

Kapitel 2: Grundlagen

Kapitel 2: Inhalt

- 1. Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety

Ziele der Informationssicherheit

Hauptproblem:

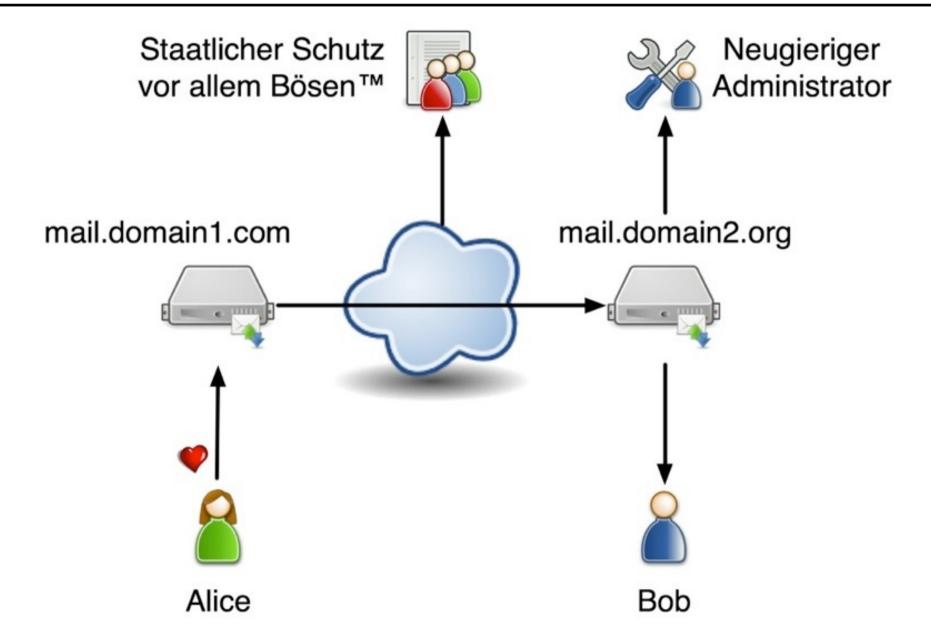
Informationssicherheit (IS) kann nicht gemessen werden

- Es gibt keine Maßeinheit für IS
- Sicherheitskennzahlen (security metrics) quantifizieren nur Teilaspekte;
 organisationsübergreifend einheitliche Definitionen sind noch Mangelware.
- Lösungsansatz: Indirekte Definition von IS durch (Teil-)Ziele:

Vertraulichkeit	Confidentiality		jeweils bezogen auf Daten und sie
Integrität	Integrity		verarbeitende
Verfügbarkeit	Availability		IT-Systeme
		 -	11-Svsieme

Akronym CIA häufig in englischer IS-Literatur

1. Teilziel: Vertraulichkeit

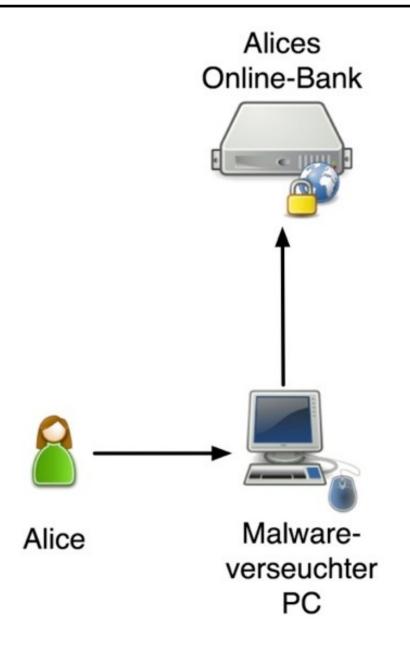

■ Definition im Kontext *Daten*:

Vertraulichkeit (engl. confidentiality) ist gewährleistet, wenn geschützte Daten nur von Berechtigten genutzt werden können.

- In vernetzten Systemen zu betrachten bezüglich:
 - □ Transport von Daten (über Rechnernetze)
 - Speicherung von Daten (inkl. Backup)
 - Verarbeitung von Daten
- Typische Sicherheitsmaßnahme: Verschlüsselung
- Teilziel gilt als verletzt, wenn geschützte Daten von unautorisierten Subjekten eingesehen werden können.
- Kontext *Dienste*: Vertrauliche IT-Dienste können nur von autorisierten Anwendern genutzt werden.

