozessen austauschen
- Definition: Ein Socket ist ein Kommunikationsendpunkt auf Softwareebene, der eine spezifische Schnittstelle zwischen einem Anwendungsprogramm und dem Transportmedium darstellt.
- Socket–Arten
 - -Stream-Socket (SOCK_STREAM): Zuverlässiger, verbindungsorientierter Bytestrom mit Sequencing und Fehlerkorrektur
 - -Datagramm-Socket (SOCK_DGRAM): Unzuverlässige, verbindungslose Paketübertragung ohne Sequencing und ohne Fehlerkorrektur

Sockets (2)

- Socket–Adressierung
 - -Socket-Domäne: vom Socket verwendete Protokollfamilie → Nur Sockets der gleichen Domäne können miteinander kommunizieren
 - -Domänen:
 - PF_UNIX, PF_LOCAL: Unix-Adresse → Nachteil: keine entfernte Kommunikation
 - PF_INET: IP-Adresse (IPv4: 32 Bits) + Portnummer (16 Bits)
 - PF_INET6: IP-Adresse (IPv6: 128 Bits) + Portnummer (16 Bits)
- Wir betrachten: Sockets der Internet-Domäne (Internet-Sockets)

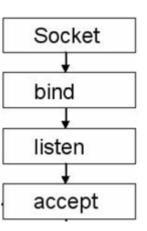
Netzprogrammierung (1)


Die Struktur struct sockaddr_in

- -wird durch Einbinden von netinet/in.h verfügbar
- Client/Server-Prinzip
 - -Client und Server sind Rollen
 - -Server: bietet (mindestens) einen Dienst an, wartet passiv auf eine Anfrage
 - -Client: sucht aktiv nach einem Server, dessen Dienst er benötigt

Netzprogrammierung (2)

Systemaufrufe für Sockets


siehe man-Pages

Netzprogrammierung (3)

Beispiel: Iterativer Socket–Server (socksrv.c)

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
int main() {
   // 1. Socket anlegen
   int sock = socket(PF_INET, SOCK_STREAM, 0);
   // 2. Binden einer Adresse an den Socket
   struct sockaddr in server;
   server.sin_family = PF_INET;
   server.sin_addr.s_addr = INADDR_ANY;
   server.sin port = htons(4711);
  bind(sock, (struct sockaddr *) &server, sizeof(server));
  // 3. Verbindungen akzeptieren
  listen(sock, 5);
  // 4. Auf Anfragen warten
   struct sockaddr in client;
  int fd, client len;
  client len = sizeof(client);
   fd = accept(sock, (struct sockaddr *) &client, &client len);
   return 0;
```


Netzprogrammierung (4)

- Bemerkungen zum Beispiel
 - -Zwei Filedeskriptoren:
 - sock: Rendezvous-Deskriptor
 - → akzeptiert neue Verbindungen, nicht relevant für Ein-/Ausgabe
 - fd: Verbindungsdeskriptor
 - → ermöglicht die Kommunikation mit dem Client
 - -Systemfunktion htons(): transformiert die Portnummer in Network-Byte-Order

Zusammenfassung

- · Das ISO-OSI-Referenzmodell
- Der Internet-Protokollstapel
- Das Verbindungsprotokoll IP
- Adressen und Ports
- Die Transportprotokolle TCP und UDP
- Socket–Arten und –Adressierung
- Systemaufrufe für Sockets