GWD-R (draft-ggf -ogsi-gridservice-33) Editors:
Open Grid Services Infrastructure (OGSI) S. Tuecke, ANL
http://www.ggf.org/ogsi-wg K. Czajkowski, USC/ISI
|. Foster, ANL

J. Frey, IBM

S. Graham, IBM

C. Kesselman, USC/ISI

T. Maquire, IBM

T. Sandholm, ANL

D. Snelling, Fujitsu Labs

P. Vanderbilt, NASA

June 27, 2003

Open Grid Services Infrastructure (OGSI)

Version 1.0

Statusof ThisMemo

This document provides information to the community regarding the specification of the Open
Grid Services Infrastructure (OGSI). Distribution of this document is unlimited.

Abstract

Building on both Grid and Web services technologies, the Open Grid Services Infrastructure
(OGSI) defines mechanisms for creating, managing, and exchanging information among entities
called Grid services. Succinctly, aGrid serviceis aWeb service that conformsto a set of
conventions (interfaces and behaviors) that define how a client interacts with a Grid service.
These conventions, and other OGSI mechanisms associated with Grid service creation and
discovery, provide for the controlled, fault-resilient, and secure management of the distributed
and often long-lived state that is commonly required in advanced distributed applications. Ina
separate document, we have presented in detail the motivation, requirements, structure, and
applicationsthat underlie OGSI. Here we focus on technical details, providing afull specification
of the behaviors and Web Service Definition Language (WSDL) interfaces that define a Grid
service.

ogsi-wg@ggf.org 1

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

L B N B I
[BN K O B O B BE B BN)
* e 00
L] []
L]
L]

GLOBAL GRID FORUM

office@gridforum.org
www.ggf.org

Full Copyright Notice
Copyright © Global Grid Forum (2003). All Rights Reserved.

This document and trandations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or referencesto the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or asrequired to trandate it into
languages other than English.

The limited permissions granted above are perpetua and will not be revoked by the GGF or its
SUCCEessOors or assigns.

This document and the information contained hereinis providedon an"AS1S" basisand THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTSOR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF Web site).

0gsi-wg@ggf.org 2

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Contents
R 1 011 0o U Tox 1 oo 5
2 Notational CONVENLIONSceerieieieiese et e e e seeseesbeseesbeseeas 6
3 SEtiNG thE CONLEXLccueiieeeeeeeie ettt sttt sae e reeneens 7
3.1 Reationship to Distributed Object SyStEMScccovirerirenenieeeeee e 7
3.2 Client-Side Programming PalternSccccceveeieniereeie e seeie e sie e seesne e 8
3.3 Client Use of Grid Service Handles and Referencesccccocvveiiiiineenenne 9
3.4 Relationship to HOStING ENVIIONMENTccooiiiiiiiierieseseeeeeeee e 10
A TNE GHIO SEIVICEciuiiieie sttt sttt st b et be ettt st b nne s 11
5 WSDL Extensions and CONVENLIONS..........cocuereriienienieniie et 12
(GRS 4V 1ol =l B - VPP 14
6.1 Motivation and Comparison to JavaBean Properties...........ccccvvvvereneneniennenn 15
6.2 Extending portType with serviceData...........ccceeeeeeieeiesiieseese e 15
6.2.1 Structure of the serviceData Declarationccoceevenieneeneninseeneneens 16
6.2.2 Using serviceData, an Example from GridService portType........c.ccooeee. 18
6.2.3 LU= o]] USSP 20
6.3 SAVICEDAAVAIUES........oitieiieeieieeie et 20
6.3.1 Defining Initial SDE Vaues within the portType........ccceoevenencnenennens 21
6.4 SDE Aggregation within a portType Interface Hierarchyccccccevvevenenee. 21
6.4.1 Initial Vaues of Static SDEs within a portType Interface Hierarchy 22
6.5 Dynamic serviceData EIements.........ccooeririeiiiinereseresseeee e 24
7 Core Grid ServiCe PrOPEIMTIEScccoviierierieriereeeeee ettt 24
7.1 Service Description and Service INStanCe.........cccoeeeveeveeceeseesie e 24
7.2 Modeling TIMEIN OGSocooiiiiirie e e 25
7.3 XML Element Lifetime Declaration Properties..........ccoovvereriereenenenenesesnenne 26
7.4 Interface Naming and Change Management............cccevveveneevenceeseesiesee s, 28
7.4.1 The Change Management Problem...........cccccovvieiecieenie e 28
7.4.2 Naming Conventions for Grid Service DesCriptionsccccccevererenennene 29
7.5 Naming Grid Service INSLANCES........c.cccceerieieriere e seese e sie e sae e ees 30
7.5.1 Grid Service Reference (GSR).....ccviccievie e 30
7.5.1.1 WSDL Encoding of @ GSR.......cccoriririeienierese e 32
7.5.2 Grid Service Handle (GSH)coeviririeierese s 32
7.5.2.1 Service INStanCce SAMENESS.......ccvveeeriierierie e s enes 33
7.5.3 SEIVICE LOCALON ..ottt sttt st sreenne e 33
7.6 Grid ServiCe LITECYCIE ..o 34
7.7 Common Handling of Operation Faults...........cccceeevieereeceseese e 35
7.8 EXIENSIDIE OPEralioNS......c.cocceeiiiiiie e cstee ettt nneas 37
8 Grid SErVICE INEITACES. ... ceve ettt sre et esneenes 39
S I € a0 s gV Tt o] 5/ o= 40
9.1 GridService: Service Data Declarationsccooeeereeneniieneeniesiee e 40
0.2 GridServiCe: OPEIaliONS........ccceiverieriirteriesieeieee e ss e sresresre e 42
9.21 GridService :: fiNdSErVICEDEA.c.cceveeieeeeereee e 42
9.2.1.1 queryByServiceDataNamES.........ccccccvreeiieeiieciececie e 43
9.2.2 GridService :: SEtSErVICEDAA.c.cveerieriieeeriee e 44
0.22.1 setByServiceDataNamMES.........cccoviriririeeeee e 45
0.2.2.2 deleteByServiceDataNameS..........ccccveeeieeieniieseese e seese e 46

ogsi-wg@ggf.org 3

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

9.2.3 GridService :: requestTerminatioNATLENccoveveveereeie e 46
9.24 GridService :: requestTerminatioNBEfOre..........coccoveevenienienenie e a7
9.25 GriASErVICE I JESIIOYoveveeisierieeieeee e 48

10 HandleReSOIVEr POMTYPE....c..eceeciece ettt 48
10.1 HandleResolver: Service Data Declarations..........ccoceevveierenieneenesie e sienens 48
10.2 HandleResoIver: OPErationS.........c.ccoiierererieieeieeiesie e 49
10.2.1 HandleResolver :: findByHandle...........ccocovvieieeieeeeseee e 49

11 [N\ o (] o= (o] o LSRR 50
11.1 NOtificationSOUICE POMTYPEcveviiiierieeieeieee ettt e 50
11.1.1 NotificationSource: Service Data Declarations...........ccocevevenerenicriennenn 51
11.1.2 NotificationSource: OPEratioNS...........ccceveeirereeseeieeeeeseeseseeseesresseesseees 51
11.1.2.1 NotificationSource :: SUDSCIDE.........ccovriereeiinenee e 51

11.2 NotificationSUBbSCIiPtioN POMTTYPE.....cciiiieeieieeee e 53
11.2.1 NotificationSubscription: Service Data Declarations............ccccceeveveeueenee. 53
11.2.2 NotificationSUbSCription: OPErationscoceereeriereereerieseeseeneesee e 54
11.3 NOtificatioNSINK POMTYPE.....ccueieeieriesie sttt 54
11.3.1 NotificationSink: Service Data Declarations............ccoceeeeeeeneneneneniennenn 54
11.3.2 NotificationSink: OPeratioNSccccceeiiieeieeiiieeiie e esee e esee e seesneens 54
11.3.2.1 NotificationSink :: deliverNotificationcccccoveeeveeeeneenenieeseene. 54

12 FACLOrY POITTY B ettt re e snee s 54
12.1 Factory: Service Data DeClarations............cccovevueeieseeiecee s ecie e s 54
12.2 FACLOrY: OPEIraliONS.......ccoiirierieeiesiesteesieseesieesteseestesntesseesseeeesseessessesssesssesnsans 55
12.2.1 FACIOrY i CrEAESEIVICE.e ettt 55

13 S Y= o U TSR 56
13. 1 ServiCEGIOUP POMTYPE...cueieerieeieeiesteeieseesteeseeseesteeeesseesteeeesaeesbesneesreeseesneens 56
13.1.1 ServiceGroup: Service Data DeClarations............coceeeeeeieeneeneeniesenesiennene 57
13.1.2 ServiceGroup: OPEralionS........cccccvecueeeereerieseeseessesseeseesseseesseessesesssessees 58
13.2 ServiceGroupENry POrTTYPE....ui ittt 59
13.2.1 ServiceGroupEntry: Service Data Declarations............ccccecevererencniennnn 59
13.2.2 ServiceGroupENntry: Operalions..........cccovecereereesieseeseeseseeseesseseesseees 59
13.3 ServiceGroupRegiStration POrTYPE.....ccviveieeieeeeseeieeeeesreesre e sre e sree e e 60
13.3.1 ServiceGroupRegistration: Service Data Declarations............ccccceveevneene 60
13.3.2 ServiceGroupRegistration:OperationsS..........cooeeerererereeneeneese s 61
13.3.21 ServiceGroupRegistration :: add..........cccceveeveecieniese e 61
13.3.2.2 ServiceGroupRegIStration o FBMOVE.ccceevuereereerieseesieeneeseeseeeens 62

14 SeCUNity CONSIAEIELIONSciveieirieeieiesie ettt 62
15 EditOr INfOIMELION.c..eiuieieieee e 63
16 (@000 1111 010 10 £ TSRS 64
17 ACKNOWIEAGEMENLS. ... 64
18 REFEIENCES ... et sr b nne s 64
18.1 NOIMative REFEIENCES.ceiiriieieie sttt s 64
18.2 INfOrmMative REFEIENCEScccoiieieeiesieeie e s 64
19 Normative XSD and WSDL SpPeCifiCations............ccovrerererenienieienesee s 65
19.1 http://www.gridforum.org/namespaces/2003/03/OGScccceveveeveveesiennns 65
19.2 http://www.gridforum.org/namespaces/2003/03/serviceData............cceevveerunnnns 84
19.3 http://www.gridforum.org/namespaces/2003/03/gridW SDL Extensions........... 86

0gsi-wg@ggf.org 4

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

1 Introduction

The Open Grid Services Architecture (OGSA) [Grid Physiology] integrates key Grid
technologies [Grid Book, Grid Anatomy] (including the Globus Toolkit® [Globus Overview])
with Web services mechanisms [Web Services Book] to create a distributed system framework
based on the Open Grid Services Infrastructure (OGS). A Grid serviceinstanceis a (potentially
transient) service that conformsto a set of conventions, expressed as Web Service Definition
Language (WSDL) interfaces, extensions, and behaviors, for such purposes aslifetime
management, discovery of characteristics, and notification. Grid services provide for the
controlled management of the distributed and often long-lived state that is commonly required in
sophisticated distributed applications. OGS also introduces standard factory and registration
interfaces for creating and discovering Grid services.

OGSl version 1.0 defines a component model that extends WSDL and XML Schema definition to
incorporate the concepts of

0 stateful Web services,
extension of Web servicesinterfaces,
asynchronous notification of state change,

references to instances of services,

o O O o

collections of service instances, and
0 service state data that augments the constraint capabilities of XML Schemadefinition.

In this specification we define the minimal, integrated set of extensions and interfaces necessary
to support definition of the services that will compose OGSA.

No specification iswritten in isolation, and Web services and XML are particularly dynamic and
evolving environments. We intend to ensure that the evolution of OGSI conforms with broader
standardsthat evolve. Many of the concepts we define— for example, serviceData (86) — are
special cases of more general concepts that may appear in XML documents, messages, and Web
services. In addition, we anticipate that work to implement the OGSI Web services component
model in various hosting environments, such as J2EE, will lead to the need for modifications to
subsequent revisions of this OGS V1.0 specification.

In this document, we propose detailed specifications for the conventionsthat govern how clients
create, discover, and interact with a Grid service instance.* That is, we specify (1) how Grid
service instances are named and referenced; (2) the base, common interfaces (and associated
behaviors) that all Grid servicesimplement; and (3) the additional (optional) interfaces and
behaviors associated with factories and service groups. We do not address how Grid services are
created, managed, and destroyed within any particular hosting environment. Thus, services that
conform to this specification are not necessarily portable to various hosting environments, but any
client program that follows the conventions can invoke any Grid service instance conforming to
this specification (of course, subject to policy and compatible protocol bindings).

Our presentation is deliberately terse; the reader isreferred to [Grid Physiology] for discussion of
motivation, requirements, architecture, relationship to Grid and Web services technologies, other
related work, and applications.

1 We use the term client loosely to mean an entity that calls a Grid service. In many scenarios, a Grid
service is a client of other Grid services.

ogsi-wg@ggf.org 5

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

This document has four major parts:
1. Sections 1 through 3 are introductory, non-normative, and add detail to the context set by
[Grid Physiology].

2. Sections 4 through 7 introduce how the Grid services specification builds on the Web
Services Description Language. We define agwsdl extensionto WSDL 1.1, intended asa
temporary measure until WSDL 1.2 is complete. We a so define the notion of
serviceData to expose state data of a service instance, and we define other core Grid
Services concepts.

3. Sections 8 through 13 define various required and optional portTypes, including
GridService, HandleResolver, Notification, Factory, and serviceGroup.

4. Sections 14 through 19 are miscellaneous concluding matter.

2 Notational Conventions

The key words“MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,”
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL" areto be
interpreted as described in RFC-2119 [RFC 2119.

This specification uses namespace prefixes throughout; they are listed in Table 1. Note that the
choice of any namespace prefix isarbitrary and not semantically significant.

Table 1. Prefixes and namespaces used in this specification.

Prefix Namespace

ogs "http://www.gridf orum.org/namespaces/2003/03/OGSI*

gwsdl "http://www.gridforum.org/namespaces/2003/03/gridWSDL Extensions’
sd "http://www.gridforum.org/namespaces/2003/03/serviceData’

wsdl “http://schemas.xml soap.org/wsdl/”

http "http://www.w3.0rg/2002/06/wsdl/http"

xsd "http://www.w3.0rg/2001/X ML Schema

XS "http://www.w3.0rg/2001/X ML Schema-ingtance”

Namespace names of the general form "http://example.org/..." and "http://example.com/..."
represent application or context -dependent URIs [RFC 2396].

Thefollowing abbreviations and terms are used in this document:
e GSH: Grid Service Handle, as defined in Section 7.5.
* GSR: Grid Service Reference, as defined in Section 7.5.
* DE: Service Data Element, as defined in Section 7.2
* The termsWeb services XML, SOAP, and WSDL, as defined in [Grid Physiology].

The term hosting environment is used in this document to denote the server in which one or more
Grid service implementations run. Such servers are typically language or platform specific.
Examples include native Unix and Windows processes, J2EE application servers, and Microsoft
.NET.

ogsi-wg@ggf.org 6

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

3 Setting the Context

Although [Grid Physiology] describes overall motivation for the Open Grid Services Architecture
(OGSA), this document describes its architecture at amore detailed level. We call the base for
OGSA theOpen Grid Services Infrastructure (OGSl). Correspondingly, we examine in this
section several detailsthat help put the remainder of the document in context. Specificaly, we
discuss the relationship between OGSI and distributed object systems and also the relationship
between OGS and the existing (and evolving) Web services framework. We examine both the
client-side programming patterns for Grid services and a conceptual hosting environment for Grid
services.

The patterns described in this section are enabled but not required by OGSl. We discuss these
patterns here to help put into context certain details described later in this document.

3.1 Relationship to Distributed Object Systems

Aswe describe in much more detail below, agiven Grid service implementation is an
addressable, and potentially stateful, instance that implements one or more interfaces described
by WSDL portTypes. Grid service factories (812) can be used to create instances implementing a
given set of portType(s). Each Grid service instance has a notion of identity with respect to the
other instancesin the distributed Grid (87.5.2.1). Each instance can be characterized as state
coupled with behavior published through type-specific operations. The architecture aso supports
introspection in that a client application can ask a Grid service instance to return information
describing itself, such as the collection of portTypesthat it implements.

Grid service instances are made accessible to (potentially remote) client applications through the
use of aGrid Service Handle (87.5.2) and a Grid Service Reference (87.5.1). These constructs are
basically network-wide pointers to specific Grid service instances hosted in (potentially remote)
execution environments. A client application can use a Grid Service Reference to send requests
(represented by the operations defined in the portType(s) of the target service description)
directly to the specific instance at the specified network-attached service endpoint identified by
the Grid Service Reference.

We expect that in many situations, client stubs and hel per classesisolate application programmers
from the details of using Grid Service References. Some client-side infrastructure software
assumes responsibility for directing an operation to a specific instance that the GSR identifies.

Each of the characteristics introduced above (stateful instances, typed interfaces, global names,
etc.) isfrequently also cited as afundamental characteristic of distributed object-based systems
There are, however, also various other aspects of distributed object models (as traditionaly
defined) that are specifically not required or prescribed by OGSI. For this reason, we do not adopt
the term distributed object model or distributed object system when describing thiswork, but we
instead use the term Open Grid Services Infrastructure, thus emphasizing the connections that we
establish with both Web services and Grid technol ogies.

Among the object-related issues that are not addressed within OGSl are implementation
inheritance, serviceinstance mobility, development approach, and hosting technology. The Grid
service specification does not require, nor does it prevent, implementations based upon object
technologies that support inheritance at either the interface or the implementation level. Thereis
no requirement in the architecture to expose the notion of implementation inheritance either at the
client side or at the service provider side of the usage contract. In addition, the Grid service
specification does not prescribe, dictate, or prevent the use of any particular development
approach or hosting technology for Grid service instances. Grid service providers are free to
implement the semantic contract of the service description in any technology and hosting

0gsi-wg@ggf.org 7

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

architecture of their choosing. We envision implementationsin J2EE, .NET, traditional
commercia transaction management servers, traditional procedural Unix servers, and so forth.
We aso envision service implementations in awide variety of both object-oriented and non-
object-oriented programming languages.

3.2 Client-Side Programming Patterns

Another important issue that we feel requires some explanation, particularly for readers not
familiar with Web services, ishow OGSl interfaces are likely to be invoked from client
applications. OGSI exploits an important component of the Web services framework: the use of
WSDL to describe multiple protocol bindings, encoding styles, messaging styles (RPC vs.
document-oriented), and so on for a given Web service. The Web Services Invocation Framework
[WSIF] and Java API for XML RPC [JAX-RPC] are among the many examples of infrastructure
software that provide this capability.

Protocol 1

(binding) Invocation
specific Stub \ of Web

service

Protocol 2
V1 (binding) \
specific Stub

Client
Application

Protocol 3
(binding)
specific Stub

Protocol 4
(binding)
L] specific Stub

client
interface

Figure 1. Possible client-side runtime ar chitecture

Figure 1 depicts a possible (but not required) client-side architecture for OGS. In this approach, a
clear separation exists between the client application and the client-side representation of the Web
service (proxy), including components for marshaling the invocation of a\Web service over a
chosen binding. In particular, the client application isinsulated from the details of the Web
service invocation by a higher-level abstraction: the client-side interface.

Varioustools can take the WSDL description of the Web service and generate interface
definitionsin awide-range of programming language-specific constructs (e.g., Java interfaces,
C#). Thisinterface isafront-end to specific parameter marshaling and message routing that can
incorporate various binding options provided by the WSDL. Further, this approach allows certain
efficiencies, for example, detecting that the client and the Web service exist on the same network
host, and therefore avoiding the overhead of preparing for and executing the invocation using
network protocols.

Within the client application runtime, a proxy provides a client-side representation of remote
service instance' sinterface. Proxy behaviors specific to a particular encoding and network
protocol (binding, in Web services terminology) are encapsulated in aprotocol (binding)-specific

ogsi-wg@ggf.org 8

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

stub. Details related to the binding-specific access to the Grid service instance, such as correct
formatting and authentication mechanics, happen here; thus, theapplication is not required to
handle these detailsitself.

We note that it is possible, but not recommended, for developers to build customized code that
directly couples client applications to fixed bindings of a particular Grid service instance.
Although certain circumstances demand potential efficiencies gained this style of customization,
this approach introduces significant inflexibility into a system and therefore should only be used
under extraordinary circumstances.

We expect the stub and client side infrastructure model that we describe to be acommon
approach to enabling client accessto Grid services. Thisincludes both application specific
services and common infrastructure services that are defined by OGSA. Thus, for most
developers using Grid services, the infrastructure and application-level services appear in the
form of aclasslibrary or programming language interface that is natural to the caller.

WSDL and the GWSDL extensions provide support for enabling heterogeneous tools and
enabling infrastructure software.

3.3 Client Use of Grid Service Handles and References

A client gains access to a Grid service instance through Grid Service Handles and Grid Service
References. A Grid Service Handle (GSH) can be thought of as a permanent network pointer to a
particular Grid service instance. The GSH does not provide sufficient information to allow a
client to access the service instance; the client needsto “resolve” a GSH into a Grid Service
Reference (GSR). The GSR contains all the necessary information to access the service instance.
The GSR isnot a*“permanent” network pointer to the Grid service instance because a GSR may
becomeinvalid for various reasons, for example, the Grid service instance may be moved to a
different server.

OGS provides amechanism, the HandleResolver (see 810) to support client resolution of a Grid
Service Handle into a Grid Service Reference. Figure 2 shows aclient application that needsto
resolve a GSH into a GSR.

ogsi-wg@ggf.org 9

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Service

Handle
Resolver Grid

Resolvethis

Client

GSH

GSR

Application

Handle Resolver
Grid Service

Handle
Resolver Grid
Service

Handle Scheme
Specific resolver

protocol

Figure 2. Resolving a GSH

The client resolves a GSH into a GSR by invoking a HandleResolver Grid service instance
identified by some out-of-band mechanism. The HandleResolver can use various meansto dothe

resolution; some of

these means are depicted in Figure 2. The HandleResolver may have the GSR

stored in alocal cache. The HandleResolver may need to invoke another HandleResolver to
resolve the GSH. The HandleResolver may usea handle resolution protocol, specified by the
particular kind (or scheme) of the GSH to resolve to a GSR. The HandleResolver protocol is

specific to thekind

of GSH being resolved. For example, one kind of handle may suggest the use

of HTTPGET to aURL encoded in the GSH in order to resolve to a GSR.

3.4 Relationship to Hosting Environment

OGSl does not dictate aparticular service provider—side implementation architecture. A variety
of approaches are possible, ranging from implementing the Grid service instance directly asan
operating system process to a sophisticated server—side component model such as J2EE. In the
former case, most or even al support for standard Grid service behaviors (invocation, lifetime
management, registration, etc.) is encapsulated within the user process, for example vialinking
with astandard library; in the latter case, many of these behaviors are supported by the hosting

environment.

0gsi-wg@ggf.org

10

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

container
-
protocol ()] m
—_—p| termination = >
°
s | U/
o
N o
- £
protocol g) 5
—_— P termination g B E
©
4%
;
o

protocol

———— (€M NELiON

Figure 3: Two approaches to the implementation of argument demar shaling functionsin a Grid
service hosting environment

Figure 3illustrates these differences by showing two different approaches to the implementation
of argument demarshaling functions. We assumethat, asis the case for many Grid services, the
invocation message is received at a network protocol termination point (e.g., an HTTP servlet
engine), which converts the data in the invocation message into aformat consumable by the
hosting environment. At thetop of Figure 3, weillustrate two Grid service instances (the ovals)
associated with contai ner-managed components (e.g., EJBswithin a 2EE container). Here, the
message is dispatched to these components, with the container frequently providing facilities for
demarshaling and decoding the incoming message from aformat (such asan XML/SOAP
message) into an invocation of the component in native programming language. In some
circumstances (the lower oval), the entire behavior of a Grid service instance is completely
encapsulated within the component. In other cases (the upper oval), a component will collaborate
with other server-side executables, perhaps through an adapter layer, to complete the
implementation of the Grid service behavior. At the bottom of Figure 3, we depict another
scenario wherein the entire behavior of the Grid service instance, including the
demarshaling/decoding of the network message, has been encapsulated within asingle
executable. Although this approach may have some efficiency advantages, it provides little
opportunity for reuse of functionality between Grid service implementations.

