
Seminar High Performance Computers - Current trends and

developments

Winter Term 2015/2016

Got Brain(s)? A Review and Critical Assessment on

Neuromorphic Computing

Daniyal Kazempour
Ludwig-Maximillians-Universität München

03.12.2015

Abstract

The current progresses made in developing new
computing systems excel in their computational
power and energy efficiency. In this review we in-
troduce the new emerging architecture of neuromor-
phic computing systems. We take a closer look at
the structure of the neuromorphic chip, with specific
focus on the neurosynaptic core as well as the foun-
dations of the event-driven paradigm. We introduce
the components of the Corelet ecosystem, where a
Corelet is a programming model designed for neu-
romorphic computing. Further we take a look on a
few selected algorithms and applications. Based on
the results of the benchmark, a critical assessment
follows. Finally this review is concluded by some
final remarks and future prospects.

1 Introduction

In the beginning we will motivate the topic by giv-
ing a brief introduction of the todays predominant
computing architecture. Further we motivate by
stating the core aims that drive the development of
the neuromorphic computing architecture: power
consumption and the degree of parallelism. As a
next step the elements from which this architecture

is inspired will be explained. In order to set the
foundations for the following sections an brief intro-
duction in the event-driven computing paradigm is
provided as well as a comparison of two neuromor-
phic computing architectures.

1.1 The von Neumann architecture
and its limitations

In this section we are going to introduce the von
Neumann architecture and further describe its lim-
itations. The von Neumann architecture is the one
design which gives shape to the computing architec-
tures since the mid of the 20th century. The archi-
tecture consists of a central processing unit (CPU)
which itself consists of a control unit (CU) and an
arithmetic logic unit (ALU). The ALU performs the
computation and logic linking while the CU inter-
prets the instructions of a program and wires up
several elements such as data source, required ALU
components etc. Further the architecture bares a
memory and an I/O unit.

As a major drawback of the von Neumann architec-
ture, data operation and instruction fetch can not
be performed at the same time due to the fact that
they both share a commonly used bus. This cir-

1



Figure 1: The von Neumann architecture bottle-
neck in context of neural structures [11]

cumstance is also named as the von Neumann bot-
tleneck [3]. Where the von Neumann architecture
specifies only one memory component the neuro-
morphic chips architecture intends that every node
has its own local memory and a dedicated private
memory bus.

1.2 Degree of parallelism and power
consumption

In this section we are going to describe the increas-
ing importance of parallel computing. In 1965 Gor-
don Moore stated an observation that the number
of transistors in an integrated circuit doubles ap-
proximately every two years, known as Moores Law
[12]. This law however can no longer be maintained
by adding more transistors to a chip, due to the fact
that the integrated circuits are eventually reaching
a certain density where natural physical limitations
arise. As a consequence a higher degree of paral-
lelism is required.

One technology that aims to saturate the need for
parallelism is GPUs. GPUs rely on the single in-
struction multiple data (SIMD) data parallelism
model. The architecture of GPUs can be assigned
to the category of vector processors. These types
of processors aim to perform an operation on large
data sets in parallel. Instructions are given to load
a certain amount of data, then perform the opera-
tion. While scalar processors operate on single ele-
ments (scalars), vector processors operate on linear
sequences of numbers. Exploiting those properties
GPUs aim to enable a high degree of parallelism

just like neuromorphic chips.

The previously explained von Neumann bottleneck
limits the effectively exploitable degree of paral-
lelism. This obstacle is aimed to be reduced in the
neuromorphic computing architecture as we shall
see further in this paper. In this context it may
be worth to emphasize the importance of paral-
lelism in today’s computing. Until about 2005 (ref:
top500.org) the aims in computing power lay within
the idea of increasing the clock speed of a system.
However within the last decade the potential of par-
allelism has been further discovered, especially ac-
celerated through the fields of simulation and data-
driven analysis of large data volumes which is more
widespread known under the buzzword big-data. In
the big-data domain, one method heavily relies on
parallelism: deep learning.

Deep learning is, simply put, a neural network
employing a large cardinality of layers. A neu-
ral network itself is a bio-inspired machine learn-
ing method for classification and prediction prob-
lems. As we shall see in the next section, neural net-
works resemble their biological counterparts, mas-
sively relying on parallelism. In order to saturate
the need of parallelism, currently neural networks
make heavy use of accelerator hardware such as
graphics cards and their GPUs or accelerator cards
such as the Intel Xeon Phi. The concept of neu-
romorphic computing also aims to serve a suitable
architecture to achieve a high degree of parallelism
for deep learning systems.