Beispiel: Vertraulichkeit von E-Mails

2. Teilziel: Integrität


■ Definition im Kontext *Daten*:

Integrität (engl. integrity) ist gewährleistet, wenn geschützte Daten nicht unautorisiert und unbemerkt modifiziert werden können.

- Wiederum bei Transport, Speicherung und Verarbeitung sicherzustellen!
- Typische Sicherheitsmaßnahme: Kryptographische Prüfsummen
- Teilziel verletzt, wenn Daten von unautorisierten Subjekten unbemerkt verändert werden.
- Kontext Dienste: Integre IT-Dienste haben keine (versteckte) Schadfunktionalität.

Beispiel: Integrität im Online-Banking

Neue Überweisung

An: Bob Mule

Betrag: 2000 Euro

TAN: 123456

Neue Überweisung

An: Meinen Vermieter

Betrag: 500 Euro

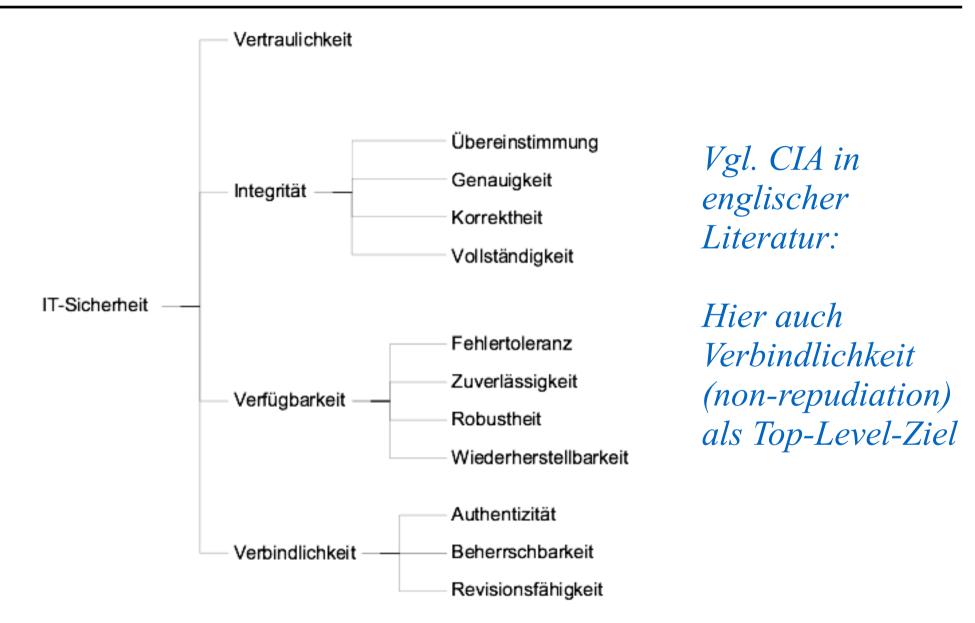
TAN: 123456

3. Teilziel: Verfügbarkeit

Definition:

Verfügbarkeit (engl. availability) ist gewährleistet, wenn autorisierte Subjekte störungsfrei ihre Berechtigungen wahrnehmen können.

- Bezieht sich nicht nur auf Daten, sondern z.B. auch auf Dienste und ganze IT-Infrastrukturen.
- Typische Sicherheitsmaßnahme: Redundanz (z.B. Daten-Backups), Overprovisioning (z.B. mehr als genug Server)
- Teilziel verletzt, wenn ein Angreifer die Dienst- und Datennutzung durch legitime Anwender einschränkt.