A container implementation may provide arange of functionaity beyond simple argument
demarshaling. For example, the container implementation may provide lifetime management
functions, automatic support for authorization and authentication, request logging, intercepting
lifetime management functions, and terminating service instances when a service lifetime expires
or an explicit destruction request is received. Thus, we avoid the need to reimplement these
common behaviorsin different Grid service implementations.

4 The Grid Service

The purpose of this document isto specify the interfaces and behaviors that definea Grid service.
In brief, aGrid service isaWSDL-defined service that conformsto aset of conventions relating
to itsinterface definitions and behaviors. Thus, every Grid service isaWeb service, though the

ogsi-wg@ggf.org 11

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

converse of this statement isnot true. In the following sections, we expand upon this brief
statement by

* Introducing aset of WSDL conventions that we usein our Grid service specification;
these conventions have been incorporated in WSDL 1.2 [WSDL 1.2 DRAFT].

» Defining service data, which provides a standard way for representing and querying
metadata and state data from a service instance.

* Introducing a series of core properties of Grid service, including:

o Defining Grid service description and Grid service instance, as organizing
principlesfor their extension and their use.

o Defining how OGSI modelstime.

0 Defining the Grid Service Handle and Grid Service Reference constructs, which
we useto refer to Grid service instances.

o Defining acommon approach for conveying fault information from operations.
This approach defines a base XML Schema definition and associated semantics
for WSDL fault messages to support acommon interpretation. The approach
smply defines the base format for fault messages, without modifying the WSDL
fault message model.

o Defining the lifecycle of a Grid service instance.

5 WSDL Extensions and Conventions

OGS isbased on Web services; in particular, it uses WSDL as the mechanism to describe the
public interfaces of Grid services. However, WSDL 1.1 isdeficient in two critical areas: lack of
interface (portType) extension and the inability to describe additional information elementson a
portType (lack of open content). These deficiencies have been addressed by the W3C Web
Services Description Working Group [WSDL 1.2 DRAFT]. BecauseWSDL 1.2 is“work in
progress,” OGSl cannot directly incorporate the entire WSDL 1.2 body of work.

Instead, OGSl defines an extension to WSDL 1.1, isolated to the wsdl:portType el ement, that
provides the minimal required extensionsto WSDL 1.1. These extensionsto WSDL 1.1 match
equivalent functionality agreed to by the W3C Web Services Description Working Group. Once
WSDL 1.2 [WSDL 1.2] is published as arecommendation by the W3C, the Global Grid Forum
commits to defining afollow-on version of OGS that exploits WSDL 1.2, and to defining a
trandation from this OGSI v1.0 extension to WSDI 1.2.

We define aseparate (and temporary) namespace, with the prefix gwsdl, to isolate the
modificationsto WSDL 1.1. In particular, gwsdl adds the following new constructsto the
wsdl:portType element in the fashion proposed in [WSDL 1.2 DRAFT]to support open content
model and portType extension.

Thefollowing isthe XSD definition of gwsdl:portType:

t ar get Nanespace=

http://ww. gridf orum org/ namespaces/ 2003/ 03/ gri dWSDLExt ensi ons
xm ns: gwsdl =

http://ww. gridf orum org/ nanespaces/ 2003/ 03/ gri dWSDLExt ensi ons

<el ement name="port Type" type="gwsdl: port TypeType"/>

ogsi-wg@ggf.org 12

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<conpl exType nanme="port TypeType">
<conpl exCont ent >
<ext ensi on base="wsdl : port TypeType" >
<sequence>
<any nanespace="##ot her"
m nOccur s="0" maxQOccur s="unbounded"/ >
</ sequence>
<attribute name="extends” use="optional”>
<si npl eType>
<list iteniType="QNanme”/>
</ si npl eType>
</attribute>
<anyAttri but e nanespace="##ot her"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

The extends attribute on the gwsdl:portType element isalist of QNames, where each QName
MUST refer to either awsdl:portType or a gwsdl:portType.

In light of portType extension, there isarequired clarification with respect to the namespace of
operation elements. Although WSDL 1.1 allows operation name overloading (a WSDL 1.1
portType can have multiple operation child e ements with the same name), the W3C Web
Services Description Working Group decided to restrict this feature. The following isfrom
[WSDL 1.2 DRAFT]:

A port type operation component describes an operation that a given port type supports.
An operation is a set of message references. Message references may be to messagesthis
operation accepts, that is input messages, or messages this operation sends, that is output
or fault messages.

Port type operation components are local to port type components, they cannot be refered
to by QName, despite having both { name} and {target namespace} properties

The properties of the Port Type Operation Component are as follows:
{name} An NCName as defined by [XML Namespaces).
{target namespace} A namespace name, as defined in [XM L Namespaces|.
{variety} One of Input-Only, Output-Only, Input-Output or Output-Input
{messages} A set of message reference components

For each port type operation component in the { operations} property of a port type
component the combination of { name} and { target namespace} properties must be
unique.

In cases where, due to a port type extending one or more other port types, two or more
port type operation components have the same value for their { name} and { target
namespace} properties, then the component models of those port type operation
components MUST be equivalent (see 2.12 Equivalence of components). If the port type
operation components are equivalent then they are considered to collapseinto asingle
component. It isan error if two port type operation components have the same value for
their { name} and { target namespace} properties but are not equivalent.

Note:

0gsi-wg@ggf.org 13

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Dueto the aboverules, if two port types that have the same value for their { target
namespace} property also have one or more operations that have the same value
for their { name} property then those two port types cannot both form part of the
derivation chain of aderived port type unless those operations are the same
operation. Thereforeit is considered good practice to ensure , where necessary,
that operation names within a namespace are unique, thus allowing such
derivation to occur without error.

And about Equivalence of components:

Two components of the same type are considered equivalent if the values of the
properties of one component are the same as the values of the propertiesin the second
component.

With respect to top-level components (messages, port types, bindings and services) this
effectively trandates to name-based equivalence given the constraints on names. That is,
given two top-level components of the same type, if the { name} properties have the same
value and the { target namespace} properties have the same val ues then the two
components arein fact, the same component.

Operation naming and extension in gwsdl portTypesisto be interpreted in the same fashion as
defined by the WSDL 1.2 DRAFT text above.

6 Service Data

The approach to stateful Web services introduced in OGSI identified the need for acommon
mechanism to expose a service instance' s state data to service requestors for query, update and
change natification. Since this concept is applicable to any Web service including those used
outside the context of Grid applications, we propose a common approach to exposing Web
service state data called “ serviceData.” Weare endeavoring to introduce this concept to the
broader Web services community.

In order to provide acomplete description of the interface of a stateful Web service (i.e., aGrid
service), it is necessary to describe the elements of its state that are externally observable. By
externally observable, we mean that the state of the service instance is exposed to clients making
use of the declared service interface, where those clients are outside of what would be considered
theinternal implementation of the service instance itself. The need to declare service data as part
of the service' s external interface isroughly equivalent to the idea of declaring attributes as part
of an object-oriented interface described in an object-oriented interface definition language (IDL).
Service data can be exposed for read, update, or subscription purposes.

Since WSDL defines operations and messages for portTypes, the declared state of a service
MUST be externally accessed only through service operations defined as part of the service
interface. To avoid the need to define serviceData specific operations for each serviceData
element, the Grid service portType (89) provides base operations for manipulating serviceData
elements by name.

Consider an example. Interface foo introduces operations opl, op2, and op3. Also assume that the
foo interface consists of publicly accessible data elements of del, de2, and de3. We use WSDL to
describe foo and its operations. The OGSI serviceData construct extends WL so that the
designer can further define the interface to foo by declaring the public accessibility of certain
parts of its state del, de2 and de3. This declaration then facilitates the execution of operations on
the service data of a stateful service instance implementing the foo interface.

0gsi-wg@ggf.org 14

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Put simply, the serviceData declaration is the mechanism used to express the elements of publicly
available state exposed by the service'sinterface. ServiceData elements are accessible through
operations of the service interfaces such as those defined in this specification. Private internal
state of the service instanceis not part of the service interface and is therefore not represented
through a serviceData declaration.

6.1 Motivation and Comparison to JavaBean Properties

The OGSI specification introduces the serviceData concept to provide aflexible, properties-style
approach to accessing state data of aWeb service. The serviceData concept issimilar to the
notion of a public instance variable or field in object-oriented programming languages such as
Java™, Smalltalk and C++.

ServiceDatais similar to JavaBean™ properties. The JavaBean model defines conventions for
method signatures (getX X X/setX X X) to access properties, and helper classes (Beanlnfo) to
document properties. The OGSI model uses the serviceData elements and XML Schematypesto
achieve asimilar result.

The OGSl specification has chosen not to require getX X X and setXXX WSDL operations for
each serviceData element, although service implementers MAY choose to define such type safe
get and set operations themselves. Instead, OGSl defines extensible operations for querying
(get), updating (set), and subscribing to notification of changesin serviceData elements. Simple
expressions are required by OGS to be supported by these operations, which allows for accessto
serviceData elements by their names, relative to a service instance. This by-name approach gives
functionality roughly equivalent to the getX XX and setX XX approach familiar to JavaBean and
Enterprise JavaBean programmers. However, these OGS operations MAY be extended by other
serviceinterfacesto support richer query, update, and subscription semantics, such as complex
gueriesthat span multiple serviceData elementsin a service instance.

The serviceDataName element in a GridService portType definition corresponds to the Beanlnfo
classin JavaBeans. However, OGSI has chosen an XML (WSDL) document that provides
information about the serviceData, instead of using a serializable implementation classasin the
BeanIinfo model.

6.2 Extending portType with serviceData

ServiceData defines anew portType child element named serviceData, used to define serviceData
elements, or SDEs, associated with that portType. These serviceData element definitions are
referred to as serviceData declarations, or SDDs. Initial values for those serviceData elements
(marked as“static” serviceDataelements) MAY be specified using the staticServiceDataV a ues
element within portType. The values of any serviceData element, whether declared statically in
the portType or assigned during the life of the Web service instance, are called serviceData
element values, or SDE values.

Note in the following the use of the gwsdl:portType, which allows the appearance of elements
from other namespaces.

<gwsdl : port Type nane="NCNane" > *
<wsdl : docunentation .../> ?
<wsdl : operati on name="NCNanme"> ...</wsdl: operation> ?

<sd: servi ceDat a nanme="NCName" .../> *

<sd: st ati cServi ceDat aVal ues>?
<sone el enent >*

0gsi-wg@ggf.org 15

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

</ sd: st ati cServi ceDat aVal ues>

</ gwsdl : port Type>

For example, the following portType declares two serviceData e ements, with qualified names
“tns:sd1l” and “tns;sd2”. Any serviceinstance that implementsthis portType MUST have as part
of its state these two serviceData elements.

<wsdl : definitions xm ns:tns="xxx" target Nanmespace="xxx">
<gwsdl| : port Type nane="exanpl eSDUse" > *
<wsdl : operati on nane=..> ...</wsdl: operation>

<sd: servi ceDat a nane="sd1" type="xsd: String”
nmut ability="static”/>
<sd: servi ceDat a nane="sd2" type="tns: SomeConpl exType”/ >

<sd: st ati cSer vi ceDat aVal ues>
<t ns: sdl >i ni t Val ue</tns: sd1>
</ sd: stati cServi ceDat aVal ues>
</ gwsdl : port Type>

</ wsdl : definitions>

6.2.1 Structure of the serviceData Declaration

Since sd:serviceData declarations are defining XML elements that may appear in
sd:serviceDataV alue and sd:staticServiceDataV alue elements, the XML Schema definition of
sd:serviceDatais modeled after the XML Schema definition of xsd:element. The sd:serviceData
element uses five attributes with the same interpretation as xsd:element: name, type, minOccurs,
maxOccurs,and nillable. The other xsd:element attributes do not make sense within the context of
sd:serviceData. The sd:serviceData element also alows two additional € ements: mutability, and
modifiable.

The XML Schema definition for sd:serviceDatais as follows.

t ar get Nanespace =
“http://ww.gridforum or g/ namespaces/ 2003/ servi ceDat a”

xm ns:sd =
“http://ww. gridf orum org/ nanmespaces/ 2003/ 03/ ser vi ceDat a”

<attributeG oup nanme="occurs">
<attribute name="mi nCccurs"
t ype="nonNegat i vel nt eger"
use="opti onal "
defaul t="1"/>
<attribute name="maxQOccurs">
<si npl eType>
<uni on nenber Types="nonNegati vel nt eger" >
<si npl eType>
<restriction base="NMIOKEN">
<enuner ati on val ue="unbounded"/ >
</restriction>
</ si npl eType>
</ uni on>

0gsi-wg@ggf.org 16

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

</ si npl eType>
</attribute>
</attributeG oup>

<conpl exType name="Servi ceDat aType" >
<sequence>
<any nanespace="##any" mi nCccurs="0" maxOccur s="unbounded"/>
</ sequence>
<attribute name="nanme" type="NCNanme"/>
<attribute name="type" type="QNane"/>
<attribute name="nill abl e"
t ype="bool ean"
use="opti onal "
defaul t="fal se"/ >
<attributeG oup ref="sd:occurs"/>
<attribute name="nutability" use="optional" default="extendabl e">
<si npl eType>
<restriction base="string">
<enuneration val ue="static"/>
<enuner ati on val ue="constant"/>
<enuner ati on val ue="extendabl e"/ >
<enuner ati on val ue="nut abl e"/ >
</restriction>
</ si npl eType>
</attribute>
<attribute name="nodifi abl e" type="bool ean" default="fal se"/>
<anyAttribute nanespace="##ot her" processContents="I|ax"/>
</ conpl exType>

<el ement nane="servi ceData" type="sd: Servi ceDat aType"/ >

<xsd: conpl exType name=" Servi ceDat aVal uesType” >
<xsd: sequence>
<xsd: any nanespace="##any" m nOccurs="0"
maxQOccur s="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>

<el ement nanme="servi ceDat aVal ues”
type="sd: Servi ceDat aVal uesType”/ >

<el ement nanme="stati cServi ceDat aVal ues”
type="sd: Servi ceDat aVal uesType”/ >

The serviceData attributes are as follows.
maxOccurs = (nonNegativel nteger | unbounded) : default to 1
0 Thisvaueindicates the maximum number of serviceData element values that can
appear in the service instance' s serviceDataV alues or the portType
staticServiceDataV al ues.
minOccurs = nonNegativelnteger : default to 1
0 Thisvaueindicatesthe minimum number of serviceData element valuesthat can
appear in the service instance’ s serviceDataV alues or the portType
staticServiceDataV al ues.
o IfthevaueisO, then the serviceData element is optional .
name = NCName and { target namespace}

ogsi-wg@ggf.org 17

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

0 Thename of the serviceDataelement MUST be unique among all sd:serviceData and
xsd:element declarations in the target namespace of the wsdl:definitions element.

0 Thecombination of the name of the serviceData element and the target namespace of
the wsdl:definitions element’ s targetNamespace attribute forms a QName, alowing a
uniquereferenceto this serviceData element.

nillable = boolean : default to false
o0 Thisvaueindicates whether the serviceData element can have anil value (that isa
value that has an attribute xsi:nil with value="true”).
= For example a serviceData declaration
<servi ceDat aEl ement nane="fo00"” type="xsd:string”
nillable=true” />
= canhaveavalid SDE value
<foo xsi:nil="true”/>
type = QName

0 Thisvauedefinesthe XML Schematype of the serviceData element value

modifiable = “boolean” : default to false

o Iftrue, itislegal for requestorsto directly update the serviceData val ue through the
setServiceData operation (see 89.2.2), subject to constraints on cardinality
(minOccurs, maxOccurs) and mutability. If false, the serviceData element should be
regarded as “read only” by the requestor, though its values may change as aresult of
other operations on the service' sinterface.

mutability = “static” | “constant” | “extendable” | “mutable” : default to extendable
0 Thisvaueindicates whether and how the values of a serviceData element can change
(see 86.2.3).
{ any attributes with non-schema namespace}
0 Open content on the attributes of serviceData declaration is allowed.
Content

0 Thisisan open content element model, meaning el ements from any other namespace

(besides serviceData) may appear as child elements of the serviceData element.

6.2.2 Using serviceData, an Example from GridService portType

To show how serviceData can be used, we present an example, namely, the GridService
portType, described in Section 9. The (non-normative) serviceData elements declared for the Grid
Service portType are asfollows.

<wsdl : definitions ...

<gwsdl : port Type nane="Gi dService” ..>
<wsdl| : operati on name=..> ...</wsdl:operation>

<sd: servi ceData nane="i nterface” type="xsd: QNane”
m nOccurs="1" maxCOccur s="unbounded”
mut abi | i ty="constant”/>
<sd: servi ceDat a nane="servi ceDat aNane” type="xsd: QNane”
m nOccur s="0" maxOccur s="unbounded”
nmut abi lity="nmutabl e” nill abl e="fal se”/>
<sd: servi ceDat a nane="f act or yHandl| e”
t ype="ogsi : Handl eType”
m nOccurs="1" maxCccurs="1"
nmut abi lity="constant” nillable="true”/>
<sd: servi ceDat a nane="gri dServi ceHandl| e”

0gsi-wg@ggf.org 18

GWD-R (draft-ggf -ogsi-gridservice-33) June 27,

t ype="ogsi : Handl eType”
m nCccur s="0"

maxQOccur s=" unbounded”

nmut abi | i t y="ext endabl e”/ >
<sd: servi ceDat a name="gri dServi ceRef er ence”

t ype="ogsi
m nOccur s="0"
nmut abi | i ty="nutabl e”/>

Ref er enceType”
maxQOccur s=" unbounded”

<sd: servi ceDat a nane="fi ndServi ceDat aExt ensi bi lity”
t ype="ogsi : Operati onExt ensi bilityType”

m nOccurs="1"
nmut ability="static”/>

<sd: servi ceData nane="t erni nati onTi ne”
m nCccur s="1"
nmut abi | i ty="nut abl e”/>

maxQOccur s=" unbounded”

maxQOccur s="1"

<sd: servi ceDat a nane="set Servi ceDat aExt ensi bi | ity”
type="ogsi : Operati onExt ensi bilityType”

m nCccur s="2"
nmut ability="static” />

maxQOccur s=" unbounded”

The normative description of theindividual serviceData dementsis given in Section 9.1.

Thefollowing is an example set of serviceData element values for a Grid service instance.

xm ns: crme" http://gridforum org/ namespaces/ 2002/ 11/ crnd
xm ns:tns="http://exanpl e. com exanpl eNS”
xnl ns="http://exanpl e. con’ exanpl eNS” >

<sd: serv

<ogsi :
<ogsi :

<ogsi
</ ogsi
<0gsi
</ ogs
<ogsi
</ ogsi
<ogsi
</ ogsi
<ogsi
</ ogsi
<o0gsi
</ ogs
<0gsi
</ ogs
<0gsi
</ ogsi

<ogsi

<0gsi
<0gsi

<ogsi
<0gsi

ceDat aval ues>

i nterface>crm Generi cOSPT</ogsi :interface>
i nterface>ogsi: GidService</ogsi:interface>

: servi ceDat aNane>ogsi

: servi ceDat aNanme>

: servi ceDat aNanme>ogs

: servi ceDat aName>

: servi ceDat aNanme>ogs

: servi ceDat aNane>

: servi ceDat aNane>ogsi

: servi ceDat aName>

: servi ceDat aNane>ogsi

: servi ceDat aNanme>

: servi ceDat aNane>ogsi

: servi ceDat aName>

: servi ceDat aNanme>ogs

: servi ceDat aNane>

: servi ceDat aName>ogsi

: servi ceDat aName>

0gsi-wg@ggf.org

sinterface

: servi ceDat aNane
:factoryHandl e

:gridServi ceHandl e
:gridServi ceRef erence
:findServiceDat abExtensibility
:term nationTi ne

: set Servi ceDat aExtensibility

: fact oryHandl e>sonmeURI </ ogsi : f act or yHand| e>

:gridServi ceHandl e>soneURI </ ogsi : gri dSer vi ceHandl e>
:gridServi ceHandl e>soneQ her URI </ ogsi : gri dSer vi ceHandl e>

:gridServi ceRef erence>..</ ogsi: gridServi ceRef erence>
:gridServi ceRef erence>..</ ogsi : gri dServi ceRef erence>

2003

type="ogsi:term nati onTi me”

19

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<ogsi : fi ndServi ceDat aExtensibility
i nput El ement =" ogsi : quer yBySer vi ceDat aNanes” />

<ogsi:term nationTi me after="2002-11-01T11: 22: 33"
bef ore="2002- 12- 09T11: 22: 33"/ >

<ogsi : set Servi ceDat aExt ensi bility

i nput El ement =" ogsi : set BySer vi ceDat aNanmes” />
<ogsi : set Servi ceDat aExtensi bility

i nput El ement =" ogsi : del et eBySer vi ceDat aNanes” />

</ sd: servi ceDat aVal ues>

6.2.3 Mutability

A mutability attribute on the serviceData element declaration indicates how aserviceData
element’ s values may change over itslifetime.

mutability="static”: this attribute value implies that the SDE value is assigned in the
WSDL declaration (staticServiceDataV alues) and MUST remain that value for any
instance of that portType. A “static’ SDE is analogous to a class member variable in
programming languages.

mutability="constant”: this attribute value implies that the SDE value is assigned upon
creation of the Grid service instance and MUST NOT change during the lifetime of the
Grid service instance once it is set to avalue.

mutability="extendable’: this attribute value implies that once elements are in the SDE
value, they MUST be part of the SDE value for the lifetime of the Grid service instance.
New elements MAY be added to the SDE value, but once these elements are added, they
MUST NOT be removed.

mutability="mutable”: this attribute value implies that any of the elementsin the SDE
vaue MAY beremoved at any time and others MAY be added.

Note: The functionality described here is different from the “fixed” and “ default” attributesin
theXML Schema s element definition. Whilethe XML Schema’s“fixed” attribute could be used
to suggest a“static” value, the “extendable” and “mutable’ attributes would have to be modeled
by amutability attribute. The case where mutability="constant” would be used to specify a
property that does not change after avalue is assigned. However, the value is not assigned by the
service description but, rather, must be initialized at run time.

6.3 serviceDataValues

Each service instance is associated with a collection of serviceData el ements: those serviceData
elements defined within the various portTypes that form the service sinterface, and a so,
potentially, additional serviceData €lements added at runtime (see §6.5). We call the set of
serviceData elements associated with aservice instance its “ serviceData set” . A serviceData set
may also refer to the set of serviceData el ements aggregated from al serviceData €l ements
declared in aportType interface hierarchy (see 86.4).

Each service instance MUST have a“logical” XML document, with aroot element of
serviceDataV alues that contains the serviceData element values. We showed an example of a
serviceDataV alues element above. A service implementation isfree to choose how the SDE

0gsi-wg@ggf.org 20

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

values are stored; for example, it may store the SDE vaues not as XML but as instance variables
that are converted into XML or other encodings as necessary.

The wsdl:binding associated with various operations manipul ating serviceData elements will
indicate the encoding of that data between service requestor and service provider. For example, a
binding might indicate that the serviceData element values are encoded as serialized Java objects.

6.3.1 Defining Initial SDE Values within the portType

Through the use of the staticServiceDataV alues element, aportType MAY declareinitial values
for any serviceData element with mutability marked as“ static” inits serviceData set, regardless
of whether the serviceData element was declared locally, or in one of the portTypesit extends.
Further, initial valuesMAY be declared in multiple portTypes within the interface hierarchy, so
long as the total number of initial values does not exceed that element’ s maxOccurs constraint. In
this case, theinitial valuesfor this serviceData element is the collection of all of theinitial values.

For example, the following declarations are legal and declare two initial valuesfor tns:.otherSD:
“initial value 1" and “initial value 2.

<wsdl : definitions xm ns:tns="xxx" target Namespace="xxx">
<gwsdl : port Type nane="ot her PT" >
<wsdl : operati on nane=..> ...</wsdl: operation>

<sd: servi ceDat a nane="ot her SD' type="xsd: Stri ng”
mut abi lity="static” maxOccurs="unbounded”/>

<sd: st ati cSer vi ceDat aVal ues>
<tns:otherSD>i nitial value 1</tns:other SD>
</ sd: stati cServi ceDat aVal ues>

</ gwsdl : port Type>

<gwsdl : port Type name="exanpl eSDUse" extends="tns: ot her PT">
<wsdl| : operati on name=..> ...</wsdl : operation>

<sd: servi ceDat a nane="sd1" type="xsd: String”
mut ability="static” />
<sd: servi ceDat a nane="sd2" type="tns: SomeConpl exType”/ >

<sd: st ati cSer vi ceDat aVal ues>
<tns:sdl>an initial value</tns:sdl>
<tns:otherSD>i nitial value 2</tns:other SD>
</ sd: st ati cServi ceDat aVal ues>

</ gwsdl : port Type>
</wsdl : definitions>
Initial valuesMUST NOT be declared for aserviceData element with mutability other than
“static”.