While computer systems, especially the super-
computers increase in the degree of parallelism, an-
other trend that became visible in the past years is
the reduction of power consumption. As comput-
ers get more powerful, the power consumption also
increases, with financial and environmental conse-
quences. According to spectrum.IEEE.org the True
North neuromorphic chip has a power density of
20mW/cm2 which would be equivalent to 1/10, 000
of the power density of modern microprocessors.
However these values have to be taken with a grain
of salt as the performance of the von Neumann and

2



Figure 2: Neurons and their signal propagation

the neuromorphic architecture cannot be directly
compared. In a later section, a critical assessment
of the benchmark results is discussed and we will
discuss how performance measures have to be eval-
uated.

1.3 Biological neuron-model

In this section we are going to take a closer look
at the details of the biological model giving rise to
the neuromorphic chips. The previously mentioned
concept of neural networks as well as the neuro-
morphic computing architecture were not being de-
signed completely without any element which in-
spired them. The source that gave the idea to both
concepts can be found in the domain of biology.
Various organisms which possess a nervous system
have so called neurons which pose the fundamental
unit of every nervous system. Its structure as it can
be seen in Figure 2 as well as its functional model
1 is as follows:

The specific biological model which is relevant to
both, neuromorphic chips and artificial neural net-
works is the neuron spiking model. It consists of
dendrites and axons. The dendrites which are heav-
ily branched receive the excitation from other neu-
rons. Therefore the dendrites can be regarded as
input-lines of a neuron. The output of a neuron is
sent through the axons which lead to another neu-
ron. The signals that are sent through the axons are
encoded through their voltage difference. This dif-

1The perceptron. A probabilistic model for information
storage and organization in the brain. In: Psychological
Reviews, 65 (1958): S. 386-408.

Figure 3: Functional model of neurons

ference is achieved through a mechanism in which
ion-streams are permitted to pass, where this mech-
anism is realised through specific ion-channels on
the cell-membrane. At the end of the axons which
lead to another neuron, the signal is conducted via
chemical gradients which are achieved via vesicle
based neurotransmitter release.

Neurons fire in the sense of releasing a signal. This
phenomenon can be observed if a spatial and tem-
poral summation of different changes in the mem-
brane potentials from various cells which direct into
a neuron exceed a certain threshold potential. If
this is the case, then an action potential is created
and sent via the axon to another cell which can be
seen schematically in figure 3.

1.4 von Neumann vs. neuromorphic
chips

In this section we are going to compare the von Neu-
mann architecture and neuromorphic chips. How-
ever we are not going to compare to the neuromor-
phic chips directly. We rather compare here to the
architecture on which the neuromorphic chip actu-
ally relies on: the so called connection machine [7].

The connection machine of Hillis aimed to develop
a computer with the structure of the brain. High
performance should be achieved via many simple
processing elements (PEs) and via a high connec-
tivity. This resulted in certain design decisions such

3



as the usage of e.g. a hypercube as the topology of
choice. The hypercube contained four sub cubes,
which on their own included around thousands of
simple PEs that were connected with each other.
Each of the PEs is connected to its four next neigh-
bours. By this a grid structure emerges in which
each PE can be exactly located via a 12-bit ad-
dress. Compared to the von Neumann architecture
the focus here lies in the high degree of connectivity
and less on the processors. Another unique feature
of the connection machine is the fact that each PE
has its own local memory of 4 kBit, a flag-register
with 8 Bit and an ALU. The programming of the
system is performed via a specific LISP dialect.

Another major difference between the Von Neu-
mann and the neuromorphic computing architec-
ture is that the latter is not driven by a certain CPU
clock rate but is rather event driven. This means
that each core is acting based on an incoming event
in a sense of e.g. an arriving signal. Noteworthy in
this context is that the biological and engineering
counterpart are also event-driven systems.

