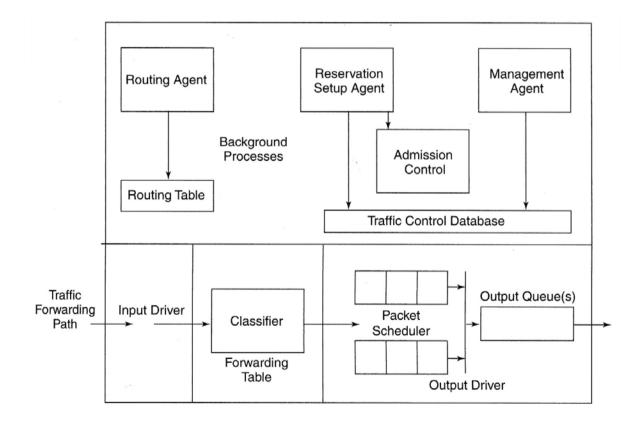
Internet – Protokolle für Multimedia - Anwendungen

Kapitel 5.3 IntServ / RSVP

Gliederung

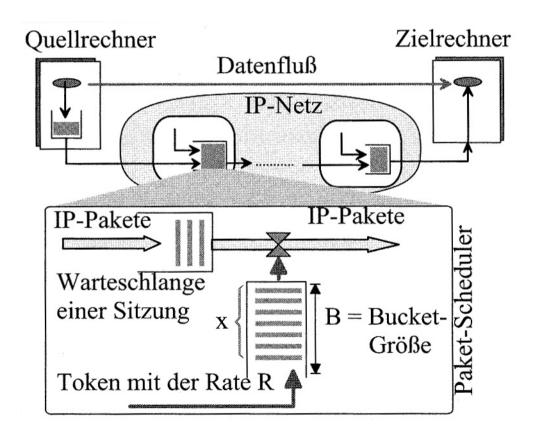
- ☐ Integrated Service Architecture (ISA)
- ☐ RSVP-Überblick
- Reservation Styles
- ☐ RSVP-Nachrichten

Integrated Service Architecture (1)


- ☐ ISA bzw. IntServ ist ein Ansatz, Internet-basiert eine Service-Architektur zu definieren, die Echtzeit- und Nicht-Echtzeitdienste durch Mechanismen wie Überlastkontrolle, Prioritäten, Bandbreitenreservierung auf einer technischen Ebene integriert.
- ☐ Implementation Reference Model (IETF). Bestandteile sind
 - Packet Scheduler: Scheduling Mechanism, Queuing Traffic Policing

(verwendet wird Token-Bucket-Modell)

- Packet Classifier: Traffic Differentiation, Service Classes
- Admission Control: QoS and Resource Availability Test, Tspec, Rspec
- Resource Reservation: set up flow state in end systems and routers


Integrated Service Architecture (2)

☐ Implementation Reference Model

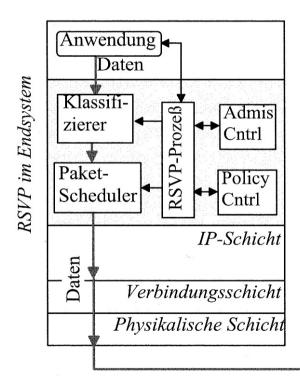
Integrated Service Architecture (3)

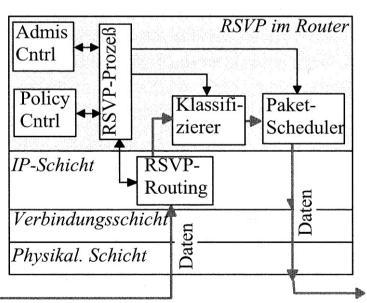
☐ Verwendung von Token Bucket Model im Scheduler

Integrated Service Architecture (4)

- ☐ IntServ ermöglicht QoS-Garantien, wobei Bandbreite und Verzögerung im Vordergrund stehen
- ☐ Zwei Dienstklassen: Guaranteed Service für intolerante Anwendungen und Controlled Load für tolerante, adaptive Anwendungen
- IntServ arbeitet mit Reservierungen
- ☐ IntServ benötigt Flussspezifikation. Ein Flow ist Paketfolge auf gleichem Weg zwischen Quelle und Ziel. Flowspec beschreibt verlangte Bandbreite und Verzögerung durch Traffic Specification (TSpec) und Request Specification (RSpec)
- ☐ TSpec: Variation der Bandbreite über der Zeit. RSpec: vom Netz verlangte Güte