6.4 SDE Aggregation within a portType Interface Hierarchy

WSDL 1.2 has introduced the notion of multiple portType extension, and we have modeled that
construct within the gwsdl namespace. A portType can extend 0 or more other portTypes. There
isno direct relationship between awsdl:service and the portTypes supported by the service

ogsi-wg@ggf.org 21

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

modeled in the WSDL syntax. Rather, the set of portTypes implemented by the serviceis derived
through the port element children of the service element and binding elementsreferred to from
those port elements. This set of portTypes, and al portTypesthey extend, definesthe complete
interfaceto the service.

The serviceData set defined by the service' sinterface is the set union of the serviceData elements
declared in each portType in the complete interface implemented by the service instance. Because
serviceData elements are uniquely identified by QName, the set union semantic impliestha a
serviceData element can appear only oncein the set of serviceData elements. For example, if a
portType named “pt1” and portType named “pt2” both declare a serviceData named “tns.sd1”,
and aportType named “pt3” extends both “pt1 and “pt2”, then it has one (not two) serviceData
elementsnamed “tns:sdl”.

Consider the following example.

<gwsdl| : port Type nane="pt1l”>
<sd: servi ceData name="sd1” .../>
</ gwsdl : port Type>

<gwsdl : port Type nane="pt2” extends="ptl”>
<sd: servi ceDat a nane="sd2” .../>
</ gwsdl : port Type>

<gwsdl : port Type nane="pt3” extends="“ptl”>
<sd: servi ceDat a name="sd3” .../>
</ gwsdl : port Type>

<gwsdl : port Type nane="pt4” extends=“pt2 pt3">

<sd: servi ceDat a nane="sd4” .../>
</ gwsdl| : port Type>

The serviceData sets defined by the four portTypes defined here are asfollows.

if aserviceimplements... itsserviceData set contains...
Ptl sdl
pt2 sdl, sd2
Pt3 sdl, sd3
Pt4 sdl, sd2, sd3, sd4

6.4.1 |Initial Values of Static SDEs within a portType Interface Hierarchy

Initial values of static SDEs can be aggregated down a portType interface hierarchy. However,
the cardinality requirements (minOccurs and maxOccurs) MUST be preserved. For example, in
the following, a service instance that implements pt1 would have the value <sd1>1</sd1> for
SDE named sdl.

<gwsdl : port Type nane="pt1l”>
<sd: servi ceDat a name="sdl1” m nOccurs="1" maxOccurs="1"
nmut ability="static"/>
<sd: st ati cSer vi ceDat aVal ues>
<sd1>1</sdi1>
</ sd: st ati cServi ceDat aVal ues>

</ gwsdl : port Type>

ogsi-wg@ggf.org 22

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

In the following, however, a service instance that implements pt2 would inherit the value
<sd1>1</sd1> for SDE named sd1 and would have the value <sd2>2</sd2> for the SDE named
sd2.

<gwsdl : port Type nane="pt2” extends="“ptl”>
<sd: servi ceDat a nanme="sd2” m nCOccurs="1" maxOccurs="1"
nmut ability="static”/>
<sd: st ati cSer vi ceDat aVal ues>
<sd2>2</sd2>
</ sd: st ati cServi ceDat aVal ues>
</ gwsdl : port Type>

A service instance that implements pt3 would have two values <sd3>3a</sd3> and
<sd3>3b</sd3> for the SD E named sd3. It would, of course, inherit the value for the SDE named
sdl.

<gwsdl : port Type nane="pt3” extends="ptl”>
<sd: servi ceDat a nane="sd3” m nOccurs="1" nmaxCccurs="unbounded”
nmut abi lity="static”/>
<sd: st ati cServi ceDat aVal ues>
<sd3>3a</ sd3>
<sd3>3b</ sd3>
</ sd: stati cServi ceDat aVal ues>
</ gwsdl : port Type>

A service instance that implements pt4 would inherit the value for sd1 defined in pt1, but the
absence of a staticServiceDataV alues el ement impliesthat thereisno initia value for sd4
(although most likely one would be defined in a portType that extends pt4).

<gwsdl : port Type nane="pt4” extends="“ptl”>
<sd: servi ceDat a nane="sd4” m nOccurs="0" maxOccurs="unbounded”
nmut ability="static"/>
</ gwsdl : port Type>

A service instance that implements pt5 could not be created. Sincethereisno initial value for sd5
and since the minOccurs value is greater than zero, an eror is generated when the instance is
created. PortTypes of this sort can be encountered if it isthe intention of the designer to declare

an “abstract” portType, wherein portTypes extending the abstract portType define concrete values
for SDEs with minOccurs greater than zero.

<gwsdl| : port Type nane="pt5” extends="ptl”>
<sd: servi ceDat a nane="sd5” nmi nOccurs="1" maxOccur s="unbounded”
nmut ability="static”/>
</ gwsdl : port Type>

A service instance that implements pt6 could not be created. Since this portType declares an
additional value for the SDE named sd1 (recall thereis avalue inherited from ptl) that exceeds
the maxOccurs value for the SDE named sd1, an error is generated when the instance is created.

<gwsdl| : port Type nane="pt6” extends="ptl”>
</ sd: stati cServi ceDat aVal ues>
<sd1>6</sd1>
<sd: st ati cSer vi ceDat aVal ues>
</ gwsdl : port Type>

0gsi-wg@ggf.org 23

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

A service instance that implements pt7 has an interesting set of serviceData element values. First,
it hasasingle value <sd1>1</sd1> for the SDE named sd1. Despite inheriting pt1 via pt2 and pt3,
theinitial values for sd1 are not repeated. The vaue <sd2>2</sd2> isthe only value for the SDE
named sd2, inherited from pt2. The SDE named pt3 has three values: <sd3>3a</sd3>,
<sd3>3b</sd3> (inherited from pt3), and <sd3>7</sd3> |ocally defined. Moreover, thereis a
locally defined value for the SDE named sd7 (<sd7>7</sd7>).

<gwsdl : port Type name="pt 7" extends="pt2 pt3”>
<sd: servi ceDat a nane="sd7” m nOccurs="1" maxOccurs="1"
nmut ability="static"/>
<sd: st ati cSer vi ceDat aVal ues>
<sd7>7</ sd7>
<sd3>7</ sd3>
</ sd: st ati cServi ceDat aVal ues>
</ gwsdl : port Type>

In summary, values for static SDES are aggregated down a portType interface hierarchy. If the
resulting set of SDE values violates the cardinality of the SDE (the number of valuesis either less
than the value of minOccurs or greater than the value of maxQOccurs), an error isreported when a
Web service instanceis created.

6.5 Dynamic serviceData Elements

Although many serviceData elements are most naturally defined in a service' sinterface
definition, situations can arise where it is useful to add or remove serviceData elements
dynamically to or from an instance. The means by which such updates are achieved is
implementation-specific; for example, aservice instance MAY implement operations for adding a
new service data element.

The GridService portType (89) illustrates the use of dynamic SDEs. This contains a serviceData
element named “ serviceDataName” that lists the serviceData elements currently defined. This
property of a service instance may return a superset of the service data elements declared in the
GWSDL defining the service interface, allowing the requestor to usethesubscr i be operation
(811.1.2.1) if this serviceDataSet changes, and f i ndSer vi ceDat a (89.2.1) operation to
determine the current serviceDataSet value.

7 Core Grid Service Properties
We discuss here anumber of properties and concepts common to all Grid services.

7.1 Service Description and Service Instance

We distinguish in OGS| between the description of a Grid service and an instance of aGrid
service:

* A Gridservicedescription describes how aclient interacts with serviceinstances. This
description isindependent of any particular instance. Within aWSDL document, the Grid
service description is embodied in the most derived portType (i.e., the portType
referenced by the wsdl:service element’ s port children (viareferenced binding elements)
describing the service) of the instance, along with its associated portTypes (including
serviceData declarations), bindings, messages, and types definitions.

0gsi-wg@ggf.org 24

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

* A Grid service description may be simultaneously used by any number of Grid service
instances each of which

0 embodies some state with which the service description describes how to interact,
0 hasoneor more Grid Service Handles and
0 hasoneor more Grid Service Referencesto it.

A service description is used primarily for two purposes. First, as adescription of aservice
interface, it can be used by tooling to automatically generate client interface proxies, server
skeletons, and so forth. Second, it can be used for discovery, for example, to find aservice
instance that implements a particular service description, or to find afactory that can create
instances with a particular service description.

The service description is meant to capture both interface syntax and (in a very rudimentary, non-
normative fashion) semantics. Interface syntax is described by WSDL portTypes. Semantics may
be inferred through the name assigned to the portType. For example, when defining a Grid
service, one defines zero or more uniquely named portTypes. Concise semantics can be
associated with each of these names in specification documents—and perhaps in the future
through Semantic Web or other more formal descriptions. These names can then be used by
clientsto discover serviceswith desired semantics, by searching for service instances and
factories with the appropriate names. The use of namespaces to define these names also provides
avehicle for assuring globally unique names.

7.2 Modeling Time in OGSI

The need arises at various points throughout this specification to represent time that is meaningful
to multiple partiesin the distributed Grid. For example, information may be tagged by a producer
with timestampsin order to convey that information’ s useful lifetime to consumers; clients need
to negotiate service instance lifetimes with services, and multiple services may need acommon
understanding of timein order for clientsto be able to manage their simultaneous use and
interaction.

The GMT global time standard is assumed for Grid services, allowing operationsto refer
unambiguoudly to absolute times. However, assuming the GMT time standard to represent time
doesnot imply any particular level of clock synchronization between clients and servicesin the
Grid. Infact, no specific accuracy of synchronization is specified or expected by this
specification, as thisisaservice-quality issue.

Grid service hosting environments and clients SHOULD utilize the Network Time Protocol
(NTP) or equivalent function to synchronize their clocksto the global standard GMT time.
However, clients and services MUST accept and act appropriately on messages containing time
valuesthat are out of range because of inadequate synchronization, where “ appropriately” MAY
include refusing to use the information associated with those time values. Furthermore, clients
and services requiring global ordering or synchronization at afiner granularity than their clock
accuracies or resolutions alow for MUST coordinate through the use of additional
synchronization service interfaces, such as through transactions or synthesized global clocks.

In some casesit isrequired to represent both zero time and infinite time (for examples, see 87.3
and 8§9.2). Zero time SHOULD be represented by atimein the past. However, infinite time
requires an extended notion of time. We therefore introduce the following typein the ogs
namespace, which MAY be used in place of xsd:dateTime when a special value of “infinity” is
appropriate.

. target Nanespace =

0gsi-wg@ggf.org 25

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

“http://ww. gridf orum org/ namespaces/ 2003/ 03/ OGSI ”

<si npl eType nanme="Ext endedDat eTi neType" >
<uni on nenber Types="ogsi : I nfinityType xsd: dateTi me"/>
</ si npl eType>

<si npl eType nanme="InfinityType">
<restriction base="string">
<enuneration value="infinity"/>
</restriction>
</ si npl eType>

7.3 XML Element Lifetime Declaration Properties

Since serviceData elements may represent instantaneous observations of dynamic state of a
serviceinstance, it iscritical that consumers of serviceData be able to understand the valid
lifetimes of these observations. T heclient MAY usethistime-related information to reason about
the validity and availability of the serviceData element and its value, though the client isfree to
ignore the information.

We define three XML attributes, which together describe the lifetimes associated with an XML
element and its subelements. These attributes MAY be used in any XML element that allows for
extensibility attributes, including the serviceData element.

The three lifetime declaration properties are as follows:

» ogsi:goodFrom: Declares the time from which the content of the eement is said to be
valid. Thisistypicaly the time at which the value was created.

» ogsi:goodUntil: Declaresthe time until which the content of the element issaid to be
valid. Thisproperty MUST be greater than or equal to the goodFrom time.

» 0gsi:availableUntil: Declares the time until which this element itself is expected to be
available, perhaps with updated values. Prior to thistime, aclient SHOULD be ableto
obtain an updated copy of this element. After thistime, aclient MAY no longer be able
to get acopy of thiselement (while still observing cardinality and mutability constraints
on thiselement). This property MUST be greater than or equal to the goodFrom time.

The XML definitions for these attributesin the ogsi namespace are as follows. (The definition of
ExtendedDateTimeTypeisgivenin 87.2.)

t arget Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI "

<xsd: attri bute name="goodFroni' type="o0gsi: ExtendedDateTi meType"/ >
<xsd: attribute name="goodUntil" type="ogsi: ExtendedDat eTi mreType"/ >
<xsd:attribute name="avail abl eUntil" type="o0gsi: ExtendedDateTi mneType"/ >

<xsd: attri buteG oup nane="LifeTi meProperti esG oup" >
<xsd:attribute ref="ogsi:goodFroni' use="optional"/>
<xsd: attribute ref="ogsi:goodUntil" use="optional"/>
<xsd:attribute ref="ogsi:availabl eUntil" use="optional"/>
</ xsd: attribut eG oup>

We use the following serviceData el ement example to illustrate and further define these lifetime

declaration attributes:

<wsdl : definitions

0gsi-wg@ggf.org 26

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

t ar get Nanespace="htt p: // exanpl e. com ns”
xm ns: nl="http://exanpl e.com ns”
>

<wsdl : types>
<xsd: schema ..
“t ar get Namespace=htt p: // exanpl e. conf ns”
.2
<xsd: conpl exType name="M/Type" >
<xsd: sequence>
<xsd: el ement name="el" type="xsd:string" m nOccurs="1"/>
<xsd: el ement name="e2" type="xsd:string" m nOccurs="1"/>
<xsd: el enent name="e3" type="xsd:string”" m nCccurs="0"/>
</ xsd: sequence>
<anyAttri but e nanespace="##any"/>
</ xsd: conpl exType>
</ xsd: schema>
</wsdl : types>

gémsdlzportType name=" MyPort Type” >

<sd: servi ceDat a name="nySDE” type= “nl: MyType”
m nOccurs="1" maxCccurs="1"
nmut abi | i ty="nut abl e”/>

</gqédl:portType>

</médl:definitions>

And within the service instance' s serviceDataV alues;

<sd: servi ceDat aVal ues
<nl: my SDE
goodFr on=" 2002- 04- 27T10: 20: 00. 000- 06: 00"
goodUnti | =" 2002- 04- 27T11: 20: 00. 000- 06: 00"
avai | abl eUnti | =" 2002- 04- 28T10: 20: 00. 000- 06: 00" >
<nl:el>
abc
</nl:el>
<nl: e2 ogsi:gooduUntil ="2002-04-27T10: 30: 00. 000- 06: 00" >
def
</nl:e2>
<nl: e3 ogsi:avail abl eUntil ="2002-04-27T20: 20: 00. 000- 06: 00" >
ghi
</nl: e3>
</ n1: my SDE>
</ sd: servi ceDat aVal ues>

The goodFrom and goodUntil attributes of the n1:mySDE element refer to all of its child
elements. These attributes declare to a consumer of this SDE the expected lifetime for the
element’ s value, which in this example is from 10:20 am until 11:20 am EST on 27 April 2002. A
consumer receiving this SDE at 10:20 am is thus advised that after one hour the SDE valueis
likely no longer valid. The client might therefore query the service instance again at 11:20 (giving
the same name for the SDE: n1:mySDE) to obtain anewer value.

ogsi-wg@ggf.org 27

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

The availableUntil refers not to the service datavalue of the SDE, but rather to the availability of
thisnamed serviceData element itself. Prior to the declared availableUntil time, aclient

SHOULD be able to query the same Grid service instance for an updated value of this named
SDE. In thisexample, aclient should be able to query the same service instance until 28 April
2002 10:20 am EDT for the serviceData el ement named n1:mySD, and receive a response with an
updated copy of its value. After that time, however, the client SHOULD NOT assume such a
value will be available: Such a query might result in aresponse indicating that no such service
data element exists. In other words, the consumer of the SDE is being advised that it can expect to
be able to obtain an updated value of this named SDE for one day, but after that time the service
instance may no longer have an SDE with the name n1:mySDE. Despite this suggestion of
availability, an SDE MAY cease to be available prior to the availableUntil time exposed to
clients.

It can be desirable for the SDE’ s value to contain child e ements with lifetimes different from
those declared in the parent element. To meet this requirement, an XML element contained within
aserviceDataelement value MAY use any combination of the goodFrom, goodUntil, and
availableUntil attributes, assuming that the schemafor that element allows for these extensibility
attributes. Such attributes on child elements override the default values specified on parent
elements. There are no constraints on the values of these attributes in the child elements, relative
to those specified in the parent elements, except that the ordering constraints between the
effective goodFrom, goodUntil, and availableUntil values for any el ement must be maintained.

In the above example, the lifetime attributes carried in the parent eement (n1:mySDE) provide
default valuesfor all children of that element. For example, the nl:el element uses these default
values, as described above. However, the nl:e2 element overridesthe goodUntil attribute, thus
stating that its value (* def”) is expected to be valid only for 10 minutes, instead of 1 hour asis
declared in the parent element. Such a situation might arise if a portion of a complex element
changes more quickly than other portions of the element. Likewise, the n1:e3 element overrides
the availableUntil, thus stating that the n1:e3 element may no longer exist within n1:mySDE after
10 hours. In other words, after 10 hours, arequestor that queries for the value of this serviceData
element MAY bereturned anl:mySDE element that does not contain anl:e3 child element. This
example, of course, assumes that the n1:MyType schemaallowsfor nl:e3 to be an optional
element, and thus be omitted from n1:MyType.

ItisRECOMMENDED that the XML Schemafor elements that are intended to be used as types
in service data declarations allow all elements within their schemato be extended with these
lifetime declaration properties, in order to alow for fine-grained lifetime declarations.

If these attributes do not appear on an element, then the goodFrom, goodUntil, and availableUntil
properties are unknown.

7.4 Interface Naming and Change Management

A critical issuein distributed systems is enabling the upgrade of services over time. This
requirement impliesin turn that clients need to be able to determine when services have changed
their interface and/or implementation. Here, we discuss this issue and some OGSl mechanisms,
reguirements, and recommendations that addressit.

7.4.1 The Change Management Problem
The semantics of aparticular Grid service instance are defined by the combination of:

1. Itsinterface specification. Syntactically, a Grid service' sinterface is defined by its
service description, comprising its portTypes, operations, serviceData declarations,

0gsi-wg@ggf.org 28

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

messages, and types. Semantically, the interfaceistypically defined in specification
documents such asthis one, although it may a so be defined through other formal
approaches.

2. Theimplementation of the interface. While expected implementation semantics may be
implied from interface specifications, ultimately it is the implementation that truly
defines the semantics of any given Grid service instance. Implementation decisions and
errors may result in a service instance having behaviorsthat are ill-defined or at odds
with the interface specification. Nonetheless, clients of that serviceinterface may come to
rely upon such implementation semantics, whether by accident or by design.

In order for aclient to be able reliably to discover and use a Grid service instance, the client must
be able to determine whether it is compatible with both of thesetwo service definitions. In other
words, does the Grid service description include the portType(s) that the client requires? And
does the implementation have the semantics that the client requires, such as a particular patch
level containing acritical bug fix?

Further, Grid service descriptions will necessarily evolve over time. If a Grid service description
is extended in a backward-compatible manner, then clients that require the previous definition of
the Grid service should be able to use a Grid service instance that supports the new extended
description. Such backward-compatible extensions might occur to the interface definition, such as
through the addition of anew operation or service data description to the interface, or the addition
of optional extensionsto existing operations. Or, backward-compatible extensions might occur
through implementation changes, such as a patch that fixes a bug. For example, a new
implementation that corrects an error that previously caused an operation to fail would generaly
be viewed as being backward-compatible.

However, aclient MUST be ableto detect if aGrid service description is changed in away that is
not backward-compatible. Again, the lack of backward compatibility could be the result of
incompatible changes to the Grid service interface or implementation. For example, a bug fix that
“fixes’ an “erroneous’ behavior that users have learned to take advantage of might not be
considered backward-compatible.

Thisdiscussion pointsto the need to be able to provid e concise names for both the interface and
implementation of a Grid service, as well asto make unambiguous compatibility statements about
Grid servicesthat support different interfaces or implementations.

7.4.2 Naming Conventions for Grid Service Descriptions

In WSDL, each portTypeis globally and uniquely named viaits qualified name—that is, the
combination of the namespace containing the portType definition and the locally unique name of
the portType element within that namespace. In OGSI, our concern with change management
leads usto require that all elements of a Grid service description MUST beimmutable. The
QName of a Grid service portType, operation, message, serviceData declaration, and underlying
type definitions MAY be assumed to refer to one and only one WSDL/XSD specification. If a
changeis needed, anew portType MUST be defined with anew QName—that is, defined with a
new local name, and/or in a new namespace.

Note that during development, a Grid service description may change frequently at the interface,
portType, and implementation levels. Because of the strong immutability requirement above,
devel opers should choose their release schedules carefully. Once an interface or implementation
isin use outside of thetotal control of the developer, no further changes are permitted without the
introduction of a new portType.

0gsi-wg@ggf.org 29

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Changesin the interface that extend the functionality of a Grid service, without altering its
existing behavior, SHOUL D be modeled with portType extension, alowing existing clientsto use
the new service instance without modification. Such interface extensons MAY also be modeled
with totally new portTypes, but this approach is not recommended.

7.5 Naming Grid Service Instances

Each Grid service instance is named, globally and for all time, by one or more Grid Service
Handles (GH) . A GSH isjust aminimal namein the form of a URI and does not carry enough
information to alow aclient to communicate directly with the service instance. Instead, a client
wishing to communicate with a service instance must resolve the GSH to a Grid Service
Reference (GSR). A GSR contains all information that a client requires to communicate with the
service instance via one or more network protocol bindings.

Like any URI, a GSH consists of a scheme, followed by a string containing scheme-specific data.
The schemeindicates how oneinterprets the scheme-specific datato resolve the GSH into a GSR,
within the bounds of the requirements defined below. A client MAY choose to resolve GSHs
itself, orit MAY chooseto outsource all resolution, for example, to a pre-configured service
instance that implements the HandleResolver portType (see §10).

Theformat of the GSR is specific to the binding mechanism used by the client to communicate
with the Grid service instance. For example, if an RMI/I1OP binding is used, the GSR would take
the format of an IOR. If a SOAP binding is used, the GSR would take the form of a properly
annotated WSDL document.

Whilea GSH isvalid for the entire lifetime of the Grid service instance, a GSR may become
invalid, therefore requiring a client to resolve the GSH into anew, valid GSR.

7.5.1 Grid Service Reference (GSR)

Grid service instances are made accessible to (potentialy remote) client applications throughthe
use of a Grid Service Reference (GSR). A GSR istypically a network-wide pointer to aspecific
Grid service instance that is hosted in an environment responsible for its execution. A client
application can use a GSR to send requests (represented by the operations defined in the WSDL
portType(s) of the target service instance) directly to the specific instance at the specified
(potentially network-attached) service endpoint identified by the GSR. In other words, the GSR
supports the programmatic notion of passing Grid service instances “by reference”. The GSR
contains all of the information required to access the Grid service instance resident in its hosting
environment over one or more communication protocol bindings. A GSR may belocalized to a
given client context or hosting environment, however; the scope of portability for aGSR is
determined by the binding mechanism(s) it supports. A GSR locdization format SHOULD
include sufficient scoping information such that reference-passing between services can be
detected in the binding layer. For example, the use of a GSR passed out of its localized scope
SHOULD NOT lead to erroneous binding to the wrong service instance.

The encoding of a Grid Service Reference may take many formsin the system. Like any other
operation message part, the actual encoded format of the GSR “on the wire” is specific to the
Web service binding mechanism used by the client to communicate with the Grid service
instance. Below we define aWSDL encoding of a GSR that MAY be used by some bindings, but
the use of any particular encoding is defined in binding specifications and is therefore outside of
the scope of this specification.