1.5 Two architectures in comparison

There are currently several neuromorphic comput-
ing projects that developed their own neuromor-
phic architectures. Describing all of the developed
systems would be beyond the scope of this paper,
therefore we are going to describe two of them here.
One of them is the True North system developed by
IBM,DARPA,SyNAPSE and another one is Neuro-
grid developed by the Stanford university.
The major differences between both architectures
are that Neurogrid is an analog/digital hybrid
model, whereas True North is completely digital.
The terms of analog and digital are meant in a way
that the neurons are implemented as analog circuits
via wires and meter charges, and digital neurons
are implemented by using digital elements such as
RAM, counter and comparators as it can be seen
in figure 4. Further True North consists of an hier-
archical design and contains neurosynaptic cores as
their basic building blocks, which we shall describe
in detail in the upcoming section.

Figure 4: (a) analog and (b) digital implementation
of a neuron [4]

4



Besides these mentioned major differences there
are also some differences in the number of neu-
rons, where True North provides 16 million neu-
rons and 4 billion synapses in its current configura-
tion, the Neurogrid provides only one million neu-
rons and with 8 billion, twice as many synapses as
True North. The certainly most interesting distinc-
tive property are the project aims of both systems.
Where True North aims for low-power neuromor-
phic chips which are designed for applications in
mobile sensors and cloud computing etc., Neurogrid
is created with the purpose to simulate biologically
realistic brain models, although the team has fur-
ther moved on to the development for autonomous
robot applications.

2 The neurosynaptic core

This section begins the bottom-up approach of
showing the structural and functional units of
the neuromorphic computing architecture, starting
from the neurosynaptic core which represents the
atomic unit of the neurosynaptic chip as it can be
seen in figure 5.

2.1 Architecture Model

Recalling the section in the introduction which de-
scribed the biological counterpart, the neursynaptic
core is composed of axons, synapses and neurons as
it can be seen in figure 6. Here it can be seen that
information is directed from the axons to the corre-
sponding neurons. This control of the information
flow from axons to neurons is ensured via synapses.
Taking a closer look at figure 6 we see a represen-
tation of the mentioned units in a grid-like struc-
ture. This structure is composed of K axons that
are linked through KxN binary-valued synapses to
N neurons. In figure 6 we can see that the rows
represent the axons, while the dendrites represent
the columns. The row-column junctions represent
in this grid-view the synapses which is coined with
the term neurosynaptic crossbar.

Figure 5: From the neurosynaptic core to the neu-
rosynapic computer [11]

5



Figure 6: The architecture of the neurosynaptic
core [10]

2.2 Operation

The model according to which the neurons operate
is the leaky integrate-and-fire model.
The membrane potential of a neuron is updated by
taking its current membrane potential adding to it
the leak of the neuron and finally adding the sum
of the inputs from all axons the neuron receives.
If the newly computed membrane potential of a
neuron exceeds a certain threshold θ then the neu-
rons produce a so called spike which can be com-
pared to the analogy that a neuron fires. At the
same time where a spike is created, the potential
of this neuron is set back to 0. The resulting spike
can be compared in a way to an binary flipping.

2.3 Event-driven Implementation

In context of event-driven computation the previ-
ously mentioned connection machine follows a dif-
ferent programming paradigm model in contrast to
the linear sequential programming model of von
Neumann [1]. Driven by that statement the ques-
tion which may emerge is: How is a program ac-
tually stored in neuromorphic chips/the connection
machine compared to the von Neumann architec-
ture. In von Neumann programs are stored via their
assembly opcodes. In contrast in the neuromor-
phic chip/connection machine programs are stored
through their connections. In the connection ma-
chine for example, the concurrent operations in Cm-

Lisp, a Lisp dialect for the connection machine are
implemented via a data structure called a xector,
which is an abstraction of a set of processors with
a value stored in each processor [7]. In the neuro-
morphic architecture upon execution of a corelet a
videoToSpikes function is triggered in order to gen-
erate an input spike file. The generated spikes are
further mapped to a core-axon tuple. This process
named transducing, compares to what is known in
the von Neumann architecture as compiling [1].

Having taken a look at the neurosynaptic core ar-
chitecture and the way it operates, we will now
further describe the event-driven implementation
of this architecture. Here the authors faced chal-
lenges by finding meaningful tradeoffs with regards
to power consumption, performance and density,
where the focus is set on the first two attributes.
Achieving a reduction in power consumption the
neural updates are performed in an event-driven
way. By giving a dedicated circuit per neuron a
high degree of parallelism is achieved, although this
level of parallelism comes with the prices of ineffi-
cient density. With density we refer here to circuits
on the chips that are unused as stated in [8].