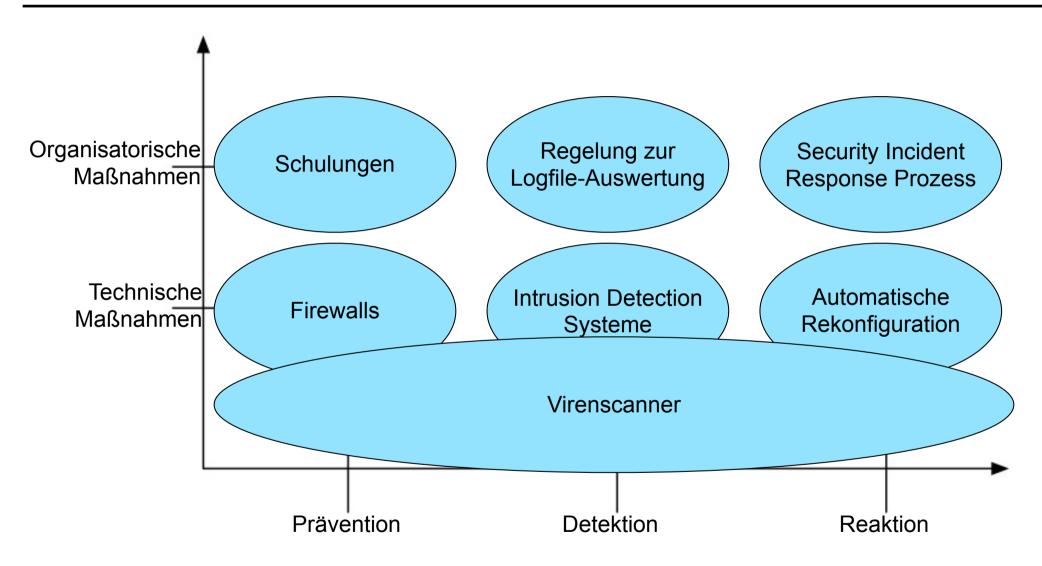
Beispiel: Verfügbarkeit von Webservern

Ziele und abgeleitete Ziele in deutscher IS-Literatur

[In Anlehnung an Hartmut Pohl]

Kapitel 2: Inhalt

- Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety



Warum Sicherheitsmaßnahmen einordnen?

- Zum Erreichen der IS-Teilziele müssen Sicherheitsmaßnahmen umgesetzt werden (vgl. IS-Risikomanagement in Kapitel 3).
- Sicherheitsmaßnahmen gibt es zuhauf; sie entwickeln sich wie Dienste und Angriffe ständig weiter.
 - □ In der Vorlesung werden wichtige "klassische" und diverse aktuelle Sicherheitsmaßnahmen behandelt, aber bei Weitem nicht alle.
 - Systematische Einordnung ist Basiskompetenz bei der Analyse und Bewertung neuer Sicherheitsmaßnahmen.
- Wir orientieren uns an zwei bewährten Dimensionen:
 - □ Lebenszyklus potentiell erfolgreicher Angriffe auf Dienste/Daten
 - Unterscheidung zwischen technischen und organisatorischen Maßnahmen (=> Faktor Mensch nie zu unterschätzen!)

Einordnung von Sicherheitsmaßnahmen

Einige Sicherheitsmaßnahmen können mehreren Kategorien zugeordnet werden, d.h. es liegt keine Taxonomie vor!

IS-Teilziele im Kontext des Angriffslebenszyklus

- Die Kombination aller in einem Szenario eingesetzten präventiven Maßnahmen dient der Erhaltung von Vertraulichkeit, Integrität und Verfügbarkeit.
- **Detektierende** Maßnahmen dienen dem Erkennen von unerwünschten Sicherheitsereignissen, bei denen die präventiven Maßnahmen unzureichend waren.
- Reagierende Maßnahmen dienen der Wiederherstellung des Soll-Zustands nach dem Erkennen von unerwünschten Sicherheitsereignissen.

Welche Maßnahmen werden benötigt?

Grundidee:

- Maßnahmenauswahl ist immer szenarienspezifisch
- □ Risikogetriebenes Vorgehensmodell

■ Kernfragestellungen:

- Welche Sicherheitsmaßnahmen sollen wann und in welcher Reihenfolge ergriffen werden?
- □ Lohnt sich der damit verbundene Aufwand (Investition/Betrieb)?

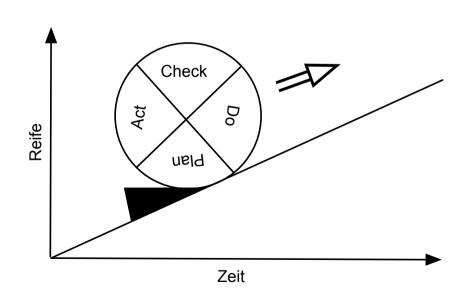
Voraussetzung Risikomanagement (hier nur Überblick):

- Analyse des Schutzbedarfs
- □ Überlegungen zu möglichen Angriffen und deren Auswirkungen
- Ermittlung / Evaluation passender Lösungswege
- Entscheidung möglichst auf Basis quantitativer (d.h. nicht nur qualitativer)
 Bewertung