Nevertheless, it is useful to elaborate further on this point here. For example, if an RMI/110OP
binding were used, the GSR would be encoded as a CORBA -compliant IOR. If a SOAP binding

ogsi-wg@ggf.org 30

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

were used, the GSR may take the form of the WSDL encoding defined below. This*“on the wire”
form of the Grid Service Referenceis created both in the Grid service hosting environment, when
references are returned as reply parameters of aWSDL-defined operation, and by the client
application or its designated execution environment when references are passed as input
parameters of aWSDL-defined operation. This*on thewire” form of the Grid Service Reference,
passed as a parameter of aWSDL-defined operation request message, SHOULD include all of the
service endpoint binding address information required to communicate with the associated
service instance over any of the communication protocol s supported by the designated service
instance, regardless of the Web service binding protocol used to carry the WSDL defined
operation request message.

Any number of Grid Service Referencesto agiven Grid service instance MAY exist in the
system. Thelifecycle of aGSR MAY beindependent of the lifecycle of the associated Grid
service instance. A GSR is valid when the associated Grid service instance exists and can be
accessed through use of the Grid Service Reference. Aninvalid GSR MUST be detectable by a
client attempting to use the GSR, and MAY be detectable by other means for some GSR schemes.
A GSR MAY becomeinvalid during the lifetime of the Grid serviceinstance. Typicaly this
Situation occurs because of changes introduced at the Grid service hosting environment. These
changesMAY include modificationsto the Web service binding protocol s supported at the
hosting environment or the destruction of the Grid service instance itself. Use of an invalid Grid
Service Reference by aclient SHOULD result in an exception being detected by or presented to
theclient.

When a Grid Service Reference is found to be invalid and the designated Grid service instance
exists, aclient MAY obtain anew GSR using the Grid Service Handle of the associated Grid
service instance, as defined in Section 7.5.2. For convenience, the Grid Service Handle MAY be
contained within a binding-specific implementation of the Grid Service Reference.

A binding-specific implementation of a Grid Service Reference MAY include an expiration time,
which isadeclaration to clients holding that GSR that the GSR SHOULD be valid prior to that
time, and it MAY NOT be valid after the expiration time. After the expiration time, aclient MAY
continue to attempt to use the GSR but SHOULD retrieve anew GSR by using the GSH of the
Grid service instance. While an expiration time provides no guarantees, it nonethelessis a useful
hint in that it allows clients to refresh GSRs at convenient times (perhaps simultaneously with
other operations), rather than smply waiting until the GSR becomes invalid, at which time it
must perform the (potentially time-consuming) refresh before it can proceed.

Mere possession of a GSR does not entitle a client to invoke operations on the Grid service
instance. In other words, a GSR is not a capability. Rather, authorization to invoke operations on
a Grid service instanceis an orthogonal issue, to be addressed elsewhere.

The XML Schema definition for a GSR is as follows.

t arget Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI ”

<xsd: el ement name="reference" type="ogsi: ReferenceType"/>

<xsd: conpl exType name="Ref erenceType" abstract="true">
<xsd:attribute ref="ogsi:goodFroni' use="optional"/>

<xsd: attribute ref="ogsi:goodUntil" use="optional"/>
</ xsd: conpl exType>

ogsi-wg@ggf.org 31

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

The two attributes, defined previoudly in 87.3,give the expected lifetime of the GSR, not of the
serviceinstanceto which it refers. A client SHOULD NOT call aservice instance using a given

GSR before its goodFrom time or after its goodUntil time.

7511 WSDL Encoding of a GSR

ItisRECOMMENDED that aWSDL document that encodes a GSR contain just the minimal

information required to describe fully how to reach the particular Grid service instance. The

WSDL GSR must contain awsdl:definitions child element. The wsdl:definitions element MUST

contain exactly one wsdl:service element and MAY contain other elements.
The XML definition for aWSDL GSR is asfollows.
t arget Nanespace = http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ OGSI| "

<xsd: conpl exType name="WSDLRef erenceType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="ogsi : Ref erenceType" >
<xsd: sequence>
<xsd: any nanespace="http://schemas. xnl soap. or g/ wsdl /”
m nCccur s="1" maxCOccurs="1" processContents="1ax"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

7.5.2 Grid Service Handle (GSH)
Grid Service Handles have the following properties.
1. A GSH MUST beavalid URI [RFC 2396].

2. A GSH MUST globally and for all timerefer to the same Grid service instance. A GSH

MUST NOT refer to more than one Grid service instance, whether or not they exist
simultaneoudly. See §7.5.2.1 for the definition of “same Grid service instance.”

3. A Grid serviceinstance MUST have at least one GSH.
A Grid serviceinstance MAY have multiple GSHsthat use different URI schemes.

5. A Grid service instance MAY have multiple GSHsthat use the same URI scheme, if itis

allowed by that URI scheme. However, the specification for a particular URI scheme
MAY restrict this property by only allowing asingle GSH within that URI schemeto a

Grid service instance.
6. ThegridServiceHandle service data element values (89.1) of aGrid service instance

MUST contain only GSHs that refer to that instance. If two or more GSHs are contained
in a Grid service instance' s gridServiceHandle SDE values, then they MUST all refer to

that same Grid service instance. The gridServiceHandle SDE values MAY contain a

subset of al GSHs of the GridService.
7. There MAY be multiple GSRsthat refer to the same Grid service instance.

Multiple resolutions of the same GSH MAY result in different GSRs. A resolver MAY

return different GSRsfor the same GSH at different times, and it MAY return different

GSRsto different clientsthat are resolving the same GSH.

0gsi-wg@ggf.org

32

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

9. A GSH MAY be unresolvable to a GSR before, during, or after the existence of the Grid
service instance to which the GSH refers. However, the specification for a particular URI
scheme MAY define astronger quality of service for resolution. For example, a particular
URI scheme MAY guarantee that resolution during the instance’ slifetime, and to a
reliable statement of termination after the instance has terminated.

10. A client’strust of aservice instance MAY be handled in any way the client chooses, and
therefore resolution of a GSH to a GSR MAY be either atrusted or an untrusted
operation, depending on, for example, the configuration of the client, or the definition of
the resolution protocol. This specification permits, but does not require, aclient to trust
the resolution of aGSH to a GSR.

The XML definition for a GSH is as follows.
t arget Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI "

<xsd: el emrent nanme="handl e" type="o0gsi: Handl eType"/>

<xsd: si npl eType nane="Handl eType" >
<xsd:restriction base="xsd:anyURI "/ >
</ xsd: si npl eType>

75.21 Servicelnstance Sameness

The preceding discussion specified that “a GSH MUST globally and for all time refer to thesame
Grid serviceinstance” Thisrequirement is an important one because it allows clientsto reason
about, for example, the meaning of multiple calls to the same service instance. One should note,
however, that the interpretation of the phrase “ same Grid service instance” depends on the
semantics of a service' s description. A service instance may be implemented in any way aslong
asit obeys the semantics associated with its service description, in other words, the portType(s)
that the service instance implements.

For example, the implementation of aservice MAY be distributed or replicated across multiple
resources, aslong asit obeys the semantics associated with its service description. A single GSH
would be associated with this service instance, though that GSH may resolve to different GSRs
referring to different resources, based on such factors as resource availability and utilization,
locality of aclient, client privileges, and so forth. Some service descriptions may require tight
state coherency between any such replicated implementations—for example, the semantics of the
service description may require that the service instance move through a series of well-defined
states in response to a particular sequence of messages, thus requiring state coherence regardless
of how GSHs are resolved to GSRs. Other service descriptions may be defined, however, that
allow for looser consistency between the various members of the distributed service
implementation.

7.5.3 Service Locator

A service locator isastructure that contains zero or more GSHSs, zero or more GSRs, and zero or
more interface (portType) QNames. All of the GSHs and GSRs MUST refer to the same Grid
service instance, and al of the interfaces MUST be implemented by that Grid service instance.
Locators are used by various operations in this specification that may accept either aGSH or a
GSR. The XML definition of alocator is as follows.

t ar get Nanespace = “http://ww. gri df orum or g/ namespaces/ 2003/ 03/ OGSI ”

<xsd: el enent name="| ocator" type="ogsi:LocatorType"/>

ogsi-wg@ggf.org 33

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<xsd: conpl exType name="Locat or Type" >
<xsd: sequence>
<xsd: el ement ref="o0gsi: handl e"
m nCccur s="0" maxCOccur s="unbounded"/ >
<xsd: el enent ref="o0gsi:reference"
m nOccur s="0" maxQOccur s="unbounded"/ >
<xsd: el enrent name="interface” type="QNanme”
m nOccur s="0" maxCOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

7.6 Grid Service Lifecycle

Thelifecycle of any Grid serviceinstance is demarcated by the creation and destruction of that
service instance. The actual mechanisms by which a Grid service instanceis created or destroyed
are fundamentally a property of the hosting environment, and as such are not defined in this
document. Nevertheless, thereisacollection of related portTypes defined in this specification
that specify how clients may interact with these lifecycle eventsin a common manner. Aswe
describe in subsequent sections:

* A client may request the creation of a Grid service instance by invoking the createService
operation on a service instance that implements a portType that extends the Factory
portType or that contains specialized methods defined to instantiate new services, such as
the NotificationSource portType (a“factory” service).

» A client may request thedestruction of a Grid service instance via either client invocation
of an explicit destruction operation request to the service instance (see the destroy
operation, supported by the GridService portType: 89) or viaa Soft-state approach, in
which (as motivated and described in [Grid Physiology]) aclient registersinterest in the
Grid service instance for a specific period of time, and if that timeout expires without the
service instance having received reaffirmation of interest from any client to extend the
timeout, the service instance may be automatically destroyed. Periodic reaffirmation can
serve to extend the lifetime of a Grid service instance as long as is necessary (see the
requestTerminationBeforg/After operationsin the GridService portType: 89).

In addition, a Grid serviceinstance MAY support notification of lifetime-related eventsthrough
the standard notification interfaces defined in 811.

A Grid serviceinstance MAY support soft state lifetime management, in which case aclient
negotiates an initial serviceinstance lifetime when the Grid service instance is created through a
factory (812), and authorized clientsMAY subsequently send requestTerminationBefore/After
(“keepalive”) messagesto request extensions to the service' slifetime. If the Grid service
instance’ s termination time is reached, the server hosting the serviceinstance MAY destroy the
service instance, reclaim any associated resources, and remove any knowledge of the service
instance from handle resolvers under its control.

Termination time MAY change nonmonotonically. That is, aclient MAY reguest atermination
timethat is earlier than the current terminationtime. If the requested termination timeis before
the current time, then this MUST be interpreted as a request for immediate or prior termination.

A Grid serviceinstance MAY decide at any timeto extend itslifetime. A serviceinstance MAY
alsoterminate itself at any time, for example if resource constraints and priorities dictate that it
relinquish its resources.

Termination timeis represented throughout OGS by using the following type:
t arget Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI ”

ogsi-wg@ggf.org 34

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<xsd: conpl exType name="Term nati onTi neType" >
<xsd:attribute name="after" type="ogsi:ExtendedDateTi neType"
use="optional "/ >
<xsd: attribute name="before" type="ogsi: ExtendedDateTi meType"
use="optional "/ >
<xsd:attribute name="ti nest anp" type="xsd: dateTi ne”
use="optional "/ >
</ xsd: conpl exType>

<xsd: si npl eType nane="Ext endedDat eTi neType" >
<xsd: uni on nenber Types="o0gsi : I nfinityType xsd: dateTi me"/>
</ xsd: si npl eType>

<xsd: si npl eType nane="InfinityType">
<xsd:restriction base="string">
<xsd: enuneration value="infinity"/>
</ xsd:restriction>
</ xsd: si npl eType>

The after attribute of TerminationTimeType containsthe earliest time at which the service
instance plans to terminate. A value in the past indicates that the service instance may terminate
at any time. The specia value “infinity” indicates that the service instance plans to exist
indefinitely. (ogs:ExtendedDateTimeType is defined in §7.2, which alows for the expression of
an xsd:dateTime or the special value“infinity”.)

The before attribute of TerminationTimeType contains the latest time at which the service
instance plansto terminate. A valuein the past indicates that the serviceinstanceistryingto
terminate. The special value “infinity” indicates that the service instance has no plansto
terminate. The after time MUST belessthan or equal to thebefore time.

The timestamp attribute of TerminationTimeType containsthe time, as known to the service
instance to which this TerminationTimeType pertains, at which the after and before attributes are
known to be vaid for the service instance. Thistimestamp MAY be used to order
TerminationTimeType values relating to a particular service instance and, in some circumstances,
MAY be used to gauge the clock skew of this service instance relative to a client or some other
time source.

7.7 Common Handling of Operation Faults

OGS definesabase X SD typefor all fault messages that Grid services MUST return. This
simplifies problem determination by having acommon base set of information that all fault
messages contain.

The basisfor all OGS faultsisthe ogsi:FaultType XSD type:
t arget Nanespace = “http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ OGSI ”

<xsd: el ement name="fault” type="FaultType”>

<xsd: conpl exType name="Faul t Type” >
<xsd: sequence>
<xsd: el enent name="descri ption”
type=“xsd: string”
m nOccur s=“0" maxCOccur s=“unbounded”/ >
<xsd: el enent nane=“ori gi nator”

ogsi-wg@ggf.org 35

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

t ype=“ogsi : Locat or Type”
m nCccurs="“1" maxOccurs=“1"/>
<xsd: el enment name="ti mest anp”
type="xsd: dat eTi ne”
m nCOccur s=“1" maxOccurs=“1"/>
<xsd: el enent name="“f aul t cause”
type=“ogsi : Faul t Type”
m nOccur s=“0" maxQOccur s=*“unbounded”/ >
<xsd: el enent nanme=“f aul t code”
t ype="ogsi : Faul t CodeType”
m nCccur s=“0" maxQOccurs=“1"/>
<xsd: el enent nane="ext ensi on"
type="ogsi: ExtensibilityType"
m nOccur s="0" maxOccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="Faul t CodeType" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd:attribute nanme="faul tscheme" type="anyURI"
use="requi red"/ >
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<xsd: conpl exType name="ExtensibilityType">

<xsd: sequence>

<xsd: any nanmespace="##any"/ >

</ xsd: sequence>
</ xsd: conpl exType>
Itis RECOMMENDED that dl faults from a Grid service instance use either the FaultType
directly or an extension of FaultType. However, there MAY be circumstances in which faults
from a Grid service instance are not derived from FaultType, such as when the Grid service uses
legacy portTypesin addition to OGSI portTypes.

The OPTIONAL description element contains a plain language description of the fault. This
description is expected to be helpful in explaining the fault to users. There MAY be any number
of description elements.

The REQUIRED originator element isalocator of the service instance raising the fault.
The REQUIRED timestamp element is the time at which the fault occurred.

The OPTIONAL faultcause element is an ogsi:FaultType element that describes an underlying
cause that resulted in thisfault. This element is conventionally used with xsi:type to describe a
more specialized fault that extends FaultType. There MAY be any number of faultcause
elements. The ability to include faultcause elementsin afault allows for “chaining” of fault
information up through a service invocation stack, so that arecipient of afault can drill down
through the causes to understand more detail about the reason for the fault.

The OPTIONAL faultcode element provides convenient support for legacy fault reporting
systems (e.g., POSIX errno). The faultscheme attribute on faultcode MUST bea URI (not aURL)
that defines the context in which the faultcode SHOULD be interpreted. For example, aURI
might be defined that describes how a POSIX errno is mapped to afaultcode, and that URI would
appear on any faultcode element carrying a POSIX errno.

ogsi-wg@ggf.org 36

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

The OPTIONAL extension element, if present, contains additional information specific to the
fault from other XML namespaces. There MAY be any number of extensibility elementswithin
the extension element.

Each fault returned by a Grid service operation MUST be listed as a separate fault response in the
WSDL operation definition. Each operation fault response MUST have the same name as the
fault element and MUST refer to aWSDL message definition that has a single part element
named “fault”, with an “element=" attribute that refersto the fault element. All Grid service
operations MUST return the ogsi:fault in addition to any operation-specific faults, for example:

<wsdl : definitions .>
<t ypes>
<xsd: schema ..>
<xsd: conpl exType name="M/Faul t Type” >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="ogsi : Faul t Type/ >
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
<xsd: el ement name="myFault” type="tns: MyFaul t Type”/>
</ xsd: schema>
</types>

<nmessage nane=nyFaul t Message” >
<part nane="fault” el enent="tns:nyFault”/>
</ message>

<gwsdl| : port Type ..>
<wsdl : operati on ..>
<i nput ..»
<out put ..»
<fault name="nyFault” nessage="t ns: nyFaul t Message”/ >
<fault name="fault” nessage="ogsi:fault Message”/>
</ wsdl : operati on>
</ gwsdl : port Type>
</ wsdl : definitions>

A Grid service operation MAY return amore refined fault (i.e., an XSD extension) in place of a
particular fault that is required by an operation definition. For example, if an operationis
specified to return afault with the element myFault under some circumstance, then a particular
implementation of that operation MAY return an extension of myFault initsplace. This
SHOULD be done by returning the myFault message with an xsi:type of the more refined fault.

7.8 Extensible Operations

Several OGS operations accept an input argument that is an untyped extensibility element. This
element allows for common patterns of behavior to be expressed in an extensible manner. To
enable aclient to discover the valid extensions supported by such an operation, we define a
common approach for expressing extensi ble operation capabilities via static service data val ues.

For example, the NotificationSource::subscribe operation allows aclient to ask a serviceinstance
for notification messages whenever portions of that service' s serviceDataV alues change. The
specific portions of service data upon which to send notifications are defined by a subscription
expression. Thisargument is not fully typed but isinstead an extensible argument. One simple
subscription expression is defined by the NotificationSource portType that can be passed in this
argument to any service that implements NotificationSource. However, servicesthat implement a

ogsi-wg@ggf.org 37

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

portType that inherits from NotificationSource can extend the capabilities of subscription by
defining new query expressions that are more powerful or more customized to a specific problem
domain. This section defines the means by which aclient can determine what subscription
expressions are supported by services that implement extensionst o the NotificationSource
portType.

Wedefineasingle XSD typethat isthe base for all SDES that describe extensible operations.
t ar get Nanespace = “http://ww. gri df orum or g/ namespaces/ 2003/ 03/ OGSI ”

<xsd: conpl exType name="Oper ati onExt ensi bilityType">
<xsd: attribute name="i nput El enent" type="QNane" use="optional”/>
</ xsd: conpl exType>

For each extensible operation in aportType, that portType SHOULD have a serviceData
declaration of type OperationExtensibility Type and mutability="static”. Static values of this SDE
definethe valid extensions of the operation.

For example, suppose we have portType named myPT with an operation named myQOperation,
such that one of the myOperation’ sinput parametersis extensible. Further suppose there are two
standard input elements called myop:myOptionl and myop:myOption2 that can be passed into
myOperation’ s extensible input parameter. The portType definition for myOperation would be as
follows:

<gwsdl| : port Type nane="nyPT" >

<sd: servi ceDat a nane="nyQOper ati onExt ensi blity”
t ype="o0gsi : Oper ati onExt ensi bl i tyType”
m nCccur s=0 maxCOccur s="unbounded”
nmut ability="static”
nmodi fiability="fal se”
nillabl e="false” />

<sd: stati cServi ceDat aVal ues>
<myOper ati onExtensi bility inputEl ement="ml: myOptionl”/>
<myOper ati onExtensi bility inputEl ement="ml: myOption2”/>
</ sd: stati cServi ceDat aVal ues>

</g“éd|:portType>

The inputElement attribute of the SDE MUST be a QName that uniquely implies the types and
behavior of a particular extension to the operation. The inputElement, if present, SHOULD be
the QName of an XSD element declaration that isavalid element that can be passed to an
operation as an extensible input argument. All other properties of the extensible operation are
implied by the inputElement unless they are explicitly defined in an extension of
OperationExtensibility Type. For example, the inputElement MAY imply the type of output
parameters from the operation and MAY imply the semantics of how the operation when it
receives this inputElement.

If inputElement is omitted from the SDE value, then it MUST be valid to omit the extensible
input argument when invoking the operation.

Operation extensibility SDE valuesMAY beincluded in portTypesthat extend a portType
containing operation extensibility serviceData declarations. For example, asecond portType
named myPT2 that extends myPT could define additional valid input arguments to myOperation:

ogsi-wg@ggf.org 38

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<gwsdl| : port Type nanme="nyPT2” extends="nl: myPT>

<sd: st ati cServi ceDat avVal ues>
<myOper ati onExtensi bility inputEl enent ="n2: nyOpti on3”/ >
<nyOper ati onExt ensi bility/>

</sd: staticServi ceDat aval ues>

</ g\./\.r;‘,dl : port Type>

In thisexample, a serviceinstance that implements myPT2 would support four options for the
extensible input argument to myOperation: m1:myOptionl, m1:myOption2, m2:myOption3, and
no element at all. Each of these options may further imply output argument types, semantics of
the operation related to the inputElement, and so forth.

In some situationsit is useful to extend ogsi:OperationExtensibility Type to include additional
attributes or elements. 1n such cases, a new type should be defined that is an xsd:extension of
ogsi:OperationExtensibility Type, along with a serviceData element defined with this extended
type. Seethe Factory portType (812) for an example.

8 Grid Service Interfaces

This specification defines, and embodies as WSDL portTypes and associated behaviors, a
collection of common distributed computing patterns that are considered to be fundamental to
OGSl. These OGS portTypes are listed in Table 2 and described in subsequent sections. All are
defined in the ogsi namespace. Thus, the task for the designer of OGSI-compliant componentsis
to design portTypes that extend a combination of the GridService portType, the other optional
portTypes listed in Table 2, and application or domain specific portTypes.

Table 2 Summary of the portTypes defined in this document

portType Name Section Description
GridService 89 encapsul ates the root behavior of the service model
HandleResolver 810 mapping from a GSH to a GSR
NotificationSource 811.1 alows clientsto subscribe to notification messages

NotificationSubscription | 811.2 defines the relationship between asingle
NotificationSource and NotificationSink pair

NotificationSink 811.3 defines a single operation for delivering anotification
message to the service instance that implements the
operation

Factory 812 Is standard operation for creation of Grid service instances

ServiceGroup 813 allows clients to maintain groups of services

ServiceGroupRegistration | 813.3 allows Grid services to be added and removed from a
ServiceGroup

ServiceGroupEntry 813.2 | definesthe relationship between a Grid service instance

and its membership within a ServiceGroup

ogsi-wg@ggf.org 39

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

All of these OGSI portTypes are defined in the ogsi namespace.

9 GridService PortType

The GridService portType MUST be implemented (i.e., must be one of the portTypes associated
with a Grid service description) by all Grid services and thus serves asthe base interface
definition in OGSI. This portType is anaogous to the base Object class within object-oriented
programming languages such as Smalltalk or Java, in that it encapsulates the root behavior of the
component model. The behavior encapsulated by the GridService portTypeisthat of querying
and updating against the serviceData set of the Grid service instance and managing the
termination of the instance.

In Web services interface design, one must choose between document-centric messaging patterns
and remote procedure call (RPC). Designers of Grid service interfaces also face the document -
centric vs. RPC choice. The GridService portType provides several operations with typed
parameters but |eaves considerabl e extensibility optionswithin several of those parameters.
Service datais then used to express what specific extensibility elements a particular service
instance understands. Grid service designers are free to mix and match the document-centric and
RPC approachesin the portTypes that they design to compose with those described here.

9.1 GridService: Service Data Declarations
The GridService portType includes the following serviceData elements:
interface

The QNames of all the portType(s) within the service instance' s complete interface
definition. Thisset MUST contain the transitive closure of the portType QNames
implemented by the service instance.

<sd: servi ceDat a nanme="interface”
type="xsd: QNanme”
m nOccurs="1" maxQOccur s=" unbounded”
mut abi | i ty="constant”
nodi fi abl e="f al se”
nillable="fal se”/>

sarviceDataName

The QNames for each service data element supported by this service instance. This set
MUST contain the QNames of all service data €lements declared in the WSDL definition
or the portType. Thisset MAY also contain the QNames of service data elements added
dynamically by the instance.

<sd: servi ceDat a nane="ser vi ceDat aNane”
type="xsd: QNane”
m nOccur s="0" maxQOccur s=" unbounded”
nmut abi |i ty="rnut abl e"
nmodi fi abl e="f al se”
nillable="fal se”/>

factoryL ocator

A servicelocator to the factory that created this Grid service instance. If the instance was
not created by afactory, thisvalue MUST be xsi:nil. Thislocator MUST refer to the

0gsi-wg@ggf.org 40

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

same factory service throughout the lifetime of this Grid service instance, although the
handles and references contained in thislocator MAY change during the service
instance’ slifetime.