Taking these goals into account the authors have
developed a block-level implementation of the neu-
rosynaptic core which is composed of an input de-
coder with 1024 axon circuits, a 1024x256 SRAM
crossbar, 256 neurons and an output encoder as it
can be seen in figure 7. The way the communication
is performed at the input and output interfaces to
the core is achieved through an address-event rep-
resentation (AER). The AER encodes binary ac-
tivities like e.g. A(t) by sending the location of the
active elements through a multiplexed channel.
Unfortunately no further informations are provided
on how TrueNorth performs collision handling,
given access to a shared medium. The only informa-
tion that is given in [11] mentions that spike events
are carried out between cores via time-multiplexed
wires.

Each operation per time step that is performed on
a core is composed of two phases, where the first

6



Figure 7: A look on the internal blocks of the neu-
rosynaptic core [10]

phase realized the axon-driven component while the
second phase takes care of the time step synchro-
nisation. Taking a closer look at figure 7 it can be
seen that in the first phase spikes in form of address-
events are sent to the cores one at a time and are
further sequentially decoded to the according axon
block. If an axon has received an event the entire
SRAM row is activated by the axon. By this activa-
tion all connections of the axon and their types are
read out. Where ever a connection is existent (en-
coded by a 1) the signals are sent to their neurons on
which the membrane potentials are updated. Hav-
ing updated all neurons, the axon stops its reading
process and awaits the next address-events. The
procedure is repeated until no more address-events
are left.
In the second phase a synchronization of all neu-
rons is ensured by sending a synchronization event
once every millisecond. The synchronization of the
neurons implies that each neuron checks if its mem-
brane potential has exceeded the threshold θ. Given
the case that the threshold is reached, a spike is
produced and sent as address-events as described
in phase one and finally a reset of the membrane
potential to zero is performed. Here it may be al-
ready recognized that the two-phase mechanism is

required in order to ensure a lock step of hardware
and software at the end of each time step.

3 The machine model

In this section the von Neumann and the neurosy-
naptic machine model are compared with a special
emphasis on the differences.

The von Neumann machine model is characterized,
to put it in a nutshell, through its instruction cycle
of fetching instructions, decoding instructions, eval-
uating the addresses, fetching operands, executing
the instructions and storing the results by write-
back in memory data. The key elements here are
the opcodes and the instruction pointer. The von
Neumann machine model itself is highly dynamic in
the sense that due to the mutability of the opcodes
on the memory, states can be defined, leading to a
system where several states can change over time.

In contrast to von Neumann, the neurosynaptic
machine model does not consist of opcodes but of
spikes. The input and output spike configurations
are stored in the local dedicated memory of the
neurosynaptic core. To be more precise a connec-
tion matrix and a weight vector are the stored el-
ements. Due to the fact that connections among
the cores are highly static and that the model is
event-driven, leads to the consequence that the neu-
rosynaptic machine model is not directly mutable
like the von Neumann architecture, implying that it
is not a state-based system but rather a pure func-
tional system where every input leads to an output,
without any states being stored in between. This
implication bares also the fact that without states,
the system is free of side-effects. The static char-
acter of the neurosynaptic machine model however
implies that no neuroplasticity is provided. In a
system where neuroplasticity is ensured, the con-
nections are not static, but would be capable of
changing over time.

The lack of states in the neurosynaptic machine
model however does not imply that the model

7



would not be turing complete [2]. However as
Alonzo Church has shown the turing completeness
of Lambda-calculus in the sense of functional pro-
gramming, the authors state that the neuromor-
phic model is also turing complete. This is achieved
through the fact that with the neurosynaptic cores
logic gatters can be built which in turn can be used
to create a turing machine.

4 The Corelet ecosystem

In this section we elaborate how neuromorphic
chips can be programmed by using Corelets. So
far we have described the motivation and inspira-
tions that lead to the neuromorphic computing as
well as its neurosynaptic core with its architecture
and implementation. In order to use, in the sense
of programming the system a paradigm is required
that meets the needs of the True North architec-
ture.

