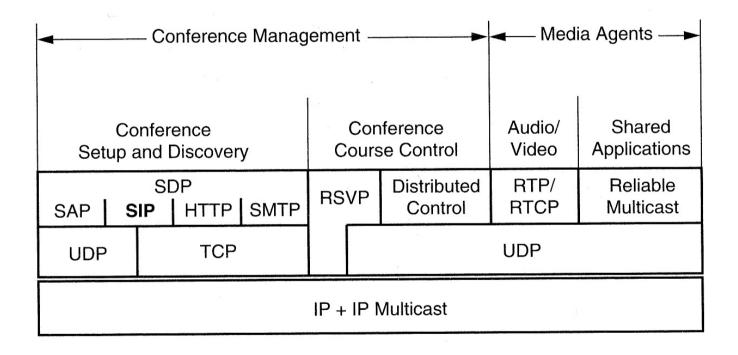
Digitale Sprache und Video im Internet


Kapitel 6.4 SIP

- ☐ SIP (Session Initiation Protocol), dient als reines Steuerungsprotokoll (RFC 3261 - 3265) für MM-Kommunikation
- ☐ Weiterentwicklung des MBONE-SIP. Nimmt in IP-Netzen Funktionen wahr, die in herkömmlichen TK-Netzen von Signalisierungsprotokollen ("Zeichengabe") erbracht werden
- ☐ SIP wurde von IETF als Alternative zu H.323 vorgeschlagen. Im Gegensatz zu H.323 schlägt SIP weder einen bestimmten Codec vor noch erfordert es RTP zwingend
- ☐ SIP dient als Basis für Dienstkonvergenz
- ☐ Zum Austausch von Konferenzinfos (verwendete Codierung, Ports, Multicast-Adresse etc) ist zusätzlich SDP (Session Description Protocol, RFC 2327) erforderlich.


SIP (2)

- ☐ SIP funktioniert nach dem Request/Response-Prinzip
- ☐ Die Teilnehmer werden bei SIP über einen URL adressiert. Die Bestimmung der IP-Adresse geschieht über DNS
- ☐ SIP-Nachrichten werden syntaktisch ähnlich wie bei HTTP aufgebaut

IETF – Architektur für MM

IETF – Architektur für SIP

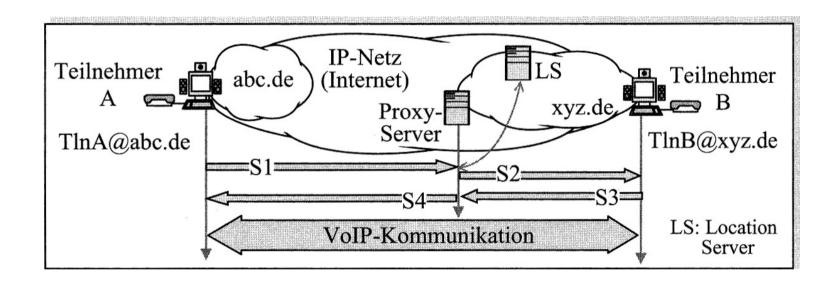
SIP: Session Initiation Protocol GLP: Gateway Location Protocol

SIP - Komponenten

- ☐ SIP Terminal kann zwei Rollen haben
 - User Agent Client (UAC), der eine Session initiiert (→ Methods, Requests)
 - User Agent Server (UAS), beantwortet Anfragen von UACs (→ Responses)
- ☐ SIP Server kann arbeiten als Proxy-Server, Redirect-Server, Location-Server, Anrufweiterleitung, Voice-Mail-Server
- ☐ SIP Proxy Server: zur Weiterleitung von Steuernachrichten im Netz
- ☐ SIP Redirect Server: Ermittlung der aktuellen Zieladresse des gewählten Tln (Unterstützung von Mobilität in Form von Terminal Mobility, User Mobility, Service Mobility)
- ☐ SIP Location Server: Abbildung von Zieladressen auf konkrete Systeme (Registrar)
- Gateways

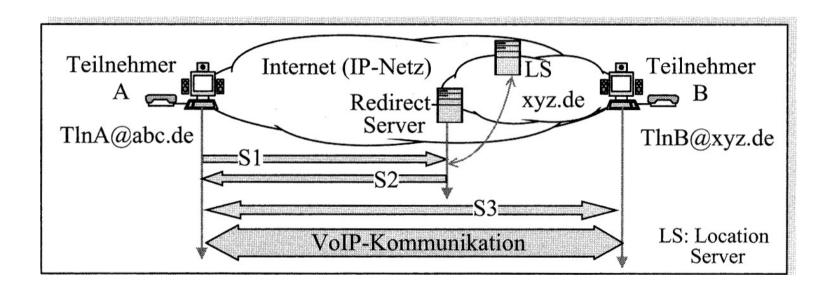
= 100

SIP Server (UAS)