<sd: servi ceDat a nane="fact oryLocat or”
t ype="ogsi : Locat or Type”
m nOccurs="1" maxCccurs="1"
nmut abi |i ty="nmut abl e”
nodi fi abl e="f al se”
nillable="true”/>

gridServiceHandle

Zero or more Grid Service Handles of this Grid service instance. There MAY be handles
to this service instance that are not included in this set.

<sd: servi ceDat a nane="gri dServi ceHandl| e”
t ype="ogsi : Handl eType”
m nOccur s="0" maxOccur s="unbounded”
nmut abi | i t y="ext endabl e”
nodi fi abl e="f al se”
nillabl e="fal se”/>

gridServiceReference

One or more Grid Service References to this Grid service instance. One service data
value element MUST be the WSDL representation of the GSR. Other service datavalue
elements may represent other forms of the GSR. There MAY be referencesto this service
instance that are not included in this set.

<sd: servi ceDat a nane="gri dServi ceRef er ence”
type="o0gsi : Ref erenceType”
m nOccurs="1" maxOccur s="unbounded”
mut abi |i ty="rmut abl e”
nodi fi abl e="f al se”
nillabl e="fal se”/>

findServiceDataExtensibility

A set of operation extensibility declarations (87.8) for the findServiceData operation.

Any conforming inputElement declared by values of this SDE MAY be used by the client
as a QueryExpression parameter to the instance’ sfindServiceData operation, and implies
the query semantics and return values that may result from the query.

<sd: servi ceDat a nane="fi ndServi ceDat aExt ensi bi lity”
type="ogsi : Operati onExt ensi bilityType”
m nOccurs="1" maxCOccur s="unbounded”
nmut ability="static”
nodi fi abl e="f al se”
nillabl e="fal se”/>

setServiceDataExtensibility

A set of operation extensibility declarations (7.8) for the setServiceData operation. Any
conforming inputElement declared by values of this SDE MAY be used by the client as

0gsi-wg@ggf.org 41

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

the UpdateExpression parameter to the instance’ s setServiceData operation, and implies
the update semanticsand return values that may result from the update.

<sd: servi ceDat a nane="set Servi ceDat aExt ensi bi lity”

t ype="ogsi : Operati onExt ensi bilityType”
m nOccur s="2" maxOccur s=" unbounded”
nmut ability="static”

nodi fi abl e="f al se”

nillabl e="fal se”/>

terminationTime

The termination time for this service instance (see §7.6).

<sd: servi ceData nane="term nati onTi ne”

type="o0gsi : Term nati onTi neType”
m nCccurs="1" maxOccurs="1"

mut abi | i t y="mut abl e”

nmodi fi abl e="f al se”
nillable="fal se”/>

In addition, the GridService portType defines the following initial set of service datavaue

elements.

<sd: st ati cServi ceDat aVal ues>

<ogsi

<ogsi

<ogsi

:findServiceDat aExtensibility
i nput El ement =" ogsi : quer yBySer vi ceDat aNanes” />

: set Servi ceDat aExtensi bility
i nput El enent =" ogsi : set BySer vi ceDat aNanmes” />

: set Servi ceDat aExt ensi bi | i ty>
i nput El ement =" ogsi : del et eBySer vi ceDat aNanes” />

</ sd: st ati cServi ceDat aVal ues>

9.2 GridService: Operations

9.2.1 GridService :: findServiceData
Query the service data.

Input

* QueryExpression: The query to be performed. This extensible parameter MUST conform
to an inputElement declaration dencted by one of the findServiceDataExtensibility SDE
values. The service instance infers what to do based on the tag of the root element of this
argument.

Output

* Result: Theresult of the query. The format of thisresult is dependent upon the
QueryExpression.

Fault(s)

0gsi-wg@ggf.org 42

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

* ExtensibilityNotSupportedFault: T he service instance cannot evaluate the
QueryExpression becauseitstypeis not supported by this service instance.

» ExtensbilityTypeFault: The value passed as the QueryExpression violates that value' s
type.

» TargetinvalidrFault: One or more of the SDEs that the QueryExpression requires do not
exist in this service instance.

* Fault: Any other fault.

Every Grid service instance MUST support QueryExpressions conforming to
queryByServiceDataNames as defined in §9.2.1.1. A Grid serviceinstance MAY support other
QueryExpressions

Thelist of query expression types supported by a Grid service instance is expressed in the
instance’ s findServiceDataExtensibility SDE vaues. Therefore, a client can discover the query
expression types supported by a service instance by performing afindServiceData request on the
instance, using the queryByServiceDataNames element with a name of
“ogsi:findServiceDataExtensibility”.

The service datathat isavailable for query by aclient MAY be subject to policy restrictions. For

example, some service dataelements MAY not be available to some clients, and some service
datavalue elementswithinaSDE MAY not be available to some clients.

9.21.1 queryByServiceDataNames

A queryByServiceDataNames results in aserviceDataV alues el ement containing the service data
elements named in the queryByServiceDataNames parameter. The names listed in the
gueryByServiceDataNames MUST be contained in the serviceDataName service data el ement
(see 89.1) contained in this service instance.

The queryByServiceDataNames element is defined as follows:
t arget Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI "

<xsd: el ement name="quer yBySer vi ceDat aNanes" type="o0gsi: QNanesType"/ >

<xsd: conpl exType name="QNanesType">
<xsd: sequence>
<xsd: el enrent name="nanme" type="CQNane"
m nOccur s="0" maxCOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

The findServiceData operation’ s Result output parameter for a queryByServiceDataNames query
MUST be a sd:serviceDataV a ues element containing the service data elementslisted in the
queryByServiceDataNames.

For example, afindServiceData invocation with this QueryExpression:

<ogsi : quer yBySer vi ceDat aNanes>
<nane>ogsi : f i ndSer vi ceDat aExt ensi bi | i t y</ name>
<nane>ogsi : set Servi ceDat aExt ensi bi | i t y</ nane>
</ ogsi : quer yBySer vi ceDat aNanes>

might return this Result:

0gsi-wg@ggf.org 43

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<sd: servi ceDat aVal ues>
<ogsi : fi ndServi ceDat aExtensibility
i nput El ement =" ogsi : quer yBySer vi ceDat aNanmes” / >
<ogsi : set Servi ceDat aExtensi bility
i nput El ement =" ogsi : set BySer vi ceDat aNanes”/ >
<ogsi : set Servi ceDat aExt ensi bi l i ty>
i nput El ement =" ogsi : del et eBySer vi ceDat aNanes” / >
</ sd: servi ceDat aVal ues>

ClientsMAY usethe serviceData and serviceDataV alues lifetime attributes (see §7.3) to obtain
an understanding of the validity of the values returned.

9.2.2 GridService :: setServiceData

The setServiceData operation allows for the modification of a service data element’ svalues, if its
service data declaration specifies modifiable="true’. Changing a modifiable service data element
implies changing the corresponding state in the underlying service instance. If no service data
elements have amodifiable="true” attribute, then setServiceDatais essentially disabled.

Input

» UpdateExpression: The update to be performed. This extensible parameter MUST
conform to an inputElement declaration denoted by one of the
setServiceDataExtensibility SDE values. The service instance infers what to do based on
the tag of the root element of this argument

Output

* Result: Theresult of the update. The format of thisresult depends on the
UpdateExpression.

Fault(s)

» ExtensibilityNotSupportedFault: The service instance cannot evaluate the
UpdateExpression because itstype is not supported by this service instance.

* ExtensbilityTypeFault: The value passed as the UpdateExpression violates that value' s
type.

» CardinalityViolationFault: The operation requested would violate the “minOccurs’
and/or “maxOccurs’ attributes of the service' s SDE(S).

» MutabilityViolationFault: The UpdateExpression was not consistent with the
“mutability” attribute of the service's SDE(S).

* ModifiabilityViolationFault: The UpdateExpression was not consistent with the
“modifiable” attribute of the services' s SDE(S).

» TypeViolationFault: The UpdateExpression contains values that do not conform to the
XSD type of the service's SDE(S).

* IncorrectValueFault: The UpdateExpression contains valuesthat are XSD type
conformant, but are not acceptable to the service instance for other reasons.

» PartialFailureFault: The service instance was unableto satisfy all portions of the
UpdateExpression. This fault extends FaultType with an element that contains alist of
gnames of SDESs from the UpdateExpression that could not be updated. Thisfault MAY

0gsi-wg@ggf.org 44

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

have 1 or more “faultcause” elementsthat describe in more detail the portions that failed,
using any of the fault types allowed by setServiceData.

* Fault: Any other fault.

Every Grid service instance MUST support UpdateExpressions conforming to
setByServiceDataNames and deleteByServiceDataNames as defined in §9.2.2.1and §9.2.2.2,
respectively. A Grid serviceinstance MAY support other UpdateExpressions

The list of update expression types supported by a Grid serviceinstance is expressed in the
instance’ s setServiceDataExtensibility SDE vaues. Thus, aclient can discover the update
expression types supported by a service instance by performing afindServiceDatarequest on the
instance, using the queryByServiceDataNames element with a name of
“ogsi:setServiceDataExtensibility”.

The service datathat isavailable for setting by aclient MAY be subject to policy restrictions. For
example, some service data elementsMAY not be avail able to some clients, and some service
data value elementswithin a SDE MAY not be settable to some clients.

9221 setByServiceDataNames

A setByServiceDataNames resultsin the update of the SDE values in the serviceDataVaues
containing the service data elements listed in the setByServiceDataNames expression. The names
listed in the expression MUST be among the serviceDataNames (see §9.1) contained in this
service instance with an attribute of modifiable="true”. There is no guarantee that the update is
executed in any particular sequence. The service instance is responsible for ensuring that the SDE
values are successfully updated in the underlying service' s state. The service instance SHOULD
update as many SDES successfully asit can and return those that failed. The service instance
MAY return after the first failure and not continue.

Partia failures (i.e., some SDEs are updated but some are not) MUST be indicated by returning a
PartialFailureFault, with alist of the QNames of the SDEs that could not be set. Thisfault MAY
also have one “faultcause” element for each SDE in the setByServiceDataNames expression that
could not be set, where the type of the “faultcause” is any of the valid setServiceData faults, and
the extensibility element in the “faultcause” isthe SDE value from the setByServiceDataNames
expression that could not be set.

A setByServiceDataNames MUST adhere to the mutability attribute of the SDEs as specified in
86.2.3. If the mutability valueis“static” or “constant”, then setByServiceDataNamesis not
allowed. If the mutability valueis*extendable’, then setByServiceDataNames MUST append to
the new elementsto the SDE’ s existing values. If the mutability valueis“mutable”, then
setByServiceDataNames MUST replace the existing SDE values with the ones that are passed in.
The setByServiceDataNames MUST, for each SDE named in the expression, result in the
serviceData element val ues adhering to the minOccurs/maxOccurs rules defined in the
serviceData declaration.

The non-normative grammar of thistypeisasfollows.

<ogsi : set BySer vi ceDat aNanmes>
<soneSer vi ceDat aNaneTag>
new SDE val ue(s)
</ sonmeSer vi ceDat aNaneTag>*
<sonmeQ her Ser vi ceDat aNaneTag>
new SDE val ue(s)
</ someQt her Ser vi ceDat aNaneTag>*
</ ogsi : set BySer vi ceDat aNames>

0gsi-wg@ggf.org 45

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

The setServiceData operation’ sResult output parameter for a setByServiceDataNames invocation
MUST be a serviceDataVaues element containing the service data elements listed in the

setBy ServiceDataNames expression that failed to be replaced. An empty value set indicates
success.

Note that the client SHOULD NOT assume that the valuesin the service' s serviceDataVaues are
in any way coherent with each other. Clients also SHOULD NOT assume that the replacing of
any service dataelementsis carried out with any coherency guarantee.

9222 deeteByServiceDataNames

A deleteByServiceDataNames resultsin the deletion of al SDE values for the service data
elementslisted in the deleteByServiceDataNames expression. The names listed in the expression
MUST be among the serviceDataNames (see 89.1) contained in this service instance with an
attribute of modifiable="true’. Thereisno guarantee that the update is executed in any particular
sequence. It isthe service' sresponsibility to ensure that the SDEs are successfully deleted in the
underlying service' s state. The service instance SHOULD delete as many SDEs successfully asit
can and return those that failed. The serviceinstance MAY return after thefirst failure and not
continue.

Partia failures (i.e. some SDEs are deleted, but some are not) MUST be indicated by returning a
Partial FailureFault, with alist of the QNames of the SDEs that could not be deleted. Thisfault
MAY also have one “faultcause” element for each SDE in the del eteByServiceDataNames
expression that could not be set, where the type of the “faultcause” is any of thevalid
deleteServiceData faults, and the extensibility element in the “faultcause” contains the QName
that could not be deleted.

A deleteByServiceDataNames MUST adhere to the mutability attribute of the SDE as specified in
86.2.3. If the mutability valueis“static”, “ constant”, or “extendable’, then
deleteByServiceDataNames is not allowed. If the mutability valueis“mutable’, then
deleteByServiceDataNames will delete all elementswith the SDE names. The
deleteByServiceDataNames MUST, for each SDE named in the expression, result in the
serviceData element values adhering t o the minOccurs/maxOccurs rules defined in the
serviceData declaration.

The deleteByServiceDataNames element is defined as follows:
t ar get Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI ”

<xsd: el enent name="del et eBySer vi ceDat aNanes" type="ogsi: QNanesType"/ >

0gsi:QNamesTypeis defined in Section 9.2.1.1

The setServiceData operation’ sResult output parameter for a deleteByServiceDataNames
invocation MUST be aserviceDataV alues element containing the service dataelementslisted in
the deleteByServiceDataNames expression that failed to be deleted. An empty value set indicates
success.

The client SHOULD NOT assume that the valuesin the service' s serviceDataVaues are in any
way coherent with each other before they are updated. Clients also SHOULD NOT assume that
the deletions of any service data elements are carried out with any coherency guarantee.

9.2.3 GridService :: requestTerminationAfter

The requestTerminationAfter operation requests that the termination time of the service instance
be changed. The request specifiesthe earliest desired termination time. Upon receipt of the

0gsi-wg@ggf.org 46

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

request, the service instance MAY adjust its termination time, if necessary, based on its own
polices and the requested time. Upon receipt of the response, the client SHOULD discard any
responses that have arrived out of order, based on the CurrentTimestamp in the response.

Input:

* TerminationTime: The earliest termination time of the Grid service instance that is
acceptable to the client. Itstype isan ExtendedDateTimeType as defined in 87.2. A value
in the past indicates that the client no longer cares about the earliest termination time. The
special value“infinity” meansthat the client requests that the service instance continue to
exist indefinitely.

Output:

e CurrentTerminationTime: An element of type TerminationTimeType (as defined in 87.6)

that givesthe service' s currently planned termination time. The timestamp attribute of

this CurrentTerminationTime MUST be the time at which the service instance handled
this request.

Fault(s):

TerminationTimeUnchangedFault: The service instance ignored the requested
termination time.

Fault: Any other fault.

9.2.4 GridService :: requestTerminationBefore

The requestTerminationBefore operation requests that the termination time of the service instance
be changed. The request specifiesthe latest desired termination time. Upon receipt of the request,
the serviceinstance MAY adjust its termination time, if necessary, based on its own polices and
the requested time. Upon receipt of the response, the client SHOULD discard any responses that
have arrived out of order, based on the timestamp in the response.

Input:

* TerminationTime: The latest termination time of the Grid service instance that is
acceptable to the client. Itstypeis an ExtendedDateTimeType as defined in 87.2. A time
in the past indicates a desire that the service instance terminate as soon as possible. The
special value “infinity” indicates that the client no longer cares about a maximum
termination time.

Output:

* CurrentTerminationTime: An element of type TerminationTimeType (asdefined in 87.6)
that givesthe service's currently planned termination time. The timestamp attribute of
this CurrentTerminationTime MUST be the time at which the service instance handled
this request.

Fault(s):

TerminationTimeUnchangedFault: The service instance chose to ignore the requested
termination time.

Fault: Any other fault.

0gsi-wg@ggf.org 47

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

9.2.5 GridService :: destroy

The destroy operation explicitly requests destruction of the service instance. Upon receipt of an
explicit destruction request, a Grid service instance MUST either (1) initiate its own destruction
and return a response acknowledging the receipt of the destroy message or (2) ignore the request
and return a fault message indicating failure. Once destruction of the Grid serviceinstanceis
initiated, the service instance SHOULD NOT respond successfully to further requests. Following
asuccessful destroy operation, the client MUST NOT rely on the existence of the service
instance.

Input:

* None (an empty input message).
Output:

* None (an empty output message, acknowledging that the destroy has been initiated).
Fault(s):

» ServiceNotDestroyedFault: The serviceinstance did not initiate self-destruction.

» Fault: Any other fault.

10 HandleResolver PortType

The HandleResolver portType defines a standard means for resolving a GSH to aGSR,
independent of any particular URI scheme of the GSH. A service instance that implements the
HandleResolver portType is called ahandleresolver.

Various handle resolvers may have different approaches as to how they are populated with GSH-
to-GSR mappings. Some handle resolvers MAY betied directly into a hosting environment’s
lifetime management services, such that creation and destruction of instances automatically add
and remove mappings by some out-of -band, hosting-environment-specific means. Other handle
resolver servicesMAY implement the ServiceGroup portType, such that whenever a service
instance registers its existence with the resolver, that resolver queries the gridServiceHandle and
gridServiceReference service data e ements of that instance to construct its mapping database.
Other handle resolver services may implement a custom registration protocol via a custom
portType. But in all of these cases, the HandleResolver portType MAY be used to query the
resolver service for GSH to GSR mappings.

This portType extends the GridService portType.

10.1 HandleResolver: Service Data Declarations
The HandleResolver portType includes the following serviceData element.

handleResolver Scheme

A set of URIsthat specifiesthe GSH schemes that this handle resolver service instance
MAY be ableto resolveto a GSR. The only relevant portion of a handleResolverScheme
URI isthe scheme portion of the URI (i.e., the part preceeding the “:”). For example, a
handleResolverScheme URI of “abc:def” means that this handle resolver MAY be able to
resolve a GSH with a scheme of “abc”. An xsi:nil handleResolverScheme vaue means
that thisresolver MAY be able to resolve any GSH with any scheme.

<sd: servi ceDat a nane=" handl eResol ver Schene”
type="xsd: anyURI "
m nCccurs="1" maxQOccur s=" unbounded”

ogsi-wg@ggf.org 48

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

nmut abi |i ty="nmut abl e”
nodi fi abl e="f al se”
nillable="true”/>

10.2 HandleResolver: Operations

10.2.1 HandleResolver :: findByHandle

The findByHandle operation returns alocator containing one or more Grid Service References for
the Grid Service Handles in the HandleSet |ocator.

Input

» HandleSet: A locator containing one or more Grid Service Handles, which necessarily
(by the definition of locator) refer to the same Grid service instance. Theresolver MAY
base its resolution on any GSH in thisHandleSet, and MAY base its resolution on
multiple GSHsin this HandleSet. The HandleSet MAY include any number of GSRs,
which the handle resolver MAY ignore, or which the handle resolver MAY consider
previoudly valid resolutions of the GSHSs.

* GSRExclusion&et: (optional) A locator containing one or more GSRs that the client
aready possessesthat are not satisfactory for some reason. These GSRs SHOULD NOT
be returned in the output Locator. The GSRExclusionSet MAY contain any number of
GSHs, but they MUST be ignored by the resolver when making its resolution decisions.

Output

» Locator: A servicelocator containing one or more GSRs for the input HandleSet. The
locator MUST also contain all GSHsin the input HandleSet and MAY include additional
GSHsto the same Grid service instance.

Fault(s)
» InvalidHandleFault: The handle violates the syntax of its URI scheme.

* NoAdditional ReferencesAvailableFault: The resolver cannot return a GSR that is not
already contained in the GSRExclusionSet input parameter.

* NoReferencesAvailableFault: The resolver isunable to return a GSR for the input
handle(s), regardless of the GSRExclusionSet input parameter. The following faults
extend the NoReferencesAvailable fault:

0 NoSuchServiceFault: Either there was never a service instance with this handle,
or the service instance wit h this handle has terminated. Thisfault MAY be
applicableto only some URI schemes.

0 NoSuchServiceSartedFault: There was never a service instance with this handle.
Thisfault MAY be applicableto only some URI schemes.

0 SarviceHasTerminatedFault: The service instance with this handle has
terminated. Thisfault MAY be applicableto only some URI schemes.

0 TemporarilyUnavailableFault: The handle refersto avalid service instance, but
it cannot be resolved to avalid reference at thistime, though it MAY be
resolvable later. Thisfault optionally returns atime at which the service instance
MAY beavailable. Thisfault MAY only be applicable to some URI schemes.

0gsi-wg@ggf.org 49

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

* RedirectionFault: An alternate handleresolver existsto which theclient MAY direct the
request. T hisfault extends FaultType with an additional element containing the locator of
the alternate handleresol ver.

» Fault: Any other fault.

11 Notification

The purpose of natification isto deliver interesting messages from anotification sourceto a
notification sink, as described in the following.

» A notification sourceis a Grid service instance that implements the NotificationSource
portType, and is the sender of notification messages. A source MAY be able to send
notification messages to any number of sinks.

* A notificationsink is a Grid service instance that receives notification messages from any
number of sources. A sink MUST implement the NotificationSink portType, which
alowsit to receive notification messages

» A notification message isan XML element sent from a notification sourceto a
notification sink. The XML type of that element is determined by the subscription
expression.

* A subscription expression isan XML element that describes what messages should be
sent from the notification source to the notification sink. The subscription expression aso
describes when messages should be sent, based on changes to values within a service
instance’ s serviceDataV alues.

» Inorder to establish what and where notification messages are to be delivered, a
subscription request isissued to a source, containing a subscription expression, the
locator of the notification sink to which notification messages are to be sent, and an initial
lifetime for the subscription.

* A subscription request causes the creation of a Grid serviceinstance, caled a
subscription, that implements the NotificationSubscription portType. ThisportType
MAY be used by clients to manage the (soft -state) lifetime of the subscription, and to
discover properties of the subscription.

This notification framework allows for both direct service-to-service notification message
delivery and the integration of various intermediary delivery services. Intermediary delivery
services might include: messaging services, message filtering services, and message archival and
replay services.

Thetreatment of subscriptions as Grid service instances allows them to be managed using the
same interfaces as other Grid services. An OGSI implementation might well be expected to use
specialized, more lightweight implementation techniques for subscriptions than for other Grid
service instances.

11.1 NotificationSource PortType

The NotificationSource portType allows clients to subscribe to notification messages from the
Grid serviceinstance that implements this portType. The NotificationSource portType extends
the GridService portType.

The NatificationSource portType extends the GridService portType.

ogsi-wg@ggf.org 50

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

11.1.1 NotificationSource: Service Data Declarations
The NatificationSource portType includes the following serviceData elements.
notifiableServiceDataName

A set of QNames of service data elements to which arequestor MAY subscribe for
notification of changes.

<sd: servi ceDat a nane="noti fi abl eSer vi ceDat aNanme”
type="xsd: QNane”
m nOccur s="0" maxQOccur s=" unbounded”
nmut abi | i ty="nut abl e”
nmodi fi abl e="f al se”
nillable="fal se”/>

subscribeExtensibility

A set of operation extensibility declarations (87.8) for the subscribe operation. Any
conforming inputElement declared by values of this SDE MAY be used by theclient asa
SubscriptionExpression parameter to the instance’ s subscribe operation, and implies the
subscription semantics and notification message that result from the subscription.

<sd: servi ceDat a name="subscri beExtensibility”
type="ogsi : Operati onExtensi bilityType”
m nOccurs="1" maxOccur s=" unbounded”
nmut ability="static”
nodi fi abl e="f al se”
nillabl e="fal se”/>

The NotificationSource portType a so includes the following initial service data value e ements.

<sd: st ati cServi ceDat aVal ues>
<ogsi : subscri beExtensibility
i nput El ement =" ogsi : subscri beBySer vi ceDat aNanmes” />
</ sd: stati cServi ceDat aVal ues>

11.1.2 NotificationSource: Operations

11.1.2.1 NotificationSource:: subscribe

Subscribe to be notified of subsequent changesto the target instance’ s service data. This
operation creates a Grid service subscription instance, which MAY subsequently be used to
manage the lifetime and discovery properties of the subscription.