4.1 Corelets

So far we have dealt with neurosynaptic cores, the
most atomar units of the neuromorphic computing
architecture. If we now want to deal with a network
of neurosynaptic cores the so called Corelets can be
used. Corelets are a programming model based on
signal flow between logical subsystems. Operations
on a subsystem are composition, connection and
decomposition. Corelets provide an abstraction of
a network of neurosynaptic cores with the aim of
encapsulating the intra-network connectivity while
exposing only external inputs to and outputs from
another network. The grouping of inputs and out-
puts is performed within so called connectors. In
figure 8 it can be seen how a neurosynaptic core
is further enhanced by connectors . The construc-
tion is abstracted by a seed Corelet. We have here
a black-box like model where the user only needs
to know what is put inside the Corelet and to see
what comes out of the Corelet. A Corelet A can
now be linked with a Corelet B to a Corelet C in a
Lego-fashioned manner as it can be seen in figure
8. This process is known as a Corelet composition.

Figure 8: Seed Corelets and a composition of
Corelets [1]

The composition can be performed hierarchically to
design more complex Corelets. The authors of the
paper refer to Corelets being regarded as trees of
subcorelets. However another possible more intu-
itive presentation of Corelets would be their recur-
sive character in general, regardless of any tree or
list like structure. In order to directly implement
a written program on the True North hardware it
is required to decompose. The process of a Corelet
decomposition poses the inverse of a composition.
By applying decomposition, all encapsulation layers
are removed which reveals a network of neurosynap-
tic cores that can be now implemented on the True
North system.

4.2 Corelet language

Building on the Corelet abstractions a language
is designed which consists of fundamental sym-
bols such as the neuron, neurosynaptic core and
a corelet. However, regarding the tradition of lan-
guage theory, to any language there is also the need
of a grammar which is provided by the connectors of
the Corelets. Both, the language and the grammar
set the foundation for a sufficient expressiveness of
a True North program.

In listinig 1 one example of a Corelet program for
music composer recognition (MCR) can be seen.
The example shows the object-oriented nature of
the Corelet language as it can be seen in Line 1
where the program inherits from the corelet class,
and line 8 and 9 which show a method and a con-
structor. Also the connectivity.

8



Figure 9: Connectors in an Corelet [1]

Listing 1: A code listing use case for a music com-
poser recognition program [1]

1 classdef MCR < corelet

2 %Corelet MCR(nInputs , nLayers ,

nClasses , W)

3 %nInputs - number of inputs per

layer

4 %nLayers - number of layers in

LSM

5 %nClasses - number of Music

Composers

6 %W - classifier weight matrix

7 methods % public

8 function obj = MCR(nInputs ,

nLayers , nClasses , W)

9 obj.name = ’Music Computer

Recognition Corelet ’;

10 %create sub -corelets

11 lsm = LSM(nInputs ,nLayers);

12 sc = SC(nClasses ,W);

13 obj.subcorelets = [lsm ,sc];

14 %create connectors

15 obj.inp(1) = connector(

nInputs , ’input’);

16 obj.out(1) = connector(

nClasses , ’output ’);

17 %connect sub -corelets and

connectors:

18 obj.inp(1).busTo(sc.inp(1));

19 lsm.out(1).busTo(sc.inp(1));

20 sc.out (1).busTo(obj.out (1));

21 end %of constructor

22 end % of methods

23 end % of classdef

The Corelet language has been realized us-
ing object-oriented programming (OOP) concepts.
The authors motivate this decision with three re-
quirements of Corelets. In the Corelets we have
an encapsulation of what is between the input and
output, this is one of the core features of OOP. For
this figure 9 shows the encapsulation among the
connectors in private and public which may be fa-
miliar from the modifiers in some OO programming
languages. Another requirement is that all Corelets
have to use similar data structures and operations
and need similar ways of access. This leads to the
feature of inheritance which is provided in the OOP.
And the last requirement lies within the decompo-
sition of Corelets where each operation is named
homogeneously across multiple corelets yet can be
heterogeneous among the Corelets regarding their
definition. This circumstance requires a feature
such as polymorphism. However, all these men-
tioned features can also be implemented in mostly
functional based programming languages such as
e.g. Lisp where object-orientated paradigms are
provided, yet the principle of higher-order functions
is maintained.

4.3 Corelet Library

Like many programming languages the Corelet lan-
guage comes with a library. This library is a repos-
itory of functional primitives which can be taken
as ready-to-use building blocks. The current li-
brary includes Corelets for simple applications such
as scalar functions, algebraic, logical and temporal
functions as well as advanced tasks such as linear fil-
ters, kernel convolution, finite state machines up to
Discrete Fourier Transform, Restricted Boltzmann
Machine etc. In this case it would be of special
interest to see if any neural network Corelet is im-
plemented which would serve the purpose for deep
learning applications.