Kapitel 2: Inhalt

- 1. Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety

Motivation für Standardisierung

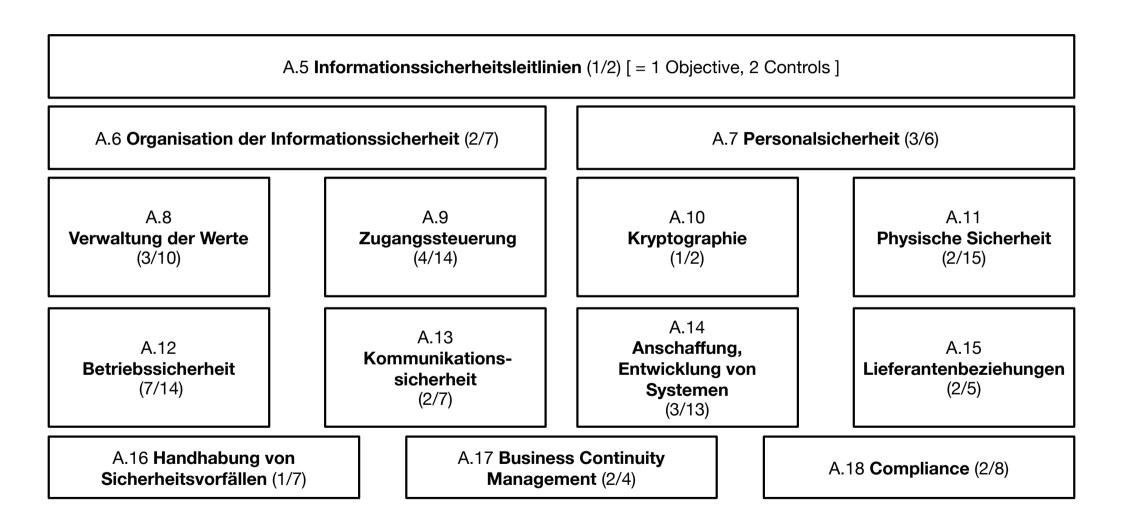

- Informationssicherheit Anfang der 1990er Jahre:
 - Stark technikzentriert
 - Kosten-/Nutzenfrage kommt auf
 - □ Führungsebene wird stärker in IS-Fragestellungen eingebunden
- Wachsender Bedarf an Vorgaben und Leitfäden:
 - □ Kein "Übersehen" wichtiger IS-Aspekte
 - Organisationsübergreifende Vergleichbarkeit
 - Nachweis von IS-Engagement gegenüber Kunden und Partnern
- Idee hinter ISO/IEC 27000:

Anwendung der Grundprinzipien des Qualitätsmanagements auf das Management der Informationssicherheit

Internationale Normenreihe ISO/IEC 27000

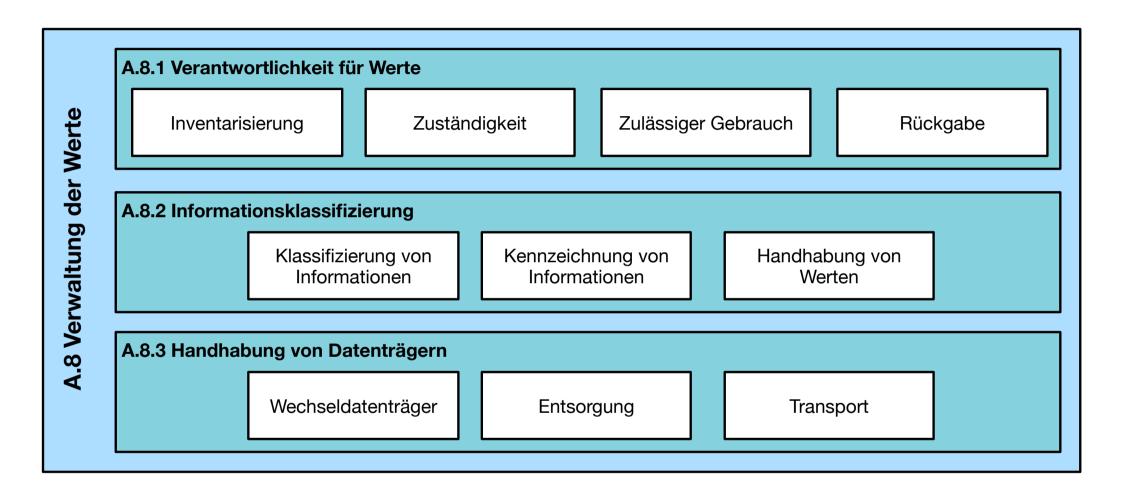
- ISO/IEC 27000 wird mehrere Dutzend einzelne Standards umfassen
 - □ Mehr als die Hälfte davon ist noch in Arbeit und nicht veröffentlicht
- Norm ISO/IEC 27001 legt Mindestanforderungen an sog. Information Security Management Systems (ISMS) fest
 - Zertifizierungen möglich für:
 - Organisationen (seit 2005)
 - Personen (seit 2010)
 - Inhaltliche Basis:
 - Kontinuierliche Verbesserung durch Anwendung des Deming-Zyklus (PDCA)
 - Risikogetriebenes Vorgehen
 - □ Seit 2008 auch DIN ISO/IEC 27001