Input:

» SubscriptionExpression: The subscription to be performed. This extensible parameter
MUST conform to an inputElement declaration denoted by one of the
subscribeExtensibility SDE values. The service instance infers what to do based on the
tag of the root e ement of this argument.

» Snk: Thelocator of the notification sink to which messageswill be delivered. This
locator MAY beto some other service instance than the one issuing this subscription
request, thus alowing for third-party subscriptions. Thislocator MAY contain only
references, thus allowing it to refer, for example, to aWeb service that implements the
NotificationSink portType but that does not have ahandle.

ogsi-wg@ggf.org 51

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

» ExpirationTime: Theinitial time at which this subscription instance should terminate, and
thus notification delivery to this sink be halted. Normal GridService lifetime management
operationsMAY be used on the subscription instance to change its lifetime.

Output:

* Subscriptionlnstancelocator : A locator to the subscription instance that was created to
manage this subscription. This subscription instance MUST implement the
NotificationSubscription portType.

* CurrentTerminationTime: An element of type TerminationTimeType (asdefined in 87.6)
that gives the NotificationSubscription service's currently planned termination time. The
timestamp attribute of this CurrentTerminationTime MUST bethe time at which the
NotificationSubscription service instance was created.

Fault(s):

» ExtensibilityNotSupportedFault: The service instance cannot evaluate the
SubscriptionExpression because itstype is not supported by this service instance.

» ExtensibilityTypeFault: The value passed as the SubscriptionExpression violates that
value stype.

» TargetlnvalidFault: One or more of the SDES that the SubscriptionExpression requires
does not exist in this service instance.

* Fault: Any other fault.

Every Grid service instance that implements the NaotificationSource portType MUST support a
subscribeExtensibility SDE vaue of subscribeByServiceDataNames asdefinedin 811.1.2.1.1. A
Grid serviceinstance MAY support other subscribeExtensibility SDE values.

Thelist of subscription expression types supported by a Grid service instanceis expressed in the
instance’ s subscribeExtensibility SDE values. Therefore, a client can discover the subscription
expression types supported by a service instance by performing afindServiceData request on the
instance, using a queryByServiceDataNames element, which contains the name
“ogsi:subscribeExtensibility”.

11.1.2.1.1 subscribeByServiceDataNames

A subscribeBy ServiceDataNames results in notification messages being sent whenever any of the
named service data elements change.

The subscribeByServiceDataNames element is defined as follows:
t ar get Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI ”

<xsd: el ement name="subscri beByServi ceDat aNanes"
t ype="o0gsi : Subscri beByNameType"/ >

<xsd: conpl exType name="Subscri beByNaneType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="ogsi: QNamesType" >
<xsd:attribute name="mi nlnterval"
type="duration"
use="optional "/ >
<xsd: attri bute nanme="maxl nterval "
t ype="ogsi : MaxI nt erval Type"/ >
</ xsd :extensi on>

ogsi-wg@ggf.org 52

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: si npl eType name="Maxl nt erval Type" >
<xsd: uni on nmenber Types="ogsi : I nfinityType xsd: duration"/>
</ xsd : si npl eType>

ogsi:QNamesTypeisdefinedin 89.2.1.1. ogsi:InfinityType is defined in §7.6.

The mininterval property specifies the minimum interval between notification messages,
expressed in xsd:duration. If this property is not specified, then the notification source MAY
choosethisvalue. A notification source MAY also reject a subscription request if it cannot satisfy
the minimum interval requested.

The maxinterval property specifies the maximum interval between notification messages,
expressed in xsd:duration. If thisinterval elapses without a change to the named service data
elements’ values, then the source MUST resend the same values. When the value is “infinity”, the
source need never resend a service datavaluesif they do not change. If this property is not
specified, then the notification source MAY choose this value.

For a subscribeByServiceDataNames subscription, the type of the notification message sent from
the notification sourceto the notification sink MUST be a serviceDataV al ues element containing
the SDE values for all SDE va ues corresponding to each requested serviceDataName, even if
only some of the elements’ values changed since the last message.

11.2 NotificationSubscription PortType

A subscription for notification causes the creation of a Grid service subscriptioninstance, which
MUST implement the NotificationSubscription portType. The NotificationSubscription portType
extends the GridService portType. Thisinstance MAY be used by clients to manage the lifetime
of the subscription, and discover properties of the subscription.

The NotificationSubscription portType extends the GridService portType.

11.2.1 NotificationSubscription: Service Data Declarations

The NatificationSubscription portType includes the following serviceData el ements.
subscriptionExpression
The current subscription expression managed by this subscription instance.
<sd: servi ceDat a nane="subscri pti onExpressi on”
type="xsd: anyType”
m nOccurs="1" maxQOccurs="1"
nmut abi |i ty="nut abl e”

nmodi fi abl e="f al se”
nillable="fal se”/>

sinkL ocator
The Grid Service Locator of the Notification sink to which this subscription is delivering
messages.

<sd: servi ceDat a nane="si nkLocat or”

t ype="ogsi : Locat or Type”
m nCccurs="1" maxOccurs="1"

ogsi-wg@ggf.org 53

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

nmut abi |i ty="nmut abl e”
nodi fi abl e="f al se”
nillabl e="fal se”/>
11.2.2 NotificationSubscription: Operations

None.

11.3 NotificationSink PortType

The NoatificationSink portType defines asingle operation for delivering a notification message to
the service instance that implements the operation.

Note: Unlike al the other portTypes described in this specification, a Web service implementing
the NotificationSink portType is not required to be a Grid service instance. That is, the Web
service is not required to also implement the GridService portType.

11.3.1 NotificationSink: Service Data Declarations
None.

11.3.2 NotificationSink: Operations

11.3.2.1 NotificationSink :: deliver Notification
Deliver messageto this service.
Input:

* Message: An XML element containing the notification message. The content of the
message is dependent upon the notification subscription.

This operation isinput-only, so it does not return an output or faults.

12 Factory PortType

A factoryisan abstract concept or pattern, corresponding to a Grid service instance that is used
by aclient to create another Grid service instance. A client invokes a create operation on afactory
and receives as response a locator for the newly created serviceinstance. A factory MAY bea
Grid serviceinstance that implements the document-centric Factory portType, or aGrid service
instance that implements a more specialized factory operation (e.g., the
NotificationSource::subscribe operation described in §11.1.2.1).

Upon creation by afactory, the newly created Grid service instance SHOULD be registered with,
and receive a GSH from, a handle resolution service (see §10). The method by which this
registration is accomplished is specific to the hosting environment, and is therefore outside the
scope of this specification.

The Factory portType M UST extend the GridService portType.

12.1 Factory: Service Data Declarations
The Factory portType includes the following serviceData elements.

createServiceExtensibility

A set of operation extensibility declarations (87.8) for the createService operation. Any
conforming inputElement declared by values of this SDE MAY be used by the client asa

ogsi-wg@ggf.org 54

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

CreationParameters parameter to the instance’ s createService operation, and impliesthe
creation semantics and return values that may result from the creation.

<sd: servi ceDat a nane="cr eat eServi ceExtensibility”
type="o0gsi : CreateServi ceExtensi bilityType”
m nOccurs="1" maxOccur s="unbounded”
nmut ability="static”
nodi fi abl e="f al se”
nillabl e="fal se”/>

ogsi:CreateServiceExtensibility Type is an extension of ogsi:OperationExtensibility Type
that define additional elements containing the set of portTypes that are implemented by
the serviceinstance that is created as aresult of thisinputElement. Thistypeis defined
as.
<xsd: conpl exType name="Creat eServi ceExt ensi bilityType">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="ogsi: Operati onExtensi bilityType">
<xsd: sequence>
<xsd: el ement name="createslnterface" type="xsd: QNane"
m nCccurs="1" maxCOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

12.2 Factory: Operations

12.2.1 Factory :: createService

The factory createService creates a new Grid service instance. In order to support soft-state
lifetime management (87.6), a client may specify awindow of earliest and latest acceptableinitial
termination times. The factory selectsan initial termination time within thiswindow and returns
thistimeto the client as part of its response to the creation request. The factory also returns the
maximum lifetime extension that clients can subsequently request of this new Grid service
instance. Alternatively, the Grid service credion request may fail if the requested termination
timeis not acceptable to the factory.

Input

* TerminationTime (optional): The earliest and latest initial termination times of the Grid
service instance that are acceptable to the client. These values are represented asa
terminationTime element as defined in §87.6.

* CreationParameters(optional): A factory-specific element containing information
necessary for the creation of the service instance. This extensible parameter MUST
conform to an inputElement declaration denoted by one of the
createServivceExtensibility SDE values. Note: The service instance infers what to do
based on the tag of the root element of this argument.

Output
* Locator: A locator (see 87.5.3) to the newly created Grid service instance.

* CurrentTerminationTime: An element of type TerminationTimeType (asdefined in 87.6)
that givesthe newly created service's currently planned termination time. The timestamp

ogsi-wg@ggf.org 55

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

attribute of this CurrentTerminationTime MUST be the time at which the new service
instance was created.

» ExtensibilityOutput (optional): An XML extensibility element that is specific to the

factory and the servicesthat it creates.
Fault(s):

ExtensibilityNotSupportedFault: The service instance cannot eval uate the
CreationParameters because its type is not supported by this service instance.
ExtensibilityTypeFault: The value passed as the CreationParameters violates that value's
type.
ServiceAlreadyExistsFault: The requested service instance aready exists. This fault
extends FaultType with an element that is alocator to the existing service instance.

Fault: Any other fault

13 ServiceGroup

A ServiceGroup isaGrid service instance that maintains information about a group of other Grid
services. These services may be members of agroup for a specific reason, such as being part of a
federated service, or they may have no specific relationship, such asthe services contained in an
index or registry operated for discovery purposes. A classical Grid servicesregistry could be
defined by aportType that extends the base behavior described by ServiceGroup.

Three portTypes provide the interface to service groups: ServiceGroup, ServiceGroupEntry, and
ServiceGroupRegistration.

13.1 ServiceGroup portType

The ServiceGroup portType provides an interface for representing a service group comprising
zero or moremember services. The Entry SDE of a ServiceGroup contains an element for each
member Grid service instance in the group. The ServiceGroupEntryL ocator el ement of the Entry
SDE SHOULD refer to a service instance that implements the ServiceGroupEntry portType (see
§13.2), which provides management functions for that entry. In particular, it provides
independent lifetime management functions for individual entries, and a unique key (GSH) for
each entry, and it can be extended to provide more advanced entry management functions.

The ServiceGroup portType extends the GridService portType.

The following properties hold for ServiceGroup, ServiceGroupEntry, ServiceGroupRegistration,
and the member Grid service instances of the ServiceGroup.

= A Grid serviceinstance MAY be amember of several ServiceGroups.
= Member Grid serviceinstances of a ServiceGroup MAY implement different portTypes.

= A ServiceGroupEntry MAY be removed from a ServiceGroup by managing the lifetime
of the ServiceGroupEntry.

= Oncea ServiceGroup is destroyed, the client has no responsibility for the destruction of
the ServiceGroupEntry services.

= Once a ServiceGroup is destroyed, the client can make no assumptions about the
existence of the ServiceGroupEntry services or the validity of their contents (e.g.,
lifetime properties).

ogsi-wg@ggf.org 56

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

= A ServiceGroupEntry MUST belong to at most one ServiceGroup.

= |f aGridService included in a ServiceGroup terminates, the ServiceGroup need not
reflect this.

= All of the member Grid service instances of a ServiceGroup MUST conform to (i.e. be a,
or subtype of,) at least one of the portTypes listed in the membershipContentRule SDE of
the ServiceGroup.

= A member Grid service instance MAY be included in a ServiceGroup multiple times.
The ServiceGroup isa“bag” of entries. Designers of portTypes that extend ServiceGroup
MAY extend the semanticsto a“set” or other forms of collection.

13.1.1 ServiceGroup: Service Data Declarations
membershipContentRule

This SDE contains a structure that associates a portType (memberinterface) with a set of
XSD dement QNames (content). Each service instance that isamember of a
ServiceGroup MUST implement one or more of the memberinterfaceslisted in the
ServiceGroup’ s membershipContentRule SDE values. A ServiceGroup entry MUST
include al content elements associated with any memberInterfaces that the entry’s
member service implements.

This SDE serves as a“datatype invariant” for the entry SDE values of the ServiceGroup
and for the content SDE value of the ServiceGroupEntry for servicesin the
ServiceGroup. That is, membership isrestricted to Grid services that satisfy or conform
to the restrictions specified in the membershipContentRule SDE vaues. If more than one
rule appliesto a Grid service instance (i.e., it implements several memberinterfaces
included in the membershipContentRule SDE values), all rulesMUST be satisfied. We
note that implementations will need to be aware (either by introspection or other means)
which interfaces are implemented by member Grid service instances in order to ensure
that the membershipContentRule is satisfied.

<sd: servi ceDat a
name="nmemnber shi pCont ent Rul e"
t ype="Menber shi pCont ent Rul eType"
m nCccur s="1"
maxQOccur s="unbounded"
mut abi | i ty="constant"
modi fi abl e="f al se"
nill able="fal se” >
</ sd: ser vi ceDat a>

<xsd: conpl exType name="Menber shi pCont ent Rul eType" >
<xsd: sequence>
<xsd: el enent
name="nenber | nt er f ace"
type="xsd: QNane"
m nOccur s="1"
maxQOccur s="1"/>
<xsd: el enent
name="cont ent "
type="xsd: QNanme"
m nCccur s="0"
maxCOccur s=" unbounded"/ >
</ xsd: sequence>

ogsi-wg@ggf.org 57

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003
</ xsd: conpl exType>

entry

This element provides the structure of the constituent members of the ServiceGroup as
service data. Thereis one entry SDE value for each entry in the ServiceGroup. Each SDE
valueisatripleconsisting of: alocator that refers to the ServiceGroupEntry service
instance that manages this entry; alocator that refers to the member Grid service instance
referenced by this entry; and the content of the entry. The valuesin the entry SDE and
those in the SDES of the corresponding ServiceGroupEntry MUST conform to the
membershipContentRule, MAY be incoherent (with respect to each other), but SHOULD
converge in the absence of changes.

<sd: servi ceDat a
nanme="entry"
type="ogsi: EntryType"
m nCccur s="0"
maxCOccur s=" unbounded"
nmut abi | i t y="nut abl e"
modi fi abl e="f al se"
nill able="fal se” >

</ sd: ser vi ceDat a>

t arget Nanespace = “http://ww. gri df orum or g/ nanmespaces/ 2003/ 03/ OGSI "

<xsd: conpl exType nanme="EntryCont ent Type" >
<xsd: sequence>
<xsd: any nanmespace="##any”
m nCccur s="0" maxCOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="EntryType" >
<xsd: sequence>
<xsd: el ement nanme="servi ceG oupEntrylLocat or”
t ype="ogsi : Locat or Type"
m nCccur s="1" maxOccur s="1"
nillable="true"/>
<xsd: el enrent name=" menber Ser vi ceLocat or”
t ype="ogsi : Locat or Type"
m nCccurs="1" maxCccurs="1"/>
<xsd: el emrent name="content”
t ype="ogsi : EntryCont ent Type"
m nCccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

13.1.2 ServiceGroup: Operations

The ServiceGroup portType defines no operations. The operationsinherited fromthe GridService
portType SHOULD be used to manage the lifetime and to query the SDEs of the ServiceGroup.

ogsi-wg@ggf.org 58

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

13.2 ServiceGroupEntry portType

This portType defines the interface through which the individual entries in a ServiceGroup may
be managed. Each ServiceGroupEntry service instance refersto a Grid service instance that isa
member of the ServiceGroup. The GSH of a ServiceGroupEntry serviceinstance MAY be used
asthe unique key for that entry. This key alows multiple references to the same service instance
to be included in a ServiceGroup as separate entries, for example to record multiple properties of
the service instance. Clients MAY use the findServiceData operation to query thisinformation.

The ServiceGroupEntry portType extends the GridService portType.

13.2.1 ServiceGroupEntry: Service Data Declarations
member Servicel ocator

Contains a service locator to the member Grid service instance to which this entry
pertains. Thislocator MUST refer to the same Grid service instance throughout the
lifetime of this Grid service instance, although the handles and references contained in
thislocator MAY change during the service instance’ s lifetime.

<sd: servi ceDat a
nanme="nenber Servi ceLocat or"
t ype="ogsi : Locat or Type"
m nOccur s="1"
maxCOccur s="1"
nmut abi |i ty="nut abl e"
modi fi abl e="f al se"
nillable="fal se” >

</ sd: ser vi ceDat a>

content

Thisisan XML element advertising some information about the member service
instance. The Content elements conform to the XSD element declarations listed (by
QName) in the membershipContentRule SDE of the ServiceGroup portType containing
this ServiceGroupEntry.

<sd: servi ceDat a
name="cont ent"
t ype="ogsi : EntryCont ent Type"
m nOccur s="1"
maxCQccur s="1"
nmut abi |i ty="rnut abl e"
nmodi fi abl e="f al se"
nillable="fal se” >
</ sd: servi ceDat a>

13.2.2 ServiceGroupEntry: Operations

The ServiceGroupEntry portType defines no operations. The lifetime management operations
inherited from the GridService portType SHOULD be used to manage the lifetime of the entry
service instance, such that destruction of the ServiceGroupEntry service instance SHOULD
remove the member service instance from the ServiceGroup. The service data operations
inherited from the GridService portType SHOULD be used to query the SDEs of the entry
service instance, such as the content SDE.

ogsi-wg@ggf.org 59

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

13.3 ServiceGroupRegistration portType

The ServiceGroupRegistration portType provides a management interface (add and remove
operations) for a ServiceGroup.

ThisportType extends the ServiceGroup portType.

13.3.1 ServiceGroupRegistration: Service Data Declarations
addExtensibility

A set of operation extensibility declarations (§7.8) for the add operation. Any conforming
inputElement declared by values of this SDE MAY be used by the client as a Content
parameter to the instance’ s add operation, and implies the add semantics and return
values that may result from the add operation. These addExtensibility elements MAY be
different than the elementslisted in the membershipContentRule SDE of ServiceGroup.
The add operation converts the value in the Content argument into the elements contained
in the membershipContentRule.

<sd: servi ceDat a
name="addExtensi bility"
type="ogsi : Operati onExtensi bilityType"
m nOccur s="0"
maxQOccur s="unbounded"
nmut abi lity="static"
nmodi fi abl e="f al se"
nillable="fal se” >
</ sd: ser vi ceDat a>

OGS defines one possible addExtensibility SDE value, ogsi:EntryContentType, that MAY
be used to add content that is already structured in the same manner as the entry elements and
ServiceGroupsEntries of the ServiceGroup.

removeExtensibility

A set of operation extensibility declarations (87.8) for the remove operation. Any
conforming inputElement declared by values of this SDE MAY be used by the client asa
MatchExpression parameter to the instance' s remove operation and implies the removal
semantics and return values that may result from the remove operation. All match
expressions MUST be Boolean valued functions that take a value of type
“ogsi:EntryType” as an argument.

<sd: servi ceDat a
name="r enmoveExt ensi bility"
t ype="ogsi : Operati onExt ensi bilityType"
m nCccurs="1"
maxQOccur s="unbounded"
mut abi lity="static"
nmodi fi abl e="f al se"
nill able="fal se” >
</ sd: ser vi ceDat a>

ThisportType MUST define one standard removeExtensibility SDE value that MUST be
supported by all ServiceGroupRegistration services. This matchByL ocatorEquivalence match

ogsi-wg@ggf.org 60

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

expression compares one or more locators for textual equality with the canonical XML form of
the memberServicel ocator of each entry contained by the service group. The XSD definition of
this argument is as follows:

t arget Nanespace = “http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ OGSI ”

<xsd: el emrent name="nmat chByLocat or Equi val ence"
t ype="ogsi : Mat chByLocat or Equi val enceType"/ >

<xsd: conpl exType name="Mat chByLocat or Equi val enceType" >
<xsd: sequence>
<xsd: el enent name="| ocator" type="ogsi:LocatorType"
m nOccur s="0" maxCOccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

ThisportType MUST define the static SDE value.

<sd: st ati cServi ceDat aVal ues>
<ogsi : remveExtensi bility
i nput El ement =" ogsi : mat chByLocat or Equi val ence” />
</ sd: stati cServi ceDat aVal ues>

13.3.2 ServiceGroupRegistration:Operations

13.3.2.1 ServiceGroupRegistration :: add

The add operation creates a ServiceGroupEntry and addsit to the ServiceGroup. When an add
operation fails, anew entry is not created. Other semantics of afailed add operation MAY be
defined by a portType that extends ServiceGroupRegistration.

Input:

» ServicelLocator: A servicelocator for the member Grid service instance to be included in
the ServiceGroup. It MUST refer to amember service instance whose type conformsto
one of the e ements in the membershipContentRule.

» Content: Content to associate with the the Servicel ocator in the service group. This
extensible parameter MUST conform to an inputElement declaration denoted by one of
the addExtensibility SDE values. The service instance infers what to do based on the tag
of the root element of this argument. The Content is processed according to service group
specific semantics into an element conformant with one or more of the entriesin the
membershipContentRule SDE for a Grid service instance of the type given by the
servicel ocator argument. The resulting transformed Content becomes the
ServiceGroupEntry's Content SDE.

* TerminationTime (optional): The earliest and latest initial termination times of the created
ServiceGroupEntry service instance that are acceptable to the client. These values are
represented as aterminationTime element as defined in 87.6.

Output:
» ServicelLocator: A servicel ocator tothe newly created ServiceGroupEntry.

* CurrentTerminationTime: An element of type TerminationTimeType (asdefined in 87.6)
that gives the ServiceGroupEntry service's currently planned terminationtime. The

ogsi-wg@ggf.org 61

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Faults:

timestamp attribute of this CurrentTerminationTime MUST be the time at which the
ServiceGroupEntry service instance was created.

ExtensibilityNotSupportedFault: The service instance cannot evaluate the Content
becauseitstypeisnot supported by this service instance.

ExtensibilityTypeFault: The value passed as the Content viol ates that value' stype.

ContentCreationFailedFault: The operation was unable to create a valid Content el ement
(as defined by the membershipContentRule SDE) from the provided Content and
servicel. ocator arguments.

UnsupportedMember I nterfaceFault: The type of the member service instance referred to
by the Servicel ocator argument does not conform to the membershipContentRule.

AddRefusedFault: The ServiceGroupRegistration refused to create a new entry for the
member service instance based the semantics of the ServiceGroupRegistration (or
subtype).

Fault: All other faults.

13.3.2.2 ServiceGroupRegistration :: remove

The remove operation removes each ServiceGroupEntry from the ServiceGroup that matches an
input expression.

Input:

MatchExpression: This extensible parameter MUST conform to an inputElement
declaration denoted by one of the removeExtensibility SDE values. The service instance
inferswhat to do based on the tag of the root element of this argument. The
MatchExpression is evaluated against all entriesin the ServiceGroup. Each entry that
matches is removed from the ServiceGroup. If aremoved entry has a ServiceGroupEntry
serviceinstance, then a GridService::destroy operation is sent to that instance, though this
remove operation MAY complete before all such destroy operations have completed.
This operation has no effect on the member Grid servicesreferred to by the entries.

Output:

Faults:

None, except acknowledgment of the operation compl etion.

Exteng bilityNotSupportedFault: The service instance cannot eval uate the
MatchExpression because its typeis not supported by this service instance.

ExtensibilityTypeFault: The value passed as the MatchExpression violates that value' s
type.

MatchFailedFault: No entry matched the MatchExpression.

RemoveFailedFault: A match was found, but the remove failed for other reasons.

Fault: All other faults.

14 Security Considerations

This specification defines the abstract interaction between a Grid service instance and clients of
that serviceinstance. Whileit is assumed that such interactions must be secured, the details of

ogsi-wg@ggf.org 62

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

security are out of scope of this specification. Instead, security should be addressed in related
specificationsthat define how the abstract interactions are bound to specific communication

protocols, how service behaviors are specialized via policy-management interfaces, and how
security features are delivered in specific programming environments.