9



5 Compiler

In this section we are going to show the way com-
piling is performed on the neuromorphic architec-
ture. For this purpose we shall first describe the
compilation process briefly in order to motivate and
further emphasize the differences between the von
Neumann and the neuromorphic architecture.

On a von Neumann machine source code is sent in
a source file to the preprocessor. This generates
a preprocessed source file, which is further sent to
the compiler. The compiler generates an assembly
file which is forwarded to the assembler creating an
object file. The object file, is further sent to the
linker which generates an executable.

On the neuromorphic computing system the pro-
cess of compiling is different as we elaborate in the
following lines:

As it can be seen in figure 10 a given program in the
form of a Corelet generates upon execution a video
file. This video file with an input map file is taken
to the location at which each frame of the video
spikes are extracted through the individual pixel
gray levels. The spikes are then further mapped to
a core-axon tuple by using the input map file. Con-
verting data, in this case from a video to spikes is
coined with the term transduction. The transduc-
tion process generates an input spike file. This file
is taken with a model file and a configuration file
to an external simulator. The simulator generates
as an outcome of this compiling process an output
map and an output spikes file. The information
in these files is then stored in the local dedicated
memory of the corresponding cores.

6 Algorithms and Applica-
tions

In the previous section we have mentioned that the
Corelet library provides several ready-to-use mod-
ules such as linear classifiers, linear regression etc.

Figure 10: The compiling process on the TrueNorth

10



In this section we take a look at one of the appli-
cation that is provided by the library - the hidden
markov models.

6.1 States in a stateless model

In most of the cases when a problem can be reduced
to the detection of patterns within a sequence (of
symbols, spoken words, events etc.), hidden markov
models (HMM) provide a robust choice in order to
achieve a solution. The reason of having chosen
HMMs is due to one significant property: They are
heavily relying on states. How is it possible to ex-
press states in a machine model which is completely
stateless as described in previous sections?
As a brief recap we describe that a HMM is a
probabilistic model in which a system is described
through Markov chains with unobserved states. In
a more formal definition an HMM is a 5-tuple
λ = (S; Σ;T ;E;π) consisting of:

• A set of all states S the model can take

• The alphabet Σ of all possible observations

• A transition matrix T describing the transition
probability changing between the states

• An emission matrix E giving the probability to
observe in a given state si a specific alphabet
v ∈ Σ

• An initial distribution π indicating the proba-
bility that a given state si is the initial state

Considering this definition an HMM can be re-
garded as an special case of a dynamic Bayesian
network and as an finite state machine. Here we
see the massive state-relying nature of HMMs.
The authors in [6] make use of HMM on a
TrueNorth system for the following problem: An
English sample text is given, the goal is to clas-
sify the sequence of characters into the two classes
consonants (s1) or vowels (s2). For training the
HMM the forward/backward algorithms have been
applied on a sequence of 30000 characters from un-
labeled English text.

In order to implement the desired HMM, as de-
scribed in the previous section, Corelets were com-
posed together. The HMM is composed of four
Corelets which shall be further described:

• Observation Probability: The observation
probabilities are acquired in this Corelet by
using neurons with stochastic synapses. The
probability of the synapses in this Corelet to
deliver incoming spikes is done stochastically.
The threshold θ of the neurons is 1 and one
synapse encodes one state.

• State Computation: The computation of the
probability that the system is in a state sk at
time i is performed by this Corelet which uses
three neurons per state for the mentioned com-
putation. There are two input neurons that
compute the probability that the HMM will
end up in each state, and a third one which
sums up the output of the two input neurons,
leading to a spike at the output.

• State Memory: In order to store the previ-
ous and current states of the HMM so called
rate store neurons are used within this Corelet.
The very characteristics of these neurons lies
in their configuration via a stochastic thresh-
old and the absence of leak. This leads to the
property that the output spike train of such
neurons encodes the neurons membrane poten-
tial value in a probabilistic manner.

• WTA (winner-take-all): This Corelet returns
the maximum-likelihood estimate of the class
where each letter belongs to at each time seg-
ment.