RSVP – Überblick (1)


- □ Resource Reservation Protocol (RSVP) unterstützt QoS dadurch, dass Ressourcen entlang von Pfaden reserviert werden, die für MM-Ströme genutzt werden sollen. Enthält Aspekte
 - Reservierungsmechanismus
 - Zulassungskontrolle
 - Verbindungsidentifikation
 - Filtern eines Datenstromes
- □ RSVP versorgt Router auf Pfad (Punkt-Punkt oder Baumstruktur für Multicast) mit QoS-Anforderungen und periodisch mit Statusinformation (soft state)
- ☐ Eine RSVP-Reservierung bezieht sich immer auf eine unidirektionale virtuelle Verbindung


RSVP – Überblick (2)

- ☐ Status eines Pfades ändert sich z.B. weil
 - RSVP-Empfänger kann QoS-Parameter ändern
 - Sender kann Verkehrscharakteristik ändern (Sender TSpec) und Empfänger veranlassen, Reservierungsanforderungen (RSpec) anzupassen
 - ein neuer Sender kann in Multicast-Gruppe auftreten mit anderem Verkehrsprofil
 - ein neuer Empfänger in Gruppe kann neue Anforderungen haben
- □ Reservierung ist empfängerorientiert. Sender sendet downstream Path Messages, Empfänger sendet upstream Reservation Messages

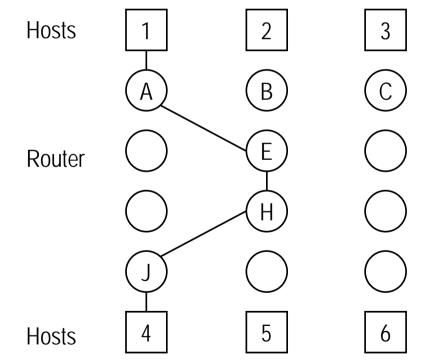
RSV – Überblick (3)

☐ Funktionsmodule

RSV – Überblick (4)

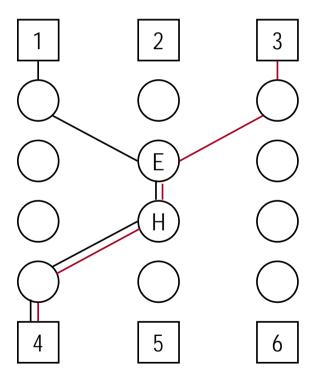
- ☐ Jeder Knoten hält Path State gemäß TSpec vom Sender und zwar pro Flow (E2E)
- ☐ Jeder Empfänger sendet Resv hop-by-hop, pro Knoten wird ResvState etabliert (AdmissionControl). Falls negativ, Meldung an Empfänger und Aufheben aller Reservierungen
- Nach Erhalt der Resv Message sendet Sender Daten
- ☐ Falls RSVP bei Multicast benutzt, meldet sich Empfänger vorher mit IGMP bei der Gruppe an
- □ RSVP bezieht sich nur auf unidirektionale virtuelle Verbindung. Vollduplex verlangt zwei gegenläufige Reservierungen.

RSV – Überblick (5)

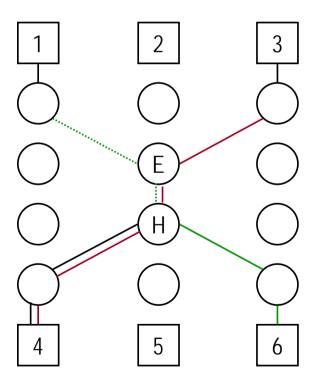


Reservation Styles (1)

- ☐ ResvRequst kennt mehrere Optionen zur Reservierung
 - falls mehrere Sender: distinct / shared distinct: eigenen upstream pro Sender shared: gemeinsame Reservierung für alle Sender
 - Auswahl der Sender: explicit list / wildcard explicit: Liste der ausgewählten Sender mittels FilterSpec wildcard: kein FilterSpec erforderlich, wählt implizit alle Sender
- ☐ Styles
 - Wildcard Filter (WF): shared, wildcard
 - Fixed Filter (FF): distinct, explicit
 - Shared Explicit (SE): shared, explicit (Styles sind inkompatibel, RSVP erlaubt keine Mischung)


Reservation Styles (2)

Beispiel (Fall1): Host 4 reserviert Kanal zu Host 1


Reservation Styles (3)

Beispiel: (Fall 2), zusätzlich zu Fall 1 reserviert Host 4 zweiten Kanal zu Host 3

Reservation Styles (4)

Beispiel: (Fall 3), zusätzlich zu Fall 2 verlangt Host 6 Kanal zu Host 1. Eventuell gemeinsame Nutzung von Teilpfaden

RSVP – Nachrichten (1)

☐ RSVP-PDU-Aufbau

0 3	4 7	8 1!	5	31
Version	Flags	Nachrichtentyp	RSVP-Prüfsumme	
Sende-Lebensdauer		(reserviert)	RSVP-Länge	
		RSVP-Objekte		

Version: Protokollversion

Flags: (noch offen)

Typ: 1 (Path), 2 (Reservierung), 3 (Path Error), 4 (ResvError),

5 (Pathteardown), 6 (Resvteardown), 7 (Resv confirm)

Lebensdauer: IP TTL-Wert

RSVP-Länge: Header incl. Objekte in Byte

RSVP – Nachrichten (2)

☐ RSVP-Objekte

0		16	31
	Länge	Klassen Nr. und Typ	
		Objektinhalt (variable)	

Null: wird ignoriert

SITZUNG: (in jeder RSVP-PDU) enthält IP-Ziel, IP-Protokoll-ID, Zielports

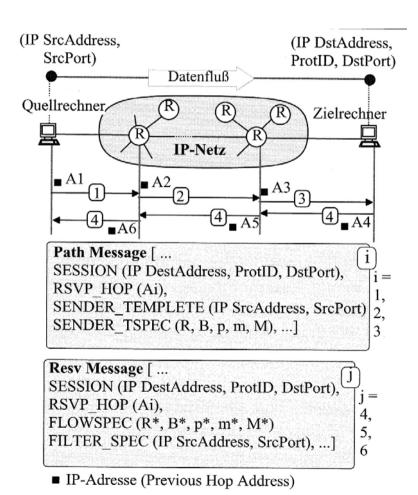
RSVP-HOP: IP-Adresse eines RSVP-fähigen Knotens (PHOP, NHOP)

Zeitwerte: (in jeder Path u. Resv PDU) Wert für Refresh Periode des

SoftState

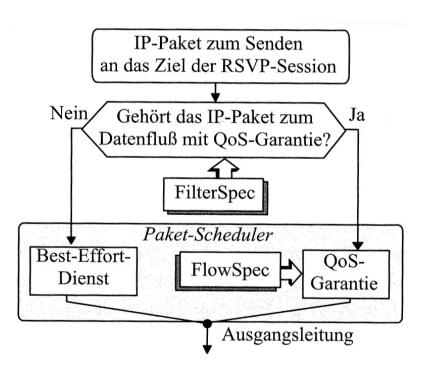
FlowSpec: gewünschte QoS in Resv-PDU

SenderSpec: Verkehrsprofil in Path-PDU (TSpec)


Integrität: Verschlüsselungsinfo für Authentifizierung (MD5)

FehlerSpec: für PathErr, ResvErr, ResvConf

RSVP – Nachrichten (3)


- ☐ Path-Nachricht enthält
 - Session
 - RSVP-Hop: IP-Adresse des Absenders (Host, Router), evtl. Id des log. Interface (Port)
 - Sender-Template: Flow Label
 - Sender Traffic Spec
 - R: geforderte Datenrate der Quelle in Byte/s (bis TB/s)
 - B: Bucketgröße (1-250 GB)
 - p: Peak Data Rate
 - m: minimale Länge der IP-Pakete
 - M: maximale Länge der IP-Pakete auf Datenpfad
- ☐ Reservation Nachricht enthält
 - Session, RSVP-Hop
 - FlowSpec (R*, B*, p*, m*, M*) der garantierten Werte

RSVP - Nachrichten (4)

RSVP - Nachrichten (5)

☐ Behandlung eines IP-Pakets im Router