15 Editor Information

Steven Tuecke

Distributed Systems L aboratory
Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

Phone: 630-252-8711

Email: tuecke@mcs.anl.gov

Karl Czajkowski

Information Sciences Institute
University of Southern California
Marinadel Rey, CA 90292
Email: karlcz@isi.edu

lan Foster

Argonne National Laboratory & University of Chicago
Argonne, IL 60439

Email: foster@mcs.anl.gov

Jeffrey Frey

IBM

Poughkeepsie, NY 12601
Email: jafrey@us.ibm.com

Steve Graham

IBM

4400 Silicon Drive

Research Triangle Park, NC, 27713
Email: sggraham@us.ibm.com

Carl Kesselman

Information Sciences Institute
University of Southern California
Marinadel Rey, CA 90292
Email: carl@isi.edu

Tom Maguire

IBM

Poughkeepsie, NY 12601

Email: tmaguire@us.ibm.com

Thomas Sandholm

Argonne National Laboratory
Argonne, IL 60439

Email: sandholm@mcs.anl.gov

Dr. David Snelling
Fujitsu Laboratories of Europe

ogsi-wg@ggf.org 63

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Hayes Park Central

Hayes End Road

Hayes, Middlesex UB4 8FE

UK

Email: d.snelling@fle.fujitsu.com

Peter Vanderhilt

NASA Ames Research Center
Moffett Fidd, CA 94035-1000
Emalil: pv@nas.nasa.gov

16 Contributors
We gratefully acknowledge the contributions made to this specification by the following people:

Nick Butler, Donald Ferguson, Andrew Grimshaw, Shel Finkelstein, Frank Leymann, Martin
Nally, Jeff Nick, John Rofrano, Ellen Stokes, Tony Storey, Jay Unger, Sanjiva Weerawarana

17 Acknowledgements

We are grateful to numerous colleagues for discussions on the topics covered in this document, in
particular (in aphabetical order, with apologies to anybody we've missed) Malcolm Atkinson,
Tim Banks, Ed Boden, Brian Carpenter, Francisco Curbera, Dennis Gannon, Marty Humphrey,
Keith Jackson, Bill Johnston, Kate Keahey, Lee Liming, Miron Livny, Sastry Malladi, Savas
Parastatidis, Norman Paton, Jean-Pierre Prost, Frank Siebenlist, Scott Sylvester, Gregor von
Laszewski, Von Welch, and Mike Williams.

Thiswork was supported in part by IBM; by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W -31-109-Eng-38 and DE-AC03-76SF0098; by the
National Science Foundation; and by the NASA Information Power Grid project.

18 References

18.1 Normative References
[RFC 2119]

Key words for usein RFCsto Indicate Requirement Levels S. Bradner, Author. Internet
Engineering Task Force, RFC 2119, March 1997. Available at
http://www.ietf.org/rfc/rfc2119.txt

[WSDL 1.2]

Web Services Description Language (WSDL) Version 1.2, Published W3C Working
Draft, World Wide Web Consortium. Available at http://www.w3.org/TR/wsdl 12/

[WSDL 1.2 DRAFT]

Web Services Description Language (WSDL) Version 1.2, W3C Working Draft 3 March
2003, World Wide Web Consortium. Available at http://www.w3.0rg/TR/2003/WD-
wsdl 12-20030303

18.2 Informative References
[Globus Overview]

ogsi-wg@ggf.org 64

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

Globus: A Toolkit-Based Grid Architecture, |. Foster, C. Kesselman. In [Grid Book],
259-278.

[Grid Anatomy]

The Anatomy of the Grid: Enabling Scalable Virtual Organizations, |. Foster, C.
Kesselman, S. Tuecke. International Journal of High Performance Computing
Applications, 15 (3). 200-222. 2001. Available at
http://www.globus.org/research/papers/anatomy.pdf

[Grid Book]

The Grid: Blueprint for a New Computing Infrastructure, . Foster, C. Kesselman, eds.
Morgan Kaufmann, 1999.

[Grid Physiology]

The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems
Integration, |. Foster, C. Kesselman, J. Nick, S. Tuecke. Globus Project, 2002. Available
at http://www.globus.org/research/papers/ogsa.pdf

[JAX-RPC]
Java™ API for XML-Based RPC (JAX-RPC). http://java.sun.comyxml/jaxrpc/docs.html
[Web Services Book]

Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI, s.
Graham, S. Simeonov, T. Boubez, G. Danidls, D. Davis, Y. Nakamura, R. Neyama.
Sams, 2001.

[WSIF]
Welcome to WIF: Web Services Invocation Framework, http://www.apache.org/wsit/

19 Normative XSD and WSDL Specifications

This section contains the full normative XSD and WSDL definitions for everything described in
thisdocument. The definitionsin this section MUST be considered normative, if there are any
discrepancies between the definitionsin this section and those portions described in other sections
above.

19.1 http://www.gridforum.org/namespaces/2003/03/0OGSI

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions name="0GSI"

t ar get Nanespace="http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ OGSI "
xm ns: ogsi ="http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ OGSI| "

xm ns: gwsdl =" http: //ww. gri df orum or g/ namespaces/ 2003/ 03/ gr i dWSDLEXxt ens
i ons"

xm ns: sd="http://ww. gridf orum or g/ namespaces/ 2003/ 03/ servi ceDat a"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="http://schemas. xm soap. or g/ wsdl /" >

<t ypes>

ogsi-wg@ggf.org 65

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<schema
t ar get Nanespace="http://ww. gri df orum or g/ namespaces/ 2003/ 03/ OGSI "

xm ns="http://ww. w3. org/ 2001/ XM_Schema"
attri but eFor mDef aul t =" qual i fi ed"
el ement For nDef aul t =" qual i fi ed">

<l-- Commopn Types -->

<si npl eType nanme="Ext endedDat eTi neType" >

<uni on nenber Types="ogsi: I nfinityType xsd: dateTi me"/>
</ si npl eType>

<si npl eType name="InfinityType">
<restriction base="string">
<enuneration value="infinity"/>
</restriction>
</ si npl eType>

<attribute name="goodFronl' type="ogsi: ExtendedDateTi neType"/ >
<attribute name="goodUntil" type="ogsi:ExtendedDateTi neType"/>
<attribute name="avail abl eUntil"

t ype="o0gsi : Ext endedDat eTi meType"/ >

<attri buteG oup name="LifeTi neProperti esG oup"”>
<attribute ref="o0gsi:goodFroni' use="optional"/>
<attribute ref="o0gsi:goodUntil" use="optional"/>
<attribute ref="ogsi:availableUntil" use="optional"/>
</attribut eG oup>

<el ement nane="ref erence" type="ogsi: ReferenceType"/>

<conpl exType name="Ref erenceType" abstract="true">
<attribute ref="o0gsi:goodFroni use="optional"/>
<attribute ref="ogsi:goodUntil" use="optional "/>

</ conpl exType>

<l-- The content of this type MIUST be a wsdl:definitions el enent
with a single wsdl:service child el enent -->
<conpl exType name="WSDLRef er enceType" >
<conpl exCont ent >
<ext ensi on base="ogsi : Ref erenceType">
<sequence>
<any nanespace="http://schemas. xm soap. org/ wsdl /"
m nOccurs="1" maxQOccurs="1" processContents="1ax"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<el ement nanme="handl e" type="ogsi: Handl eType"/>
<si npl eType nanme="Handl eType" >

<restriction base="anyURI "/ >
</ si npl eType>

<el ement nanme="| ocator" type="ogsi:LocatorType"/>
<conpl exType nane="Locat or Type" >
<seguence>
<el ement ref="o0gsi:handle" m nCccurs="0"
maxOccur s="unbounded"/ >
<el ement ref="o0gsi:reference" m nCccurs="0"

ogsi-wg@ggf.org 66

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

maxQOccur s="unbounded"/ >
<el ement nanme="interface" type="Q\ame" m nOccurs="0"
maxQOccur s="unbounded”/ >
</ sequence>
</ conpl exType>

<l-- Gid Service Types -->
<conpl exType name="ExtensibilityType">
<sequence>
<any nanespace="##any"/ >
</ sequence>
</ conpl exType>

<l-- Gid Service Service Data Types -->
<conpl exType name="Oper ati onExt ensi bilityType">

<attribute name="i nput El enent" type="QNanme" use="optional"/>
</ conpl exType>

<conpl exType name="Term nati onTi neType" >
<attribute name="after" type="ogsi:ExtendedDateTi neType"
use="optional "/ >
<attribute name="before" type="ogsi: ExtendedDateTi mneType"
use="optional "/ >
<attribute name="ti mestanp" type="dateTi mne" use="optional"/>
</ conpl exType>

<el ement nanme="quer yByServi ceDat aNanes" type="o0gsi: QNanmesType"/ >
<el ement nane="del et eBySer vi ceDat aNanes" type="o0gsi: QNanesType"/ >

<el enent nane="set BySer vi ceDat aNanes"
type="ogsi: ExtensibilityType"/>

<conpl exType name="QNanesType">
<seguence>
<el ement nanme="name" type="QNane" ni nCccurs="0"
maxOccur s="unbounded"/ >
</ sequence>
</ conpl exType>

<l-- Gid Service Message Types -->
<el enent nane="fi ndServi ceDat a" >
<conpl exType>
<seguence>
<el ement nanme="quer yExpressi on"
type="ogsi: ExtensibilityType"/>
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="findServi ceDat aResponse" >
<conpl exType>
<seguence>
<el ement name="result" type="ogsi:ExtensibilityType"/>
</ sequence>
</ conpl exType>
</ el ement >

ogsi-wg@ggf.org 67

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<el enent nanme="set Servi ceDat a" >
<conpl exType>
<sequence>
<el enent nanme="updat eExpressi on"
type="ogsi: ExtensibilityType"/>
</ sequence>
</ conpl exType>
</ el ement >
<el ement nane="set Servi ceDat aResponse" >
<conpl exType>
<sequence>
<el enent nane="result" type="ogsi:ExtensibilityType"/>
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="r equest Ter m nati onBef or e" >
<conpl exType>
<seguence>
<el enent nanme="terni nati onTi ne"
t ype="o0gsi : Ext endedDat eTi meType"/ >
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="r equest Ter m nat i onBef or eResponse" >
<conpl exType>
<seguence>
<el enent nanme="current Term nati onTi me"
type="ogsi: Term nati onTi meType"/ >
</ sequence>
</ conpl exType>
</ el enent >
<el enment nane="r equest Ter m nati onAfter">
<conpl exType>
<seguence>
<el enent nanme="terni nati onTi ne"
t ype="ogsi : Ext endedDat eTi meType"/ >
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="request Ter m nati onAft er Response" >
<conpl exType>
<seguence>
<el enent nanme="current Term nati onTi me"
type="ogsi: Term nati onTi mneType"/ >
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="destroy">
<conpl exType/ >
</ el ement >
<el ement nane="destr oyResponse" >
<conpl exType/ >
</ el ement >

<l-- Gid Service Fault Types -->

<el ement name="fault" type="ogsi: FaultType"/>
<conpl exType nanme="Faul t Type" >

ogsi-wg@ggf.org 68

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<sequence>
<el ement nanme="descri ption"
type="string"
m nCccur s="0"
maxOccur s="unbounded"/ >
<el enent nane="ori gi nator"
t ype="ogsi : Locat or Type"
m nOccur s="1"
maxOccur s="1"/ >
<el ement nane="ti nmestanp”
t ype="dat eTi ne"
m nCccur s="1"
maxQOccur s="1"/ >
<el enent nane="faul t cause"
type="ogsi: Faul t Type"
m nOccur s="0"
maxOccur s="unbounded"/ >
<el enent nane="faul t code"
t ype="ogsi : Faul t CodeType"
m nOccur s="0"
maxOccur s="1"/>
<el ement nane="extensi on”
type="ogsi: Extensi bilityType"
m nOccur s="0"
maxOccur s="1"/ >
</ sequence>
</ conpl exType>
<conpl exType name="Faul t CodeType" >
<si npl eCont ent >
<ext ensi on base="string">
<attri bute nanme="faul tscheme" type="anyURI" use="required"/>
</ ext ensi on>
</ si npl eCont ent >
</ conpl exType>
<el ement nanme="servi ceNot Dest royedFaul t"
t ype="ogsi : Servi ceNot Dest royedFaul t Type" />
<conpl exType nanme="Servi ceNot Dest royedFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="extensibilityTypeFaul t"
type="ogsi : Extensi bilityTypeFaul t Type"/>
<conpl exType nanme="ExtensibilityTypeFaul t Type">
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="extensi bi | ityNot SupportedFaul t"
t ype="ogsi : Ext ensi bi | i t yNot Support edFaul t Type"/>
<conpl exType nanme="Ext ensi bi | ityNot SupportedFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el ement name="t argetl nvali dFaul t"
t ype="ogsi : Target | nval i dFaul t Type" />

ogsi-wg@ggf.org 69

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<conpl exType name="Tar get | nval i dFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el enent nane="cardinalityViol ati onFaul t"
type="ogsi: Cardi nalityViol ati onFaul t Type"/ >
<conpl exType name="Cardi nalityViol ati onFaul t Type">
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="nutabilityViol ati onFaul t"
type="ogsi: MiutabilityViolati onFault Type"/>
<conpl exType name="Muit abilityViol ati onFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el ement name="nodi fiabilityViolationFault"
type="o0gsi: ModifiabilityViolationFaul t Type"/>
<conpl exType name="Modi fiabilityViolationFaultType">
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="typeViol ati onFaul t"
type="o0gsi : TypeVi ol ati onFaul t Type"/ >
<conpl exType name="TypeVi ol ati onFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el enent nanme="i ncorrect Val ueFaul t"
type="ogsi : | ncorrect Val ueFaul t Type"/ >
<conpl exType nanme="Incorrect Val ueFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el enment nanme="parti al Fail ureFaul t"
type="ogsi: Partial Fai | ureFaul t Type"/ >
<conpl exType name="Parti al Fai |l ureFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type">
<sequence>
<el ement nane="fail edServi ceDat a" type="o0gsi: QNamesType" />
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="t erm nati onTi neUnchangedFaul t"
type="ogsi: Ternm nati onTi nreUnchangedFaul t Type"/ >
<conpl exType nanme="Term nati onTi neUnchangedFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >

0gsi-wg@ggf.org 70

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

</ conpl exType>

<l-- Handl e Resol ver Message Types -->
<el enment nane="fi ndByHandl e" >
<conpl exType>
<sequence>
<el ement nanme="handl eSet" type="ogsi:LocatorType"/>
<el ement nane="gsr Excl usi onSet" type="ogsi:Locator Type"
m nOccur s="0" maxCccurs="1"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enent nane="fi ndByHandl eResponse"” >
<conpl exType>
<seguence>
<el enent ref="ogsi:|locator"/>
</ sequence>
</ conpl exType>
</ el ement >

<l-- Handl e Resol ver Fault Types -->
<el ement name="i nval i dHandl eFaul t "
type="ogsi : | nval i dHandl eFaul t Type"/ >
<conpl exType name="I|nval i dHandl eFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el enent nanme="noAddi ti onal Ref er encesAvai | abl eFaul t"
t ype="o0gsi : NoAddi ti onal Ref er encesAvai | abl eFaul t Type"/ >
<conpl exType name="NoAddi ti onal Ref er encesAvai | abl eFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el enent nanme="noRef er encesAvai | abl eFaul t"
t ype="o0gsi : NoRef er encesAvai | abl eFaul t Type" />
<conpl exType nanme="NoRef er encesAvai | abl eFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el enent nanme="redirectionFaul t"
type="ogsi : Redi recti onFaul t Type"/ >
<conpl exType name="Redi rectionFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type">
<sequence>
<el enment ref="ogsi:|ocator"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
<el enent nanme="noSuchServi ceFaul t"
t ype="o0gsi : NoSuchSer vi ceFaul t Type"/ >
<conpl exType name="NoSuchServi ceFaul t Type" >
<conpl exCont ent >

ogsi-wg@ggf.org 71

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<ext ensi on base="ogsi : NoRef er encesAvai | abl eFaul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="noSuchServi ceSt artedFaul t"
t ype="ogsi : NoSuchSer vi ceSt art edFaul t Type"/ >
<conpl exType name="NoSuchServi ceSt art edFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi : NoRef er encesAvai | abl eFaul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el enent nane="servi ceHasTer n nat edFaul t"
type="o0gsi : Servi ceHasTer m nat edFaul t Type"/ >
<conpl exType name="Ser vi ceHasTer m nat edFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi : NoRef er encesAvai | abl eFaul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="t enporaril yUnavai |l abl eFaul t"
type="ogsi : Tenporaril yUnavai | abl eFaul t Type"/ >
<conpl exType name="Tenpor ari |l yUnavai | abl eFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi : NoRef er encesAvai | abl eFaul t Type" >
<sequence>
<el ement nanme="avai l abl e" type="dateTi me"/>
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<lI-- Notification Source Service Data Types -->
<el enment nanme="subscri beByServi ceDat aNanmes"
type="ogsi : Subscri beByNameType"/ >
<conpl exType name="Subscri beByNaneType" >
<conpl exCont ent >
<ext ensi on base="ogsi: QNanmesType" >
<attribute name="minlnterval" type="duration"
use="optional "/ >
<attribute name="maxl|nterval" type="ogsi: Maxl nterval Type"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<si npl eType nanme="Maxl| nt erval Type">
<uni on nmenber Types="ogsi: I nfinityType xsd: duration"/>
</ si npl eType>

<lI-- Notification Source Message Types -->
<el enent nane="subscri be">
<conpl exType>
<sequence>
<el ement nanme="subscri pti onExpressi on"
type="ogsi: ExtensibilityType"/>
<el ement nanme="si nk" type="ogsi:LocatorType"/>
<el ement nanme="expirationTi me"
t ype="o0gsi : Ext endedDat eTi meType"/ >
</ sequence>
</ conpl exType>

ogsi-wg@ggf.org 72

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

</ el ement >
<el ement nanme="subscri beResponse" >
<conpl exType>
<sequence>
<el ement nanme="subscri ptionl nst anceLocat or"”
t ype="ogsi : Locat or Type"/ >
<el enent nanme="current Term nati onTi me"
type="ogsi: Term nati onTi meType"/ >
</ sequence>
</ conpl exType>
</ el ement >

<I-- Notification Sink Message Types -->
<el enent nanme="del i verNotificati on">
<conpl exType>
<seguence>
<el ement nanme="nessage" type="ogsi:ExtensibilityType"/>
</ sequence>
</ conpl exType>
</ el ement >

<l-- Factory Service Data Types -->
<conpl exType name="Creat eServi ceExt ensi bilityType">
<conpl exCont ent >
<ext ensi on base="ogsi: Operati onExtensibilityType">
<seguence>
<el ement nanme="createslnterface" type="QNane"
m nOccur s="1" maxOccur s="unbounded"/ >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<!-- Factory Message Types -->
<el enent nanme="cr eat eService" >
<conpl exType>
<sequence>
<el ement nanme="term nati onTi ne"
type="ogsi: Term nati onTi meType" m nCccurs="0"
maxQOccur s="1"/ >
<el enment name="creati onParanet ers”
type="ogsi: Extensi bilityType" m nOccurs="0"
maxOccur s="1"/ >
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="creat eServi ceResponse" >
<conpl exType>
<sequence>
<el enment nanme="| ocator" type="ogsi:LocatorType"/>
<el enent nanme="current Term nati onTi me"
type="ogsi: Term nati onTi meType"/ >
<el ement nanme="extensi bilityQutput"
type="ogsi: Extensi bilityType" m nCccurs="0"
maxOccur s="1"/>
</ sequence>
</ conpl exType>

0gsi-wg@ggf.org

73

GWD-R (draft-ggf -ogsi-gridservice-33)

</ el enent >

<l-- Factory Fault Types -->
<el enment nanme="servi ceAl readyExi st sFaul t"
type="ogsi : Servi ceAl r eadyExi st sFaul t Type"/ >
<conpl exType name="Servi ceAl r eadyExi st sFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type">
<seguence>

June 27, 2003

<el ement nanme="exi stingService" type="ogsi:LocatorType"/>

</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<l-- Service Goup Service Data Types -->
<conpl exType nanme="Menber shi pCont ent Rul eType" >
<sequence>
<el enent nanme="nenberl| nt erface"
type="QNane"

m nCccurs="1"
maxQOccur s="1"/>
<el ement nane="content"
type=" QNane"
m nOccur s="0"
maxQOccur s="unbounded"/ >
</ sequence>
</ conpl exType>
<conpl exType nanme="EntryCont ent Type">
<sequence>

<any nanespace="##any" m nOccurs="0" maxOccurs="unbounded"/ >

</ sequence>
</ conpl exType>

<conpl exType nanme="EntryType" >
<seguence>
<el ement nanme="servi ceG oupEntrylLocat or"
t ype="ogsi : Locat or Type"
m nCccur s="1"
maxQOccur s="1"
nillable="true"/>
<el ement name="nenber Ser vi ceLocat or"
t ype="ogsi : Locat or Type"
m nCccur s="1"
maxQccur s="1"/>
<el ement nane="content"
t ype="ogsi : EntryCont ent Type"
m nCccur s="1"
maxQOccur s="1"/ >
</ sequence>
</ conpl exType>

<l-- Service Goup Registration Service Data Types -->
<el ement nane="mat chByLocat or Equi val ence"

t ype="ogsi : Mat chByLocat or Equi val enceType"/ >
<conpl exType name="Mat chByLocat or Equi val enceType" >

0gsi-wg@ggf.org

74

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<sequence>
<el enment nanme="|ocator" type="ogsi:LocatorType" m nCccurs="0"
maxCccur s="unbounded"/ >
</ sequence>
</ conpl exType>

<l-- Service Goup Registration Message Types -->
<el enent nane="add" >
<conpl exType>
<sequence>
<el ement nanme="servi ceLocator" type="o0gsi:LocatorType"/>
<el enent nane="content" type="ogsi:ExtensibilityType"/>
<el ement nanme="term nati onTi ne"
type="ogsi: Term nati onTi meType" m nQOccurs="0"
maxOccur s="1"/ >
</ sequence>
</ conpl exType>
</ el ement >
<el ement nane="addResponse" >
<conpl exType>
<sequence>
<el enment nanme="servi ceLocator" type="ogsi: LocatorType"/>
<el enent nanme="current Term nati onTi me"
type="ogsi: Term nati onTi meType"/ >
</ sequence>
</ conpl exType>
</ el ement >
<el enent nanme="renove" >
<conpl exType>
<sequence>
<el enment nanme="mat chExpressi on"
type="ogsi: ExtensibilityType"/>
</ sequence>
</ conpl exType>
</ el ement >
<el ement nanme="r enmpbveResponse" >
<conpl exType/ >
</ el ement >

<l-- Service Goup Registration Fault Types -->
<el enent nanme="cont ent Creati onFai | edFaul t"
t ype="ogsi : Cont ent Creati onFai | edFaul t Type"/>
<conpl exType nanme="Cont ent Creati onFai | edFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/ >
</ conpl exCont ent >
</ conpl exType>
<el ement name="unsupportedMenber | nt erfaceFaul t"
t ype="ogsi : Unsupport edMenber | nt erf aceFaul t Type"/ >
<conpl exType name="Unsupport edMenber | nt er f aceFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="addRef usedFaul t" type="ogsi: AddRef usedFaul t Type"/ >
<conpl exType name="AddRef usedFaul t Type" >
<conpl exCont ent >

0gsi-wg@ggf.org 75

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el ement nanme="mat chFai | edFaul t"
t ype="ogsi : Mat chFai | edFaul t Type"/ >
<conpl exType name="Mat chFai | edFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
<el enent nanme="renoveFai |l edFaul t"
type="ogsi : RenoveFai | edFaul t Type"/ >
<conpl exType name="RenoveFai | edFaul t Type" >
<conpl exCont ent >
<ext ensi on base="ogsi: Faul t Type"/>
</ conpl exCont ent >
</ conpl exType>
</ schema>
</types>

<I-- Gid Service Messages -->
<nessage nane="Fi ndServi ceDat al nput Message" >

<part nane="paraneters" el enent="ogsi:findServiceData"/>
</ message>
<nmessage nanme="Fi ndServi ceDat aQut put Message" >

<part nanme="paraneters" el enent="o0gsi:findServi ceDat aResponse"/>
</ message>
<nessage nanme="Set Servi ceDat al nput Message" >

<part name="paraneters" el ement="o0gsi:set ServiceData"/>
</ message>
<nmessage nane="Set Servi ceDat aCut put Message" >

<part nanme="paraneters" el enent="o0gsi: set Servi ceDat aResponse"/ >
</ nessage>
<nmessage nane="Request Ter m nati onBef or el nput Message" >

<part nane="paraneters" el enment="o0gsi:request Termn nati onBefore"/>
</ message>
<nessage nane="Request Ter m nati onBef or eQut put Message" >

<part nanme="paraneters"

el enent =" ogsi : request Ter mi nat i onBef or eResponse”/ >

</ message>
<message nane="Request Ter m nati onAfterl nput Message" >

<part nane="paraneters" el enent="o0gsi:requestTerm nati onAfter"/>
</ message>
<nmessage nane="Request Ter m nati onAft er Qut put Message" >

<part nanme="paraneters"

el enent =" ogsi : request Ter m nati onAft er Response"/ >

</ message>
<message nane="Destr oyl nput Message" >

<part nanme="paraneters" el ement="ogsi:destroy"/>
</ nessage>
<nmessage nane="DestroyQut put Message" >

<part nanme="paraneters" el enment="o0gsi:destroyResponse"/>
</ message>

<l-- Gid Service Fault Messages -->

<nessage nanme="Faul t Message" >
<part name="fault" elenment="ogsi:fault"/>

0gsi-wg@ggf.org

76

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

</ message>
<nessage nane="Ser Vi ceNot Dest r oyedFaul t Message" >
<part nanme="fault" el enent="o0gsi:servi ceNot DestroyedFault"/>
</ message>
<nmessage nane="ExtensibilityTypeFaul t Message" >
<part nane="fault" el enent="ogsi:extensibilityTypeFault"/>
</ message>
<nmessage nane="Extensi bilityNot SupportedFaul t Message" >
<part nanme="fault" el enent="ogsi: extensibilityNotSupportedFault"/>
</ message>
<nessage nane="Tar getl nval i dFaul t Message" >
<part name="fault" el ement="ogsi:targetlnvalidFault"/>
</ message>
<nmessage nane="Cardi nalityViol ati onFaul t Message" >
<part nanme="fault" el enent="ogsi:cardinalityViolationFault"/>
</ nessage>
<nessage nane="MuitabilityViol ati onFaul t Message" >
<part nanme="fault" el enent="ogsi:nutabilityViolationFault"/>
</ message>
<nmessage nane="Modi fiabilityViol ati onFaul t Message" >
<part name="fault" el enent="ogsi:nodifiabilityViolationFault"/>
</ message>
<message nane="TypeViol ati onFaul t Message" >
<part nanme="fault" el enent="ogsi:typeViolationFault"/>
</ message>
<nmessage nanme="Ilncorrect Val ueFaul t Message" >
<part nanme="fault" el enent="ogsi:incorrectVal ueFault"/>
</ message>
<nessage nanme="Parti al Fail ureFaul t Message" >
<part name="fault" el enment="ogsi:partial FailureFault"/>
</ message>
<message nane="Term nati onTi mneUnchangedFaul t Message" >
<part nane="fault" el enent="ogsi:term nati onTi nreUnchangedFault"/>
</ message>

<l -- Handl eResol ver Messages -->
<nmessage nane="Fi ndByHandl el nput Message" >
<part name="paraneters" el enment="o0gsi:findByHandl e"/>
</ message>
<nmessage nane="Fi ndByHandl eQut put Message" >
<part nane="paraneters" el enent="ogsi:findByHandl eResponse"/ >
</ nessage>

<l -- Handl eResol ver Fault Messages -->
<nmessage nane="Inval i dHandl eFaul t Message" >
<part nanme="fault" el enent="ogsi:invalidHandl eFault"/>
</ message>
<nmessage nane="NoAddi ti onal Ref erencesAvai | abl eFaul t Message" >
<part nanme="fault"
el ement =" ogsi : noAddi ti onal Ref er encesAvai | abl eFaul t"/ >
</ nessage>
<nmessage nanme="NoRef erencesAvai |l abl eFaul t Message" >
<part nanme="fault" el enent="o0gsi: noReferencesAvail abl eFault"/>
</ message>
<nessage nane="Redirecti onFaul t Message" >
<part nanme="fault" el enent="ogsi:redirectionFault"/>
</ message>

ogsi-wg@ggf.org 77

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<nessage nane="NoSuchServi ceFaul t Message" >

<part nanme="fault" el enent="ogsi:noSuchServiceFault"/>
</ message>
<nmessage nanme="NoSuchServi ceSt art edFaul t Message" >

<part nane="fault" el enent="ogsi:noSuchServiceStartedFault"/>
</ nessage>
<nmessage nane="Servi ceHasTer m nat edFaul t Message" >

<part nanme="fault" el enent="ogsi:servi ceHasTer m natedFaul t"/>
</ message>
<nessage nane="Tenporaril yUnavail abl eFaul t Message" >

<part nanme="fault" el enent="ogsi:tenporarilyUnavail abl eFault"/>
</ message>

<l-- Factory Messages -->
<nmessage nane="Creat eServicel nput Message" >
<part nanme="paraneters" el enent="o0gsi:createService"/>
</ message>
<nmessage nane="Creat eServi ceQut put Message" >
<part name="paraneters" el ement="o0gsi:createServi ceResponse"/>
</ message>

<l-- Factory Fault Messages -->
<nmessage nane="Servi ceAl r eadyExi st sFaul t Message" >

<part nanme="fault" el enent="ogsi:serviceAl readyExi stsFault"/>
</ message>

<l-- NotificaitonSource Messages -->
<nmessage nane="Subscri bel nput Message" >
<part name="paraneters" el enment="o0gsi:subscribe"/>
</ message>
<nmessage nane="Subscri beQut put Message" >
<part nane="paraneters" el enent="o0gsi:subscri beResponse"/>
</ nessage>

<l-- NotificationSink Messages -->
<nessage nane="DeliverNotificationl nput Message" >

<part name="paraneters" el enment="o0gsi:deliverNotification"/>
</ message>

<l-- Service& oupRegi strati on Messages -->
<nmessage nane="Addl nput Message" >
<part nane="paraneters" el enent="ogsi:add"/>
</ message>
<nmessage nane="AddCQut put Message" >
<part nanme="paraneters" el enment="o0gsi:addResponse"/>
</ message>
<message nanme="renovel nput Message" >
<part name="paraneters” el enment="ogsi:renove"/>
</ message>
<nmessage nane="renoveQut put Message" >
<part nanme="paraneters" el enent="o0gsi:renveResponse"/>
</ message>

<l-- ServiceG oupRegi stration Fault Messages -->
<nmessage nanme="Cont ent CreationFail edFaul t Message" >

<part nanme="faults" el ement="o0gsi:contentCreationFail edFault"/>
</ message>

0gsi-wg@ggf.org

78

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<nessage nanme="Unsupport edMenber| nt erfaceFaul t Message" >

<part nanme="faults" el ement="o0gsi:unsupportedMenberlnterfaceFault"/>

</ message>
<nmessage nane="AddRef usedFaul t Message" >

<part nane="faults" el enent="o0gsi:addRef usedFault"/>
</ nessage>
<nmessage nane="Mat chFai |l edFaul t Message" >

<part nane="faults" el enment="ogsi: matchFail edFault"/>
</ message>
<nessage nane="RenpveFai |l edFaul t Message" >

<part nanme="faults" el ement="o0gsi:renoveFail edFault"/>
</ message>

<I-- Gid Service Port Type -->
<gwsdl : port Type nane="Gi dServi ce">
<operati on name="findServi ceDat a" >
<i nput nessage="ogsi : Fi ndSer vi ceDat al nput Message"/ >
<out put nessage="ogsi : Fi ndServi ceDat aCut put Message"/ >
<fault name="ExtensibilityNot SupportedFaul t"
nmessage="o0gsi : Ext ensi bi | i t yNot Support edFaul t Message"/ >
<fault nanme="ExtensibilityTypeFault"
message="o0gsi : Extensi bi | i t yTypeFaul t Message"/ >
<fault nane="TargetlnvalidFault"
message="o0gsi : Target | nval i dFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<oper ati on nanme="set Servi ceData">
<i nput nessage="o0gsi : Set Servi ceDat al nput Message"/ >
<out put nmessage="ogsi : Set Servi ceDat aQut put Message"/ >
<fault name="Extensi bilityNot SupportedFaul t"
message="o0gsi : Ext ensi bi | i t yNot Support edFaul t Message"/ >
<fault name="ExtensibilityTypeFault"
message="o0gsi : Extensi bilityTypeFaul t Message"/ >
<fault nanme="CadinalityViolationFault"
message="ogsi : Cardi nal i tyVi ol ati onFaul t Message"/ >
<fault name="MutabilityViolationFault"
message="ogsi : Mut abi l i tyVi ol ati onFaul t Message"/ >
<fault nanme="ModifabilityViolationFault"
message="ogsi : Modi fi abilityVi ol ati onFaul t Message"/ >
<fault name="TypeViol ati onFaul t"
message="o0gsi : TypeVi ol ati onFaul t Message"/ >
<fault name="IncorrectVal ueFaul t"
message="o0gsi : | ncorrect Val ueFaul t Message"/ >
<fault name="Partial Fail ureFaul t"
message="ogsi : Parti al Fai | ur eFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<operation name="request Term nati onAfter">
<i nput nessage="o0gsi: Request Ter m nati onAfterl nput Message"/ >

<out put nessage="ogsi: Request Ter m nati onAft er Qut put Message"/ >

<fault name="Term nati onTi neUnchangedFaul t"
message="o0gsi : Terni nati onTi nreUnchangedFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<operati on name="request Ter m nati onBef ore" >

<i nput nessage="o0gsi : Request Ter n nat i onBef or el nput Message"/ >
<out put nessage="o0gsi : Request Ter mi nati onBef or eQut put Message"/ >

0gsi-wg@ggf.org

79

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<fault name="Terni nati onTi mreUnchangedFaul t"
message="o0gsi : Terni nati onTi mreUnchangedFaul t Message"/ >
<fault nanme="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<oper ati on name="destroy">
<i nput nessage="ogsi : Destroyl nput Message"/ >
<out put nmessage="ogsi : DestroyCQut put Message"/ >
<fault nanme="Servi ceNot Dest royedFaul t"
nmessage="o0gsi : Servi ceNot Dest r oyedFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<sd: servi ceDat a nanme="interface"
type="xsd: QNanme"
m nOccur s="1"
maxQOccur s="unbounded"
mut abi | i ty="constant"
nodi fi abl e="f al se"
nill abl e="fal se"/>
<sd: servi ceDat a name="ser vi ceDat aName"
type="xsd: QNanme"
m nOccur s="0"
maxQOccur s="unbounded”
nmut abi | i ty="nut abl e"
nodi fi abl e="f al se"
ni |l able="fal se"/>
<sd: servi ceDat a nane="factoryLocat or"
t ype="ogsi : Locat or Type"
m nOccur s="1"
maxQOccur s="1"
mut abi | it y="nut abl e"
nodi fi abl e="f al se"
nillable="true"/>
<sd: servi ceDat a nane="gri dServi ceHandl| e"
t ype="ogsi : Handl eType"
m nOccur s="0"
maxOccur s="unbounded"
nmut abi | i t y="ext endabl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a name="gri dServi ceRef er ence"
t ype="o0gsi : Ref erenceType"
m nOccur s="1"
maxOccur s="unbounded"
nmut abi |i ty="nut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a name="fi ndServi ceDat aExt ensi bi | i ty"
t ype="o0gsi : Operati onExt ensi bilityType"
m nCccur s="1"
maxOccur s="unbounded"
nmut abi lity="static"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a nane="set Servi ceDat aExt ensi bi | ity"
t ype="ogsi : Operati onExt ensi bilityType"
m nOccur s="1"
maxCOccur s="unbounded"

ogsi-wg@ggf.org 80

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

nmut abi lity="static"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a name="t erm nati onTi me"
type="ogsi: Term nati onTi meType"
m nOccur s="1"
maxQOccur s="1"
nmut abi |i ty="nut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: stati cServi ceDat aVal ues>
<ogsi : fi ndServi ceDat aExt ensi bility
i nput El ement =" ogsi : quer yBySer vi ceDat aNanmes"/ >
<0gsi : set Servi ceDat aExt ensi bility
i nput El ement =" ogsi : set BySer vi ceDat aNanes"/ >
<0gsi : set Servi ceDat aExt ensi bility
i nput El ement =" ogsi : del et eBySer vi ceDat aNanes" / >
</ sd: staticServi ceDat aVal ues>
</ gwsdl : port Type>

<l -- Handl eResol ver Port Type -->
<gwsdl : port Type nane="Handl eResol ver" extends="ogsi: G idService">
<operati on name="fi ndByHandl e" >
<i nput nessage="ogsi : Fi ndByHandl el nput Message"/ >
<out put nessage="ogsi : Fi ndByHandl eQut put Message"/ >
<fault name="Inval i dHandl eFaul t"
message="o0gsi : | nval i dHandl eFaul t Message"/ >
<fault nane="NoAdditi onal Ref erencesAvai |l abl eFaul t"
message="o0gsi : NoAddi ti onal Ref er encesAvai | abl eFaul t Message"/ >
<fault name="NoRef erencesAvai |l abl eFaul t"
message="o0gsi : NoRef erencesAvai | abl eFaul t Message"/ >
<fault name="NoSuchServiceFaul t"
message="o0gsi : NoSuchSer vi ceFaul t Message"/ >
<fault name="NoSuchServiceStartedFault"
message="o0gsi : NoSuchServi ceSt art edFaul t Message"/ >
<fault name="Servi ceHasTer n nat edFaul t"
message="o0gsi : Servi ceHasTer m nat edFaul t Message"/ >
<fault nanme="Tenporaril yUnavail abl eFaul t"
message="o0gsi : Tenporaril yUnavai | abl eFaul t Message"/ >
<fault nanme="RedirectionFault"
message="o0gsi : Redi recti onFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<sd: servi ceDat a name="handl eResol ver Scheme"
type="xsd: anyURI "
m nOccur s="1"
maxCOccur s="unbounded"
mut abi | i t y="nut abl e"
nodi fi abl e="f al se"
nillable="true"/>
</ gwsdl : port Type>

<!-- Factory PortType -->
<gwsdl : port Type nane="Factory" extends="ogsi: GidService">
<operati on nane="creat eServi ce">
<i nput nessage="ogsi : Creat eServi cel nput Message"/ >

ogsi-wg@ggf.org 81

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<out put message="ogsi : Creat eServi ceCut put Message"/ >
<fault name="Extensi bilityNot SupportedFaul t"
message="o0gsi : Ext ensi bi | i t yNot Support edFaul t Message"/ >
<fault name="ExtensibilityTypeFault"
message="o0gsi : Extensi bil i tyTypeFaul t Message"/ >
<fault nane="Servi ceAl readyExi stsFaul t"
message="o0gsi : Servi ceAl r eadyExi st sFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<sd: servi ceDat a nane="cr eat eServi ceExt ensi bi lity"
type="ogsi : CreateServi ceExtensi bilityType"
m nCccur s="1"
maxQOccur s="unbounded”
nmut abi lity="static"
nodi fi abl e="f al se"
ni |l able="fal se"/>
</ gwsdl : port Type>

<l-- NotificationSource PortType -->
<gwsdl : port Type nanme="Noti fi cati onSource" extends="ogsi: G idService">
<oper ati on name="subscri be">
<i nput nessage="ogsi: Subscri bel nput Message"/ >
<out put nessage="ogsi: Subscri beCut put Message"/ >
<fault nanme="ExtensibilityNot SupportedFaul t"
message="o0gsi : Ext ensi bi | i t yNot Support edFaul t Message"/ >
<fault nanme="ExtensibilityTypeFault"
nmessage="o0gsi : Extensi bilityTypeFaul t Message"/ >
<fault name="TargetlnvalidFault"
nmessage="o0gsi : Target | nval i dFaul t Message"/ >
<fault nanme="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<sd: servi ceDat a name="noti fi abl eSer vi ceDat aNanme"
type="xsd: QNane"
m nOccur s="0"
maxOccur s="unbounded"
nmut abi |i ty="rnut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a name="subscri beExtensibility"
t ype="ogsi : Operati onExtensi bilityType"
m nOccur s="1"
maxOccur s="unbounded"
nmut abi lity="static"
nodi fiability="fal se"
nillabl e="fal se"/>
<sd: stati cServi ceDat aVal ues>
<ogsi : subscri beExtensibility
i nput El enment =" ogsi : subscri beByServi ceDat aNanes"/ >
</sd: stati cServi ceDat aVal ues>
</ gwsdl : port Type>

<l-- Notification Sink PortType -->
<gwsdl| : port Type nane="Noti ficationSi nk">
<operati on nanme="deliverNotification">
<i nput nessage="ogsi: DeliverNotificationlnput Message"/>
</ operati on>
</ gwsdl : port Type>

ogsi-wg@ggf.org 82

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<lI-- NotificationSubscription PortType -->
<gwsdl : port Type nanme="Noti fi cati onSubscri ption”
ext ends="ogsi : Gi dServi ce" >
<sd: servi ceDat a nane="subscri pti onExpressi on"
type="xsd: anyType"
m nOccur s="1"
maxQccur s="1"
nmut abi | i ty="nut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a nane="si nkLocat or"
t ype="ogsi : Locat or Type"
m nOccur s="1"
maxQOccur s="1"
nmut abi | i t y="nut abl e"
nodi fi abl e="f al se"
nill abl e="fal se"/>
</ gwsdl : port Type>

<I-- Service&G oupEntry PortType -->
<gwsdl : port Type name="Servi ceG oupEntry" extends="ogsi: G i dService">
<sd: servi ceDat a nane="nenber Servi ceLocat or"
t ype="ogsi : Locat or Type"
m nCccur s="1"
maxOccur s="1"
nmut abi | i ty="nut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a nane="content"
t ype="ogsi : EntryCont ent Type"
m nCOccur s="1"
maxQOccur s="1"
nmut abi | i ty="nut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
</ gwsdl : port Type>

<l-- ServiceGoup PortType -->
<gwsdl : port Type name="Servi ceG oup" extends="ogsi: Gi dService">
<sd: servi ceDat a nane="nenber shi pCont ent Rul e"
t ype="ogsi : Menber shi pCont ent Rul eType"
m nOccur s="1"
maxOccur s="unbounded"
mut abi lity="constant"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a nane="entry"
type="ogsi : EntryType"
m nOccur s="0"
maxOccur s="unbounded"
nmut abi |i ty="nut abl e"
nodi fi abl e="f al se"
nillabl e="fal se"/>
</ gwsdl : port Type>

<l-- ServiceG oupRegi stration PortType -->

ogsi-wg@ggf.org 83

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<gwsdl : port Type nane="Servi ce& oupRegi stration"
ext ends="ogsi : Servi ceG oup" >
<operati on name="add" >
<i nput nessage="ogsi : Addl nput Message"/ >
<out put nmessage="ogsi : AddCQut put Message"/ >
<fault nanme="ExtensibilityNot SupportedFaul t"
message="o0gsi : Ext ensi bi | i t yNot Support edFaul t Message"/ >
<fault name="ExtensibilityTypeFault"
nmessage="o0gsi : Extensi bil i tyTypeFaul t Message"/ >
<fault name="Content CreationFail edFaul t"
message="o0gsi : Cont ent Creati onFai | edFaul t Message"/ >
<fault nanme="UnsupportedMenberl nterfaceFaul t"
message="o0gsi : Unsuppor t edMenber | nt er f aceFaul t Message"/ >
<fault nane="AddRefusedFaul t"
message="o0gsi : AddRef usedFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<operati on nane="renove" >
<i nput nessage="o0gsi : renmovel nput Message"/ >
<out put message="o0gsi : renoveQut put Message"/ >
<fault name="Extensi bilityNot SupportedFaul t"
message="o0gsi : Ext ensi bi | i t yNot Support edFaul t Message"/ >
<fault name="ExtensibilityTypeFault"
message="o0gsi : Extensi bilityTypeFaul t Message"/ >
<fault nanme="Mat chFail edFaul t"
message="ogsi : Mat chFai | edFaul t Message"/ >
<fault nanme="RenoveFail edFaul t"
message="o0gsi : RenoveFai | edFaul t Message"/ >
<fault name="Fault" nessage="ogsi: Faul t Message"/ >
</ operati on>
<sd: servi ceDat a name="addExtensibility"
type="ogsi : Operati onExtensi bilityType"
m nOccur s="0"
maxOccur s="unbounded"
nmut abi lity="static"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: servi ceDat a nane="renoveExtensibility"
t ype="o0gsi : Operati onExt ensi bilityType"
m nCccur s="1"
maxOccur s="unbounded"
nmut abi lity="static"
nodi fi abl e="f al se"
nillabl e="fal se"/>
<sd: st ati cServi ceDat avVal ues>
<ogsi : removeExtensibility
i nput El enment =" ogsi : mat chByLocat or Equi val ence"/ >
</ sd: staticServi ceDat aVal ues>
</ gwsdl : port Type>

</definitions>

19.2 http://lwww.gridforum.org/namespaces/2003/03/serviceData

<?xm version="1.0" encodi ng="UTF-8"?>
<schema
t ar get Nanespace="http://ww. gri df orum or g/ namespaces/ 2003/ 03/ ser vi ceDat

ogsi-wg@ggf.org 84

GWD-R (draft-ggf -ogsi-gridservice-33)

June 27, 2003

xm ns: sd="http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ ser vi ceDat a"
xm ns="http://ww. w3. org/ 2001/ XM_Schema"

el ement For nDef aul t =" qual i fi ed"”
attri but eFor mDef aul t ="unqual i fi ed">

<attributeG oup nanme="occurs">
<attribute name="ni nCccurs"
t ype="nonNegati vel nt eger"
use="optional "
default="1"/>
<attribute name="maxCccurs">
<si npl eType>

<uni on nenber Types="nonNegati vel nt eger" >

<si npl eType>

<restriction base="NMIOKEN" >

<enumer ati on val ue="unbounded"/ >

</restriction>
</ si npl eType>
</ uni on>
</ si npl eType>
</attribute>
</attributeG oup>

<conpl exType name="Servi ceDat aType" >
<seguence>
<any nanespace="##any" m nOccurs="0"
</ sequence>
<attribute name="name" type="NCNanme"/>
<attribute name="type" type="QNane"/>
<attribute name="nill abl e"
t ype="bool ean"
use="optional "
defaul t="f al se"/ >
<attributeG oup ref="sd: occurs"/>

<attribute name="mutability" use="optional"

<si npl eType>
<restriction base="string">
<enuneration val ue="static"/>

<enumer ati on val ue="constant"/>

maxQOccur s="unbounded"/ >

<enumer ati on val ue="ext endabl e"/ >

<enumer ati on val ue="nut abl e"/ >
</restriction>
</ si npl eType>
</attribute>

<attribute name="nodifiabl e" type="bool ean" default="fal se"/>
<anyAttribute nanespace="##ot her" processContents="I|ax"/>

</ conpl exType>

<el enment nane="servi ceDat a" type="sd: Servi ceDat aType"/ >

<conpl exType nanme="Servi ceDat aVal uesType" >

<seguence>
<any nanespace="##any" m nOccurs="0"
</ sequence>
</ conpl exType>

0gsi-wg@ggf.org

maxQOccur s="unbounded" />

def aul t =" ext endabl e" >

85

GWD-R (draft-ggf -ogsi-gridservice-33) June 27, 2003

<el ement nane="servi ceDat aVal ues" type="sd: Servi ceDat aVal uesType"/ >
<el ement nane="stati cServi ceDat aval ues"
type="sd: Servi ceDat aVal uesType"/ >
</ schema>

19.3 http://lwww.gridforum.org/namespaces/2003/03/gridWSDLExtensions

<?xm version="1.0" encodi ng="UTF- 8" ?>

<schema

t ar get Nanespace="http://ww. gri df orum or g/ nanespaces/ 2003/ 03/ gr i dWSDLEx
t ensi ons"

xm ns: gwsdl =" http: //ww. gri df orum or g/ nanmespaces/ 2003/ 03/ gr i dWSDLEXt ens
i ons"

xm ns="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"

el enment For mDef aul t =" qual i fi ed">

<i nport nanespace="http://schemas. xm soap. org/ wsdl/"/>

<el ement nanme="port Type" type="gwsdl: Port TypeType"/>
<conpl exType nanme="Port TypeType">
<conpl exCont ent >
<ext ensi on base="wsdl : port TypeType" >
<sequence>
<any nanespace="##ot her" m nOccurs="0"
maxOccur s="unbounded”/ >
</ sequence>
<attribute name="extends" use="optional">
<si npl eType>
<list itenfType="QNanme"/>
</ si npl eType>
</attribute>
<anyAttri bute nanmespace="##ot her"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ schema>

ogsi-wg@ggf.org 86