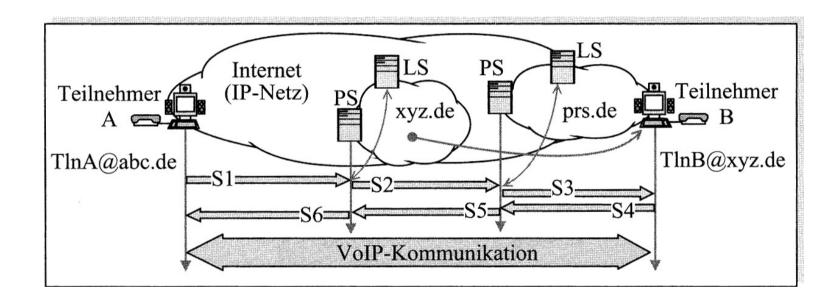

- □ primär logisches Gegenstück zu SIP-Client. Ein SIP-System kann aber auch reine UAS-Aufgaben haben
- UAS-Aufgaben
 - Registrieren von SIP Terminals
 - Call Control Aufgaben (Steuern Leistungsmerkmale, Mobility-Fktn, Operator)
 - Registrieren von Benutzern und deren Profile
 - Ermittlung Endadresse und Mapping
 - Authentication, Authorization, Accounting (AAA)
 - Weiterleiten von Verbindungsanforderungen, Statusinfo, QoS-Anforderungen

SIP - Adressen

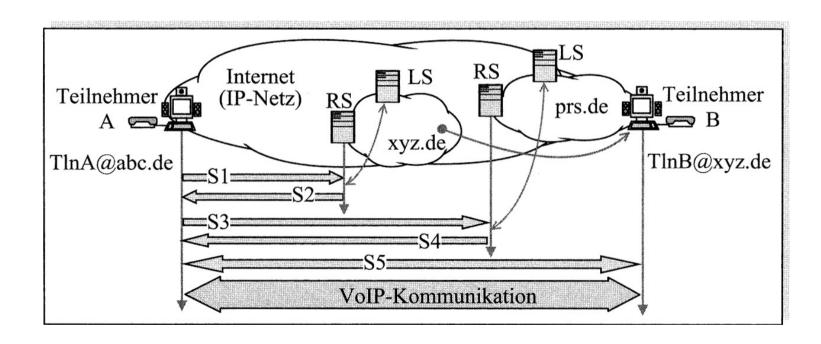
- ☐ Unterstützt werden email-Adressen und E.164-Telefonnr
 - sip: user@domain, sip: user@host,
 - sip: phone_number@IP-Address
- ☐ Beispiele: sip: huber@icn.siemens.de,
 - sip: huber@249.198.241.30,
 - sip: +49-711-8123551@129.205.65.11
- □ erweiterte Adressmethoden
 - Terminal- und User Mobility
 - Multicastverbindungen
 - Rufe zu verschiedenen Zielen unter einer Adresse (sequenziell, parallel)
- ☐ Telephony Mapping auf IP-Adressen (ENUM, RFC2916)


Einsatz von SIP-Servern (1)

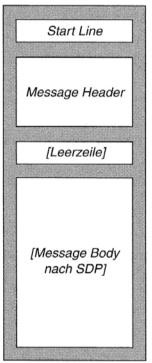
☐ Einsatz eines Proxy-Servers


Einsatz von SIP-Servern (2)

☐ Einsatz eines Redirect-Servers


Einsatz von SIP-Servern (3)

☐ Anrufweiterleitung über Proxy-Server


Einsatz von SIP-Servern (4)

☐ Anrufweiterleitung über Redirect-Server

- Call Control (Rufsteuerung): Behandlung von Verbindungen wie Partner festlegen, Verb. aufbauen, Leistungsmerkmal bearbeiten
- Bearer Control: Steuerung des Weges, Allokation des eigentlichen Nutzkanals mit QoS-Eigenschaften.
- ☐ SIP (Session Initiation Protocol) dient nur dem Call Control (Port 5060), Transport über UDP oder TCP
- □ SIP-Grundfunktionen
 - Name Translation and User Location
 - User Capabilities festlegen (z.B. Audio unter Codec X)
 - User Availability feststellen
 - Call Setup: Aufbau und Übermittlung der Eigenschaften
 - Call Handling: Call Transfer, Einberufen Konferenz