Kerninhalte / Struktur von DIN ISO/IEC 27001


- Begriffsdefinitionen (nicht zu unterschätzen!)
- PDCA-basierter Prozess zum Konzipieren,
 Implementieren, Überwachen und Verbessern eines ISMS
- Mindestanforderungen u.a. an Risikomanagement, Dokumentation und Aufgabenverteilung
- Normativer Anhang A enthält:
 - Definition von Maßnahmenzielen (control objectives)
 - □ Definition von Maßnahmen (controls)

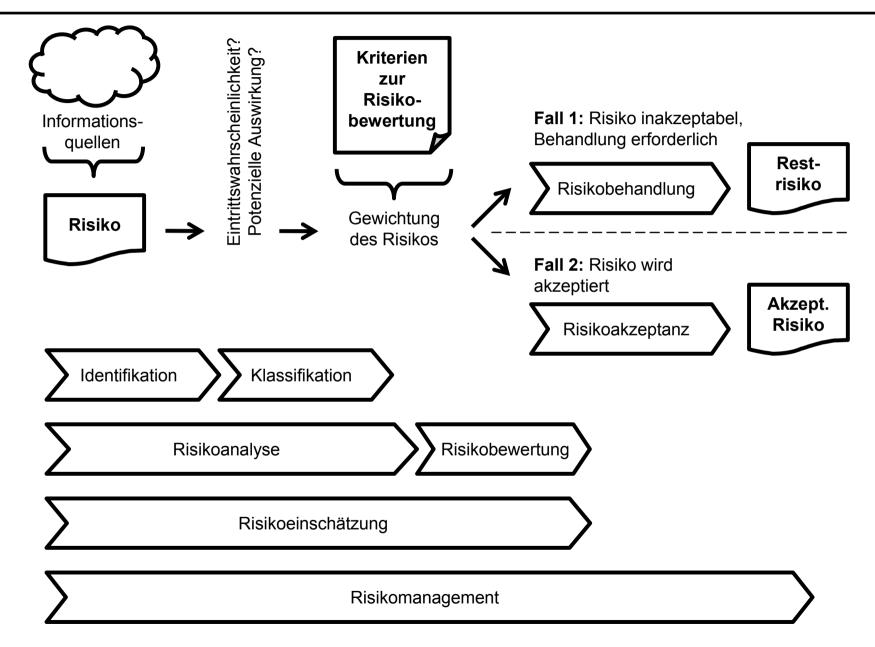
Umfang:

- □ DIN ISO/IEC 27001:2015 31 Seiten
- □ DIN ISO/IEC 27002:2015 103 Seiten



Maßnahmenziele und Maßnahmen: Überblick

Beispiel: Maßnahmen in ISO/IEC 27001 A.8



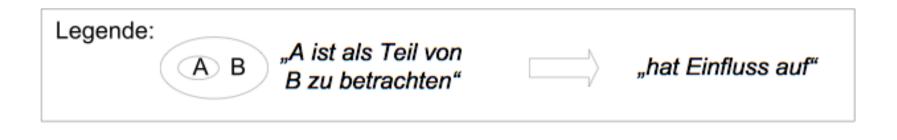
Beispiel A.8.3.2 - Entsorgung von Datenträgern:

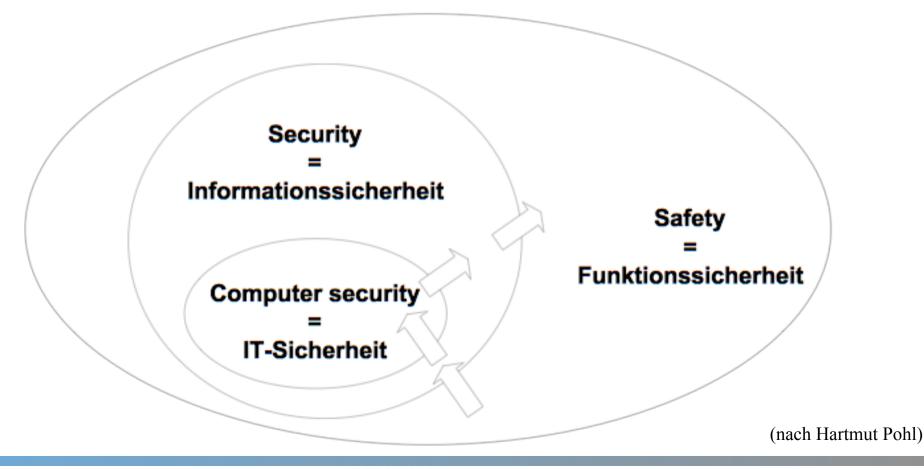
Nicht mehr benötigte Datenträger werden sicher und unter Anwendung formaler Verfahren entsorgt. [DIN 150/IEC 27001:2015-03, S. 19]

Grundlagen des Risikomanagements (ISO/IEC 27005)

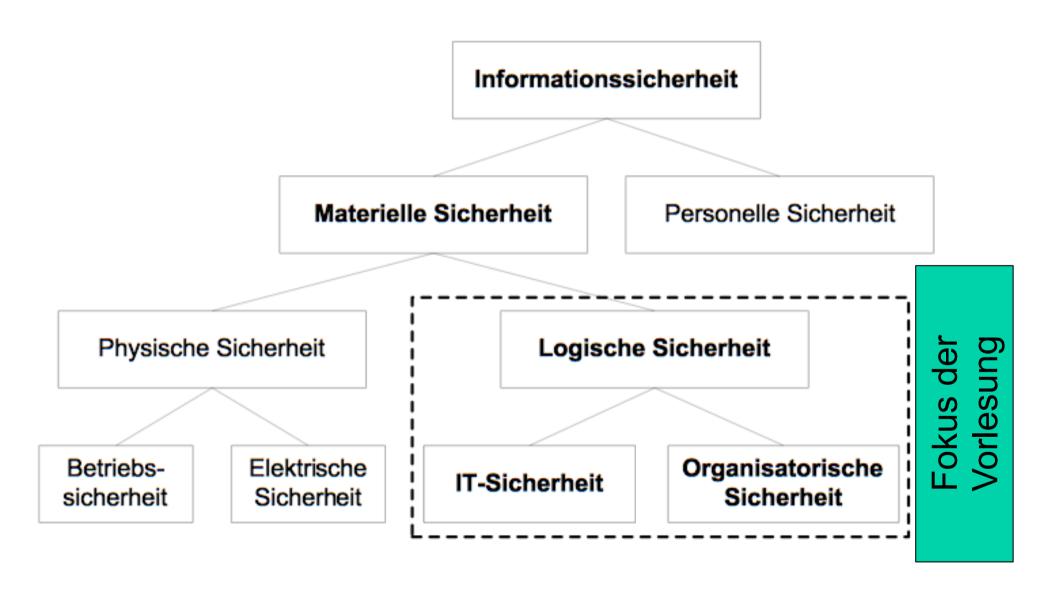
Kapitel 2: Inhalt

- Ziele der Informationssicherheit
- 2. Systematik zur Einordnung von Sicherheitsmaßnahmen
- 3. Technik & Organisation ISO/IEC 27000
- 4. Abgrenzung: Security vs. Safety




Unterscheidung von Security und Safety

- Beide Begriffe werden oft mit "Sicherheit" übersetzt
- Typische Themen der Safety ("Funktionssicherheit")
 - □ Betriebssicherheit für sicherheitskritische Programme, z.B. Steuerung und Überwachung von Flugzeugen, Kraftwerken und Produktionsanlagen
 - Ausfallsicherheit (Reliability)
 - Gesundheitsrelevante Sicherheitseigenschaften / Ergonomie
- Typische Themen der Security ("Sicherheit" i.S.d. Vorlesung)
 - □ Hardware-/Software-/Netz-basierte Angriffe und Gegenmaßnahmen
 - Security Engineering: Design und Implementierung sicherer IT-Systeme
 - Security Policies: Sicherheitsanforderungen und deren Umsetzung
 - Anwendung von Kryptographie, Hardware-Designmethoden, ... im Kontext "C I A" von Daten und Diensten


Einordnung Safety/Security (1/2)

Einordnung Safety/Security (2/2)

(nach Hartmut Pohl)