The authors in [6] aimed to evaluate the HMM
which lead to an accuracy of 99.8%. In total 38
neurons were used. It is further stated that in the
implementation the number of neurons that were
needed scale linearly with the number of states
modeled in the HMM. In conclusion the authors
state that HMMs benefit from neuromorphic chips
regarding the higher accuracy and linear scaling

11



of the number of states with the number of neu-
rons. However some counterpart for comparison is
required in order to give the accuracy its expressive-
ness. Besides the point of lacking comparability, the
benchmark of further HMM applications would be
required in order to be able to make a statistically
profound statement on the true benefits of neuro-
morphic chips for HMMs.

7 Critical assessment and con-
cluding remarks

In this section we provide concluding results and
aim to give an answer to questions such as if neu-
romorphic chips are a viable alternative, if they are
restricted to specific problem domains and if there
are already working prototypes. Taking all aspects
discussed in this paper into respect, it appears that
many of the features that neuromorphic computing
provides are not such a novel approach as it is mo-
tivated in the various papers. Neuromorphic chips
are an application of the research on neuromorphic
engineering which has been first realized by Carver
Mead in the late 1980’s [9].

Also the idea of encapsulating the internals of a
neurosynaptic core in form of Corelets is not an
novel approach. It is merely applying the black-
box approach to the neurosynaptic cores which
is already visible at e.g. neural networks. An-
other aspect which has been mentioned however not
been sufficiently explained in detail is the Turing-
completeness of the TrueNorth architecture. While
in [10] it is stated that the architecture satisfies the
property, it leaves this statement, concluding that
it would be straight-forward to show that the ar-
chitecture is actually Turing-complete.

In this context it is vital to emphasize that the neu-
romorphic computing architecture does indeed em-
ulate the functionality of neurons while e.g. an arti-
ficial neural network (ANN) simulates the behavior
of neurons. While in a simulation the underlying
state of a system is in the focus to be modeled, in

an emulation a system is mimicked without any de-
tailed and accurate reflection of the internal states.
An emulation aims to substitute the system it is
emulating, while a simulation serves the purpose
for further study and analysis. The TrueNorth ar-
chitecture aims to emulate the functionality of the
brain.

Further, if we take a look on how the performance
of today’s systems are measured, we get confronted
with the FLOPS unit (floating point operations per
second). In the domain of neuromorphic computing
the so called SOPS unit (synaptic operations per
second) is used. Given this fact, the question may
emerge in how far those two units of performance
measure are comparable. Given the case that no
comparison between FLOPS and SOPS is possible,
how can the performance of a neuromorphic com-
puting architecture be compared to the von Neu-
mann based computers? The papers related to the
TrueNorth architecture lack further details on if
and how SOPS can be compared to FLOPS.

Despite all the criticized aspects, the facts remain
that neuromorphic computing provides a differ-
ent architecture compared to those of von Neu-
mann. Also the energy efficiency is a certain ad-
vantage over today’s conventional systems. This
advantage is of special interest, which gets visible
by taking a look on the green top 500 computers
(http://www.green500.org) which lists the most en-
ergy efficient supercomputers currently in use. The
first 10 ranks in the list are all systems which heav-
ily rely on accelerator cards such as e.g. Intel Xeon-
Phi or Nvidia cards. These accelerator cards pro-
vide a high level of parallelism while being low on
power consumption. Neuromorphic chips may have
the potential to take this trend of high parallelism
while having low power consumption to a new level.

However further research, and development on the
architecture as well as understanding of the human
brain is required in order to significantly improve
this architecture. Aspects such as neuroplastic-
ity are not covered yet by the True North system.
This statement can be derived from the fact that

12



the neuromorphic chip architecture does not pro-
vide options to have feedback loops on hardware-
level leading to mutual-influence of the neurosynap-
tic cores. This property goes hand in hand with
the stateless architecture. In biological sense we
understand under neuroplasticity the ability of a
neural system to change over time in a sense that
e.g. existing synapses degrade while new synapses
are established depending on the learning processes
that are performed. So far no ability of dynam-
ically transforming existing synaptic structures is
existent. What could be also of potential interest,
is the observation that none of the currently devel-
oped neuromorphic systems consider to mimic the
saltatory excitation conduction as observed in the
nervous system of vertebrates. It would be compa-
rable to fast-lanes on the highway, enabling certain
computation tasks to be sent with higher speed and
priority to the destination neurons. However, this
remains pure theory and would require a substan-
tial amount of research in order to be determinable
if it provides any true advantages to the neuromor-
phic architecture.

Therefore this concept remains as for now as an ex-
perimental approach such as the adiabatic quantum
computing. Having matured over time neuromor-
phic computing may get feasible to be applied as
e.g. accelerators in addition to conventional com-
puters, specially in the field of deep learning.

References

[1] Arnon Amir, Pallab Datta, William P Risk,
Andrew S Cassidy, Jeffrey A Kusnitz, Steve K
Esser, Alexander Andreopoulos, Theodore M
Wong, Myron Flickner, Rodrigo Alvarez-Icaza,
Emmett Mcquinn, Ben Shaw, Norm Pass, and
Dharmendra S Modha. Cognitive Comput-
ing Programming Paradigm: A Corelet Lan-
guage for Composing Networks of Neurosynap-
tic Cores. Proceedings of IEEE International
Joint Conference on Neural Networks (IJCNN
2013), 2013.

[2] A.M.Turing. On Computable Numbers, with
an Application to the Entscheidungsproblem -
A Correction. Proceedings of the London Math-
ematical Society. 2, 42(2):230–65, 1936.

[3] John Backus. Can programming be liberated
from the von Neumann style?: a functional
style and its algebra of programs. Commu-
nications of the ACM, 21(8):613–641, 1978.

[4] Ben Varkey Benjamin, Peiran Gao, Emmett
McQuinn, Swadesh Choudhary, Anand R.
Chandrasekaran, Jean Marie Bussat, Ro-
drigo Alvarez-Icaza, John V. Arthur, Paul a.
Merolla, and Kwabena Boahen. Neurogrid:
A mixed-analog-digital multichip system for
large-scale neural simulations. Proceedings of
the IEEE, 102(5):699–716, 2014.

[5] Andrew S Cassidy, Paul Merolla, John V
Arthur, Steve K Esser, Bryan Jackson,
Rodrigo Alvarez-Icaza, Pallab Datta, Jun
Sawada, Theodore M Wong, Vitaly Feldman,
Arnon Amir, Daniel Ben-Dayan Rubin, Filipp
Akopyan, Emmett McQuinn, William P Risk,
and Dharmendra S Modha. Cognitive Com-
puting Building Block: A Versatile and Effi-
cient Digital Neuron Model for Neurosynap-
tic Cores. Proceedings of IEEE International
Joint Conference on Neural Networks (IJCNN
2013), 2013.

[6] Steve K Esser, Alexander Andreopoulos,
Rathinakumar Appuswamy, Pallab Datta,
Davis Barch, Arnon Amir, John Arthur, An-
drew Cassidy, Myron Flickner, Paul Merolla,
Shyamal Chandra, Nicola Basilico, Stefano
Carpin, Tom Zimmerman, Frank Zee, Rodrigo
Alvarez-Icaza, Jeffrey A Kusnitz, Theodore M
Wong, William P Risk, Emmett Mcquinn,
Tapan K Nayak, Raghavendra Singh, and
Dharmendra S Modha. Cognitive Comput-
ing Systems: Algorithms and Applications for
Networks of Neurosynaptic Cores. Proceed-
ings of IEEE International Joint Conference
on Neural Networks (IJCNN 2013), 2013.

13



[7] William Daniel Hillis. The Connection Ma-
chine. Dissertation, 1985.

[8] Giacomo Indiveri and Shih-chii Liu Liu. Mem-
ory and information processing in neuromor-
phic systems. Proceedings of the IEEE,
X(X):1–17, 2015.

[9] Carver Mead. Neuromorphic electronic sys-
tems. Proceedings of the IEEE, 78(10):1629–
1636, 1990.

[10] Paul Merolla, John Arthur, Filipp Akopyan,
Nabil Imam, Rajit Manohar, and Dharmen-
dra S Modha. A Digital Neurosynaptic
Core Using Embedded Crossbar Memory with
45pJ per Spike in 45nm. Proceedings of the
IEEE Custom Integrated Circuits Conference
(CICC), 2011.

[11] Paul A Merolla. communication network and
interface A million spiking-neuron integrated
circuit with a scalable communication network
and interface. Science, 668, 2014.

[12] G E Moore. Cramming more components onto
integrated circuits (Reprinted from Electron-
ics, pg 114-117, April 19, 1965). Proceedings
Of The Ieee, 86(1):82–85, 1998.

[13] John von Neumann. First Draft of a Report
on the EDVAC. Texts and Monographs in
Computer Science. Springer Berlin Heidelberg,
1982.

14