SIP - Nachrichtenaufbau

Start Line:

Request: SIP-Version, SP, Statuscode, SP, Reason-Phrase CRLF

Response: Method (INVITE, ACK, OPTIONS etc.), Request-URI, SP, SIP-Version CRLF

Message Header:

General

(z.B.: Accept, Call-ID, Contact, CSeq, Date, Encryption, From, Organization, Record-Route, Require, Supported, Timestamp, To, User-Agent, Via)

Entity

(z.B.: Allow, Content-Disposition, Content-Encoding, Content-Language, Content-Length, Content-Type, Expires)

Request

(z.B.: Authorization, Hide, In-Reply-To, Max-Forwards, Priority, Proxy-Authorization, Proxy-Require, Route, Response-Key)

Response

(z.B.: Proxy-Authenticate, Retry-After, Server, Unsupported, Warning, WWW-Authenticate)

(SP steht für Single Space, CRLF für Carriage-Return Line Feed)

SIP - Nachrichten

☐ INVITE: Einladung zum Gespräch, Konferenz (durch Tln oder Vermittler)

Default: bidirektional, sonst Ändern über SDP

■ BYE: Beendet Kommunikation

OPTIONS: Bereitstellen Infos, ohne Verbindung selbst aufzubauen

☐ STATUS: Zustand über Verbindung

☐ CANCEL: Unterbricht Suche nach Benutzer

■ REGISTER: Standortinfo f
ür Benutzer

☐ ACK: Positive Quittung

☐ SUBSCRIBE: startet / stoppt Session oder TLN-Überwachung

■ NOTIFY: Ereignismeldung

□ PRACK: Vorabbestätigung (Provisional ACK)

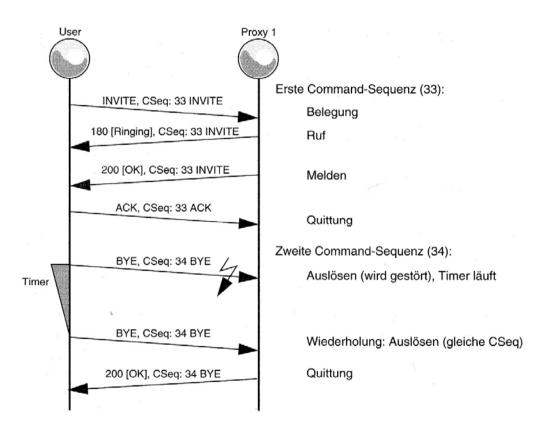
☐ REFER: Hinweis, einen Tln zu kontaktieren

SIP

ap. 6.4

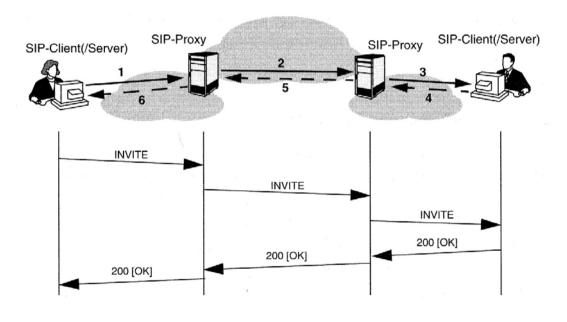
RN =

SIP - Statusinformationen

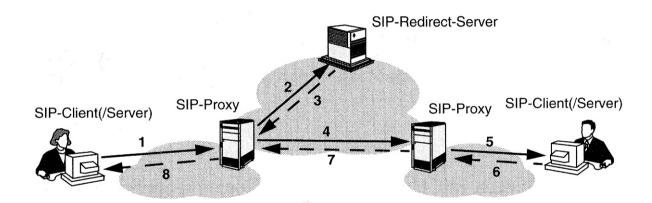

- ☐ Informational (1xx)
 - z.B. 100 Trying, 180 Ringing, 182 Queuing
- ☐ Success (2xx)
 - z.B. 200 ok
- □ Redirection (3xx)
 - z.B. 300 Multiple Choices, 380 Alternative Service
- ☐ Client Error (4xx)
 - z.B. 400 Bad Request, 404 not found, 482 Busy here
- ☐ Server Error (5xx)
 - z.B. 500 Server Error, 501 Not implemented, 502 Time out
- ☐ Global Error (6xx)

SP

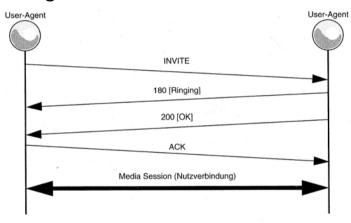
(ap. 6.4

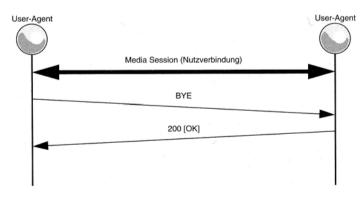

RN =

SIP - Ablauf (1)

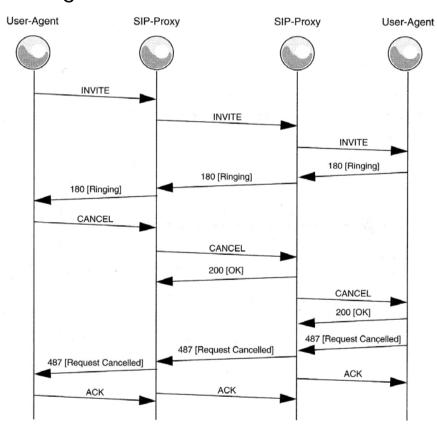


SIP - Ablauf (2)

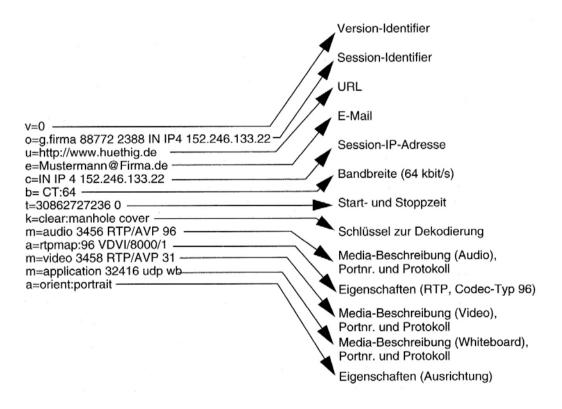

☐ Kommunikation über Proxy Server


☐ Umleitung mit Redirect Server

□ Verbindungsaufbau



□ Verbindungsabbau



SIP - Ablauf (5)

□ Verbindungsabbruch

☐ Beschreibung einer Verbindung mit mehreren Strömen

SDP – Kodierung (2)

Parameter	m/o	Name	Bedeutung	
а	0	Attributes	zusätzliche Eigenschaften (SDP-Erweiterungen)	
b	0	Bandwidth	erforderliche Bandbreite	
С	0	Connection Information	weitere Informationen zum Media- Stream	
е	0	E-Mail Address	E-Mail-Adresse des "Owners"	
i	0	Session Information	Zusatzinformationen im Textformat	
k	0	Encryption Key	Schlüssel für die Media-Streams	
m	m	Media	Name und Adresse des Media Streams	
0	m	Owner	Erzeuger (Besitzer) einer Session	
р	0	Phone Number	Telefonnummer des "Owners"	
r	0	Repeat	Wiederholungen	
S	m	Session Name	Session-Name	
t	m	Time	Session-Dauer	
u	0	URI	Identifier der Session-Beschreibung	
V	m	Version	Version des verwendeten Protokolls	
Z	0	Time Zone Adjust- ment	Zeitzonenausgleich	

- ☐ SDP (Session-Description Protocol)
- ☐ IMPP (Presence Service): Überwachen Status Clients / Agents
- ☐ SAP (Session Announcement Protocol)
- ☐ CPL (Call Processing Language) : basiert auf XML, zur Formulierung von Steuerungsanweisungen an SIP-Server
- ☐ SOAP (Simple Object Access Protocol): RPC-Mechanismus als API zur Ergänzung und Erweiterung von SIP-Nachricht
- ☐ GLP (Gateway Location Protocol)

Vergleich SIP mit H.323

	SIP	H.323	
Dienstangebot	beide Dienste sind vergleichbar		
Architektur	modular	monolithisch	
Modell	Internet/WWW	Telefonnetz	
Transportprotokoll	UDP oder TCP	TCP (UDP ist optional)	
Protokoll für die Nutzinfor- mationen	RTP	RTP	
Kodierung	ASCII (textbasiert)	binär, Q.931 (ASN.1)	
verwandte Protokolle	НТТР	Q.931, Q.Sig	
Komplexität	gering	hoch	
skalierbar	ja	nein	
erweiterbar	leicht	schwer	
Codec-Unterstützung	alle IANA-Codecs	nur Codecs nach ITU-T	
unabhängig vom Trans- portprotokoll	ja	nein	
Firewall-Support	ja	nein	
Mehrpunktsignalisierung	ja	nein	
Konferenzmodell	verteilt	zentralisiert	