13th IFIP/IEEE International Workshop on
Distributed Systems: Operations & Management

October 21-23, 2002, Montreal, Canada

A Hot-Failover State Machine for Gateway Services
and its Application to a Linux Firewall

Harald Roelle

MN M

TEAM
MUNICH NETWORK MANAGEMENT TEAM

Department of Informatics, University of Munich
Email: roelle@informatik.uni-muenchen.de

Motivation and Abstracted Scenario

* Lower budget environments: Gateways built upon
off-the-shelf hard- and software

= Rising number of components increase probability of faults
— Adequate fault-tolerance solution necessary

Foreign Domain

Reference Point

« (Gateway service

— Resides in one domain

— Linked to different domains Uplink
(Gateway Service)
« Single point of failure by Downlink

gateway service

Downstream Side Upstream Side

Reference Point

Service Domain

Harald Roelle MINM

Motivation and Abstracted Scenario

* Lower budget environments: Gateways built upon
off-the-shelf hard- and software

= Rising number of components increase probability of faults
— Adequate fault-tolerance solution necessary

Foreign Domain

 Redundancy cluster
— System providing service: Master

— Backup systems ready to take

over service provisioning

y

Redundanc
Cluster

* Problems to solve:

— Detect failures

Downstream Side Upstream Side

— Hand-over service provisioning
Service Domain

Harald Roelle Vi NIVA

Important Requirements for a Generic Solution

Service monitoring from client's perspective
— Both monitoring service and its accessibility necessary

Separation of logic and actions
— Keeps solution applicable for different concrete services

Minimal active links to foreign domain
— Security threats lowered by keeping upstream links down until needed

Independence from specific services and communication technology and
communication primitives
— No changes in surrounding environment necessary

No need for extra hardware
— Flexibility of used systems and short setup times

Harald Roelle MINM

Related Work

Virtual Router Redundancy Protocol (VRRP, RFC2338)
— Assumes IEEE 802/ IP
— Only simple 3 state machine specification
+ (Good inspiration, also addresses management

Hot Standby Router Protocol (HSRP, RFC2281)

— Requires dynamic routing protocol
+ In-detailed state machine was valuable starting point

IETF Working Group for Reliable Server Pooling

— Solution 1: Introduces new, special protocol

— Solution 2: Classical architecture with load balancers
+ Helped identifying requirements
High-Availability Linux (HA-Linux) Project

— Limited setup and monitoring

+ Considers security explicitly

Linux Virtual Server (LVS) Project: Implements VRRP

Load Balancers: Don't solve the problem, but are subject itself

Harald Roelle MINM

Solution by Generic State Machine

Main design principles:
— Control both observation of service and communication links
— Communication on present links to control handover
— Arbitrary number of backup hosts
— Dynamically add/remove hosts from redundancy cluster

Main components:

Host-local state machine

— Specifies service and link monitoring

— Coordinates handover of service functionality
Messages

— Inform other hosts of status changes

— Trigger actions on remote hosts
Status table

— All hosts in cluster priorized by a total order

— Maintained and distributed by current master
Local alarm timers

— Trigger local actions

Harald Roelle MINM

Main State Machine

* Init and Decide main states
— Detects initial priority of host
— Differentiates initial bootstrap and dynamic addition
— Decide on initial role of host

(_init)
o o
[myPrio<masterPrio] - \ ~. [myPrio==masterPrio]

(_decide J— .
[myPrio>masterPrio] [decide]

service)
o o

[down]

~ [handover]

backup
(fectop L

[down]

[service]

handover
(e] (o]

[backup]

Harald Roelle MINM

Main State Machine

« Backup main state
— Performs active service monitoring from client's perspective
— Triggers local monitoring on master host

¢

[myPrio<masterPrio] - \, ~,__[myPrio==masterPrio]
{ decide)=

[myPrio>masterPrio] [decide]

~, [handover]

gackug ! :z r‘]:andovg!" [serwce>{] Cs)ervic(?:)

[backup] down
[down] . [down]

Harald Roelle MINM

Main State Machine

« Handover main state
— Initiates transfer of service provisioning
— Distinguishes real service failures from failures in backup's links
— Activates upstream link

(DinitD)

[myPrio<masterPrio] - \ ~,__[myPrio==masterPrio]

_ decide)< _
[myPrio>masterPrio] [decide]
[handover] [Service]
(r:l?acku% \! :Zhandover‘ >(service)
[backup] = [d: .
W
[down] . [down]

Harald Roelle MINM

Main State Machine

e Service main state
— Designates a host as the master
— Maintains and distributes status table

¢

[myPrio<masterPrio] - \ ~__[MyPrio==masterPrio]

(_ decide)= .
[myPrio>masterPrio] [decide]
[handover] _
(Cl?acku%\ réandovg [service] gervicg
[backup] _)
[down]
[down] . [down]

10 Harald Roelle MINM

Handover Main State

?

(" handoverstart)
[rcv. DnstrTO[prio>myPrio] || downlinkChk() [downlinkChk() == failed]

\l/ rcv. SveTO[prio>myPrio] |

backup Q
/. [rcv. DnstrTODeny ||

rcv. DnstrTO[prio>myPrio] || (downstream takeover \

rcv. SchO[prio>myPrio]]\k send DnstrTO) \
' @ down

[DnstrTODeny timeout]

|
[downlinkChk() == succ.]

(handover interrupt \

k deactivateUplink()) (" handover uplink check
activateUplink()

\ uplinkChk() y [uplinkChk() == failed]

[rcv. DnstrTO[prio>myPrio] || _ |
rev. UpstrTO[prio>myPrio] || [uplinkChk() == succ.] service

rev. SveTO[prio>myPrio]] -

upstream takeover \
. send UpstrTO)[UpstrTODeny timeout]

[rcv. UpstrTODeny]

11 Harald Roelle MINM

12

Customizable Procedures

Realizes separation from logic and actions:
State machine adoptable to concrete services without altering the
handover logic

Monitoring and Testing Procedures

— Deliver boolean results

— Must be positive definite

— 2 procedures for up- and downlink checks

— 2 procedures for local and remote service checks

(De-) Activation Procedures

— Only used to carry out actions, no return value

— Success checking ensured by logic of state machine
— 2 procedures for uplink (de-) activation

— 2 procedures service (de-) activation

Client Related Procedures

— Announce changes on up- / downstream side
— 4 procedures: takeover and release on either up- and downstream side

Harald Roelle MINM

13

Prototype: Universal |IP Service Daemon

Implemented on Linux in C as user space daemon
Assumes Layer 3 to be IP

Roving IP addresses on Up/Downlink via "single link
multihoming"

Implemented procedures:

— Client related: Announce address changes via broadcast pings

— Monitoring: Downlink by broadcast ping, uplink by ping of next hop
router

Remaining procedures left for implementation as external
program/script
Scripts for packet-filtering Firewall on Ethernet:

— Uplink (De-) Activation: (un-) loading card driver
— Service (De-) Activation: iptables

Harald Roelle MINM

Conclusion

In-depth specification of generic handover logic
Fulfills requirements for gateway services
Lightweight solution without extra hardware

Handover logic remains unchanged on application for specific service by
customizable procedures delivering hooks for specific actions

Directly implementable
Status transfer not focused

Examples of use:

— Standalone solutions

— Integration into services

— Basis for further development, e.g. of VRRP

Harald Roelle MINM

15

Current and Future Work

Formal verification

— In cooperation with Alexander Knapp and Stefan Merz (Research group of
Prof. Martin Wirsing, LMU, http://www.pst.informatik.uni-muenchen.de/)

— Using model checking tools
— Logic verification: almost finished
— Timing verification: t.b.d.

Specify security mechanisms on level of the state machine
— Authentication mechanisms

Multi service redundancy
— Coordinate multiple services by single state machine

Active feedback of backup hosts
— Backups influence ranking in priority table
— Enables load balancing in case of failure

Harald Roelle MINM